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ABSTRACT
We address two emerging concerns in algorithmic fairness: (i) re-
dundant encodings of race – the notion that machine learning
models encode race with probability nearing one as the feature set
grows – which is widely noted in theory, with little empirical evi-
dence; and (ii) the lack of race and ethnicity data in many domains,
where state-of-the-art remains (Naive) Bayesian Improved Surname
Geocoding (BISG) that relies on name and geographic information.
We leverage a novel and highly granular dataset of over 7.7 million
patients’ electronic health records to provide one of the first empir-
ical studies of redundant encodings in a realistic health care setting
and examine the ability to assess health care disparities when race
may be missing. First, we show that machine learning (random
forest) applied to name and geographic information can improve
on BISG, driven primarily by better performance in identifying
minority groups. Second, contrary to theoretical concerns about
redundant encodings as undercutting anti-discrimination law’s
anti-classification principle, additional electronic health informa-
tion provides little marginal information about race and ethnicity:
race still remains measured with substantial noise. Third, we show
how machine learning can enable the disaggregation of racial cat-
egories, responding to longstanding critiques of the government
race reporting standard. Fourth, we show that an increasing feature
set can differentially impact performance on majority and minority
groups. Our findings address important questions for fairness in
machine learning and algorithmic decision-making, enabling the
assessment of disparities, tempering concerns about redundant en-
codings in one important setting, and demonstrating how bigger
data can shape the accuracy of race imputations in nuanced ways.
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1 INTRODUCTION
Racial equity assessment is critical for understanding disparate
impacts of policies on protected groups.1 U.S. Executive Order
13,985 [29], for instance, requires federal agencies to conduct racial
equity assessments in order to reduce, eliminate, and prevent racial
discrimination and inequities. A core challenge in conducting such
assessments, however, is often the lack of recorded or reported
race. Due in part to the Privacy Act of 1974 [38], many agencies do
not possess race information. Similarly, in consumer finance, for
instance, despite the U.S. Consumer Financial Protection Bureau’s
mandates to prohibit disparities along race, many lenders either do
not collect or are federally prohibited from collecting information
about race [13, 17].

Conducting racial disparity assessment when race is itself not di-
rectly observed has become an increasingly important and relevant
methodological question, given the ubiquitous use of data-driven
decision-making tools. Analyzing only complete cases with no
missing race may underestimate the true level of disparity [57]. To
address this, researchers have proposed a number of techniques and
methods to bypass the direct collection of race, with imputation
being an important alternative. The current state-of-the-art impu-
tation approach is Bayesian Improved Surname Geocoding (BISG),
which uses demographic information about census geographies
(e.g., census tract, census block group) and surnames to impute
race [28, 47]. Bayesian Improved First Name Surname Geocoding
(BIFSG) additionally incorporates first name-based probabilities
[95]. However, using either imputation method to estimate dispar-
ity is known to be subject to strong assumptions [15, 51].

As imputation relies on features correlated with race, it raises an
important concern of “redundant encodings” which is central to the
discussions surrounding privacy and algorithmic fairness [3, 9, 19,
20, 27, 42, 54, 61, 77, 91]. The leading fairness and machine learning
(ML) textbook, for instance, considers a set of independent features
𝑍 , each of which is slightly correlated with a sensitive attribute such
as race 𝑅 [9]. As the size of 𝑍 grows, the probability that a classifier
can infer the sensitive attribute 𝑃 (𝑅 |𝑍 ) increases and can approach
one.2 This conception of redundant encodings is of particular legal
1For brevity, we use “race” to refer to both race and ethnicity throughout the paper.
2Redundant encodings can also be defined in the context of an equivalent classifier; in
this definition, a feature set𝑍 redundantly encodes a sensitive attribute 𝑅 if a classifier
trained on a feature set that includes the sensitive attribute, namely 𝑃 (𝑌 |𝑍, 𝑅) , is
equivalent to a classifier trained on equivalent features with the sensitive attribute
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consequence, as substantial parts of U.S. anti-discrimination law
rest on a principle of “anti-classification,” whereby state or covered
entities should not classify, or make decisions, based on race [44].3
If an algorithm does not include race in its feature set, which naively
meets the demands of anti-classification, but is able to recover race
from the remaining features that are highly correlated with race, it
risks violating anti-discrimination law by functionally engaging in
disparate treatment. The notion that the bigger the data, the bigger
the risk of redundantly encoding race features prominently in the
legal, policy, and algorithmic fairness canon [3, 9, 19, 20, 27, 42, 54,
61, 77, 91]. While Barocas et al. [9] and Hardt [42] make compelling
theoretical cases for such concerns, the textbook articulation relies
on strong assumptions – most notably independence of features 𝑍
– and surprisingly little is known about redundant encodings in the
wild (i.e., large-scale administrative datasets beyond benchmark or
toy datasets).

In this paper, we leverage a unique and novel dataset of elec-
tronic health records (EHR) on over 7.7 million patients to under-
stand what happens when we move beyond conventional BI(F)SG
methods by (a) using supervised ML to impute race for disparity
assessments, and (b) incorporating rich features beyond name and
geography. We ask the following research questions: (i) How does
an ML-based approach improve imputation of race compared to
the BI(F)SG baseline? (ii) Does using richer features heighten con-
cerns of redundant encodings or, put differently: how redundant
are redundant encodings in the wild? (iii) Can we use an ML-based
approach to disaggregate broad racial categories and make more
precise estimates for subgroups? (iv) Do these ML methods coupled
with the use of rich feature sets perform equally well for different
racial groups?

Our study makes four important contributions to the empirical
investigation on disparity assessment and redundant encodings.
First, we show that supervised learning with BIFSG inputs leads to
performance improvements, driven by improved imputations for
minority groups. The intuition here is that supervised learning can
identify base rate differences, interactions, and non-linearities in
BIFSG prior information (about demographic correlates of names
and census geographies) compared to conventional methods that
rely on strong independence assumptions. Non-linearities, in par-
ticular, appear to drive gains from ML. Second, we assess the gains
from incorporating patient information beyond BIFSG features. By
using over 1,000 features of patients including insurance plans, aller-
gies, vital signs, diagnoses, medical procedures, and more, we show
that such information in fact provides little marginal information
about patient race beyond the calibrated BIFSG model. The benefits
of the ML approach over conventional BIFSG arise primarily from
model complexity instead of additional features. This finding is
surprising and calls into question conventional wisdom about big
data and redundant encodings in one important health care setting.
Put differently, bigger data does not appear to drive redundant en-
codings in this setting. Third, we demonstrate these findings with a

removed, namely 𝑃 (𝑌 |𝑍 ) . Because the equivalent classifier condition can be trivially
satisfied if 𝑅 is irrelevant to 𝑌 or if 𝑅 is fully mediated through 𝑍 , we focus on the
first definition of redundant encodings.
3A common alternative conception of anti-discrimination law is anti-subordination,
which posits that the law should help groups that have been historically subordinated,
and racial classifications may hence be countenanced [84].

disaggregation of the Asian and Pacific Islander (API) category into
(i) Asian and (ii) Native Hawaiian or Other Pacific Islander (NHPI)
groups. This disaggregation addresses longstanding critiques of
legacy standards of government race reporting [12, 32, 52] that
employ only five racial categories, and enables a more nuanced
assessment of health care disparities. Fourth, we show that expand-
ing the feature set itself can have varying impacts on subgroup
prediction performance, and results in different precision and recall
trade-offs for each racial group depending on the category of the
data and its quality.

At the outset, we note that race is socially constructed and does
not fit neatly into the conventional discrete measure assumed in
many algorithmic fairness papers [41]. We discuss the ethical con-
cerns and social impact of our work in Appendix A. Our approach
is meant to inform settings where racial disparities cannot be as-
sessed because of the lack of self-reported race information, and we
illustrate how to expand subgroup analysis in this setting. Redun-
dant encodings raise challenging trade-offs. If race is easy to infer,
as the textbook definition of redundant encodings suggests, our
ability to detect racial disparities is very strong – but so is the threat
of big data-driven algorithms engaging in potentially discrimina-
tory or illegal behavior. On the other hand, if race is difficult to
infer, concerns of such algorithms violating anti-discrimination law
may be moderated, but our ability to assess disparities would be
similarly diminished. Understanding these trade-offs with “aware-
ness” is critically important for advancing fairness in ML and how
anti-discrimination law handles algorithmic decision-making.

2 RELATEDWORK
The risk of redundant encodings is a central concern in algorithmic
fairness [3, 9, 19, 20, 27, 42, 54, 61, 77, 91]. The increasing size of data
used in ML has raised new legal concerns of proxy discrimination.
AI systems may learn a protected attribute that is not explicitly
measured but is encoded in proxies that are correlated with the
protected attribute [4, 77]. Merely removing protected attributes
from the data thus does not guarantee non-discrimination [20, 75]
and may even hurt the protected group [19, 27]. An often cited
example of proxy discrimination is the use of ZIP Code in the illegal
practice of redlining. A recent study [36] uses rich Boston Federal
Home Mortgage Disclosure Act data containing information on
mortgage applications and demonstrates a greater ability to predict
race using traditional credit pricing inputs, compared to using ZIP
Codes. This suggests that common intuitions about which variables
govern as race proxies might be misleading. Despite the strong
ties between socioeconomic status, health, and race, there are very
few studies that systematically investigate the claim of redundant
encodings and show the extent to which these factors are related
to race in a realistic big data setting. Indeed, precisely because
such variables are highly correlated with one another, the textbook
invocation of redundant encodings (which assumes independence
across features) may not generalize to all settings.

Despite extensive work on ML in health applications, less is
known about redundant encodings in the medical setting. Some
emerging work has illustrated the potential for health data to be
correlated with race. Gichoya et al. [35] shows that computer vision
models with medical imagery can predict patients’ self-reported
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race with an area under the receiver operating characteristic curve
(AUROC) range as high as 0.91–0.99 for X-ray images. Duffy et al.
[26] finds that deep learning models with cardiac ultrasound im-
agery are able to identify age and sex, but unable to reliably predict
race, and that predictions of race are associated with tuning the
proportion of confounding variables such as age or sex. In a study of
Boston and New York City patients, Adam et al. [1] finds that race
information can be subtly embedded in clinical notes, with models
distinguishing between White and Black patients with an AUROC
as high as 0.83, while over 40 physicians were unable to identify pa-
tients’ race from the same notes. While existing work is suggestive,
it does not assess the marginal predictive power of medical features
to formally assess concerns about redundant encodings. This is
particularly important given existing BI(F)SG baselines. Moreover,
existing literature has focused on a limited set of racial categories
(e.g., Black and White), but conventional measures of performance
(i.e., AUROC) may not be appropriate in the presence of larger class
imbalances.

Our work also pertains to the literature on the use of BI(F)SG
– the dominant method to assess disparities when race is missing.
This approach has been used extensively in a variety of fields in-
cluding finance [18, 56], elections [23], and health [24]. BIFSG’s
incorporation of first name priors further improves imputation ac-
curacy [95]. Despite the popularity of BI(F)SG, recent work has doc-
umented the limitations of BI(F)SG and related proxy approaches for
assessing disparities [e.g., 15, 103]. BI(F)SG also makes strong con-
ditional independence assumptions, namely 𝑃 (𝐺 |𝑅, 𝑆) = 𝑃 (𝐺 |𝑅)
and 𝑃 (𝐹 |𝑅, 𝑆,𝐺) = 𝑃 (𝐹 |𝑅) for race 𝑅, first name 𝐹 , surname 𝑆 , and
geographic area 𝐺 , which are often violated in practice. Addition-
ally, BI(F)SG is limited by Census measurement errors: minority
groups may be under-counted in census blocks, and Census name
tables contain only the most frequent names, which dispropor-
tionately exclude names more common in minority groups [48].
Validation studies have found that BI(F)SG performs best for White,
Hispanic, and API populations, but has lower accuracy for Black
and American Indian and Alaska Native (AIAN) populations and
women [2, 24]. Lastly, BI(F)SG relies on name priors for the com-
bined API category which has become outdated since the Office of
Management and Budget (OMB) revised the standards in 1997 [72]
to disaggregate the category into Asian and NHPI. In this study,
we demonstrate how ML can address some of these limitations of
BI(F)SG and related disparity assessments.

To overcome shortcomings of BI(F)SG, several studies have pro-
posed alternative imputation methods, with some including addi-
tional features [40, 102], and others improving on model flexibility
using ML [22, 55, 64, 99]. Matthews et al. [64] and Xue et al. [99]
show that using ML models with BISG and additional demographic
features improve upon BISG when evaluated on AUROC. However,
the work is limited to simplified racial categories [64, 99] or lacks
a meaningful BI(F)SG baseline for comparison [99]. Decter-Frain
[22] shows that ML methods provide better-calibrated imputations
for individual racial groups, particularly for Asian and Hispanic
individuals in the voting setting of Florida, Georgia, North Carolina,
and California. Kim et al. [55] trains a multilayer perceptron neu-
ral network on 15,000 demographic and diagnosis code features
from a dataset of over 1.5 million patients, and finds it outperforms
other less complex supervised learning algorithms; it is limited,

however, by only considering White, Black, Hispanic, and Other
racial groups, and exclusively studying Chicago and New York City
patients. These studies suggest that more data and more flexible
models can improve imputation performance, but offer fewer in-
sights into how the additional flexibility and richer features impact
race imputation or how they are connected to the problem of re-
dundant encodings. There is also often more personal information
in the health care domain as compared to in voting records.

Last, our work speaks to existing work critiquing conventional
race categories as aggregating individuals who come from greatly
varying cultural and socioeconomic backgrounds [8, 50, 82, 90].
The API category, for instance, is widely used but can mask health
disparities between vastly divergent sub-populations [6, 37, 46, 86].
In health care, understanding these contexts is central to studies
of the social determinants of health, health care access, and health
outcomes. As such, numerous researchers and policymakers have
advocated for further disaggregation of race categories to better
understand health inequities [52, 81, 100]. OMB’s Chief Statistician
has proposed updating the 1997 reporting standards to improve
disaggregation [74]. Given the significantly different results we
uncover for racial inference for Asian versus NHPI populations, our
study provides a demonstration of the importance of disaggregation
for a more complete understanding of racial disparities and offers a
potential way forward.

3 METHODOLOGY
3.1 Data Source and Study Population
We use a unique dataset to study the question of race, health dis-
parities, and redundant encodings in a consequential setting. The
American Family Cohort (AFC) [94] contains electronic health care
records for over 7.7 million U.S. patients from 2010 to the present,
including patient names, addresses, self-reported demographic in-
formation, insurance, allergies, and medical diagnostic codes. The
data is derived from the American Board of Family Medicine PRIME
Registry [79], which is currently the largest national Qualified Clin-
ical Data Registry for primary care, with AFC practices in 47 states
and patients from all 50 states. Primary care clinicians opt in to this
system which helps them improve patient outcomes and alleviate
the burden of reporting quality measures for value-based payment
models. The AFC dataset contains populations that are often under-
served and missing from other medical data sources, including
rural, low-income, and racial minority populations. It also includes
patients on private insurance plans as well as on Medicaid and
Medicare. This dataset is larger and more geographically-diverse
than urban-focused or hospital-based ones used in prior race im-
putation and redundant encoding works, with a higher volume
and more diverse cross-section of patients presenting to primary
care [39, 49, 97]. Moreover, this dataset is uniquely suited for our
research aims, as it contains first and last name information and res-
idential information to construct the BI(F)SG baseline, self-reported
race to assess performance of imputations (which is often missing),
and highly granular health information in a domain where ML is
increasingly deployed.

We include patients who satisfy the following three criteria. First,
we include patients living in the 50 states or Washington, D.C. We
exclude patients from other overseas U.S. territories or military
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bases. Second, we require patients to have at least one record dated
between 2010 and 2022 and a recorded surname. This ensures that
we have enough data and at least last name information to use
BI(F)SG imputation (where the algorithm falls back to BISG when
first name is unavailable) as our baseline for comparison. Third,
in order to assess performance, we require self-reported race and
ethnicity (AIAN, Asian, Black or AfricanAmerican (Black), Hispanic
or Latino (Hispanic), NHPI, or White). For cleaning and coding of
self-reported fields, see Appendix B. Because the vast majority
of health care providers do not use multiracial identification in
our data, we exclude patients assigned to multiple races, which
represents less than 0.05% of the total sample.4 These inclusion
criteria allow us to maintain a study sample that is drawn from
the U.S. general population and contains sufficient information for
the imputation tasks and comparison. Our final sample includes
5,178,620 unique individuals. Table 1 summarizes the distribution
of the study population’s race and ethnicity.

All work was conducted on servers approved for High Risk and
Protected Health Information (PHI) data, and the research was
approved by the Institutional Review Board.

3.2 Features
For comparing the BIFSG and ML imputation methods, we con-
struct the target label to use the minimum acceptable combined
race and ethnicity categories outlined in the 1977 OMB standards,
namely AIAN, API, Black, Hispanic, and White.5 In our first anal-
yses, we combine Asian and NHPI to the API category to (a) as-
sess performance relative to the minimum OMB standard, and (b)
track conventional BI(F)SG practice, which relies on name tables
published by the Census Bureau and under the Home Mortgage
Disclosure Act that collapse Asian and NHPI into a single category
[14, 92, 93]. One benefit of the AFC dataset is that it enables us to
explore how ML with the AFC dataset can facilitate disaggregation
of Asian and NHPI groups, which OMB adopted in 1997.

We derive a rich set of features from the AFC dataset, which
are presented in Table 1. The sets of features are ranked by their
accessibility to researchers, with the baseline features being the
most likely to be available and the medical features being the least
likely to be available to researchers facing administrative datawhere
race is missing.

Baseline features comprise the prior probabilities used with the
conventional BIFSG imputation method, namely first name 𝑃 (𝐹 |𝑅),
surname 𝑃 (𝑅 |𝑆), and geographic area 𝑃 (𝐺 |𝑅) priors, for race 𝑅, first
name 𝐹 , surname 𝑆 , and geographic area𝐺 .6 We obtain 𝑃 (𝑅 |𝑆) from
the 2010 Decennial Census Surname Files [14, 93], 𝑃 (𝐹 |𝑅) from the
Home Mortgage Disclosure Act Loan Application Registers [92],
and 𝑃 (𝐺 |𝑅) from the American Community Survey 2014-2018 5-
Year Summary at the census block group (CBG) and state levels. As
examples, features for a person named “Michael Smith” or “Jose

4Although one of our major efforts is to disaggregate racial categories, the multi-racial
sample size is too small to reliably capture the diversity and complexity of the group,
and we spell out the implications for improved data collection in §5.
5Following standard convention, we assign Hispanic as the target variable value as
long as a person self-identified as Hispanic for their ethnicity, regardless of their
self-reported race.
6Alternatively, in some instances (i.e., anonymized datasets), what we define as baseline
features may be the least likely to be available. We replicate the main results without
baseline features in Appendix F.

Lopez” in two different CBGs are shown in Table 2.7 Following [95],
we revert to BISG when only surname is available.

Demographic features comprise age, gender, marital status, and
patients’ state of residency. State is treated as a demographic feature
distinct from geographic priors in BIFSG, as it is an indicator for the
person’s residency, not a probabilistic prior. Gender, marital status,
and state are one-hot encoded, and age at the time of themost recent
visit is treated as a continuous value. Behavioral features intend
to capture patients’ history with substance use and their social
and psychological characteristics, including smoking history and
language preference; all behavioral features are one-hot encoded.
Administrative features intend to capture how patients interact with
the health care system, including insurance plans, which are one-
hot encoded, and the frequency of physician visits for each year
from 2010 to 2022, which are continuous values. General health
features include allergies, immunizations, and vital signs. Allergies
are one-hot encoded, while the count of immunizations is treated
as a continuous value. Vital signs, including height, weight, systolic
blood pressure, diastolic blood pressure, body mass index, heart
rate, respiratory rate, oxygen saturation, and temperature, are also
treated as continuous values and aggregated across all available
records for each patient as a linearly weighted average.8

Medical features comprise specific diagnoses and procedures
stemming from visits. We take advantage of the substantive hier-
archical structure of diagnosis and procedure codes to categorize
these codes and avoid sparsity. The diagnosis codes are available
in International Classification of Diseases Ninth Revision (ICD-9)
and Tenth Revision (ICD-10) and SNOMED Clinical Terms (CT)
formats, each of which are internationally transferable identifica-
tion codes for medical diagnoses. ICD-9 codes and SNOMED CT
codes are mapped to their ICD-10 equivalent and one-hot encoded.
One of the challenges of working with diagnostic codes is high
dimensionality. For instance, there are over 68,000 ICD-10 codes
[10]. One-hot encoding all of these, when coupled with the size
of our dataset, make computation and hyperparameter searching
challenging for tree-based classification approaches (e.g., random
forest). We hence preprocess and select eligible diagnostic codes us-
ing two heuristics. First, we conduct a substantive literature review
to compile all diagnostic codes that are known to present health
disparities across race. Appendix D shows a list of such studies and
the corresponding ICD codes. Second, we select features that are
empirically correlated with race. We perform a 𝜒2 test and calcu-
late the mutual information between diagnosis codes and race class
labels on the training data; diagnosis codes with the highest mutual
information and 𝑝 ≤ 0.05 are selected. These heuristics perform
quite well based on a qualitative understanding of diagnostic codes
that have the potential to encode race. To process procedure codes,
Current Procedural Terminology (CPT) codes are grouped at the
Category I and II levels, Healthcare Common Procedure Coding
System (HCPCS) codes are grouped at the Level II level, and the

7We note that EHR records commonly drop accents from names, representing “José
López” as “Jose Lopez.”
8For each vital sign (e.g., blood pressure), we collect all records associated with the
patient in between 2010 and 2022. The weight associated with each measurement is
defined as 𝑤𝑖 =

𝑇 −𝑡𝑖
𝑇

where 𝑤𝑖 is the weight of the 𝑖-th value, 𝑡𝑖 is the time from the
measurement to the most recent measurement, and𝑇 is the time from the patient’s
earliest recorded measurement to the most recent measurement. The weights are
adjusted such that Σ𝑤𝑖 = 1.
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Table 1: Label and feature characteristics. For continuous features, the mean and variance are shown. For categorical features,
the top-ranked modal categories and the corresponding proportion of subjects are shown.

Mean (SD) / Proportion

Label Race/ethnicity White: 75.47%, Hispanic or Latino: 12.59%, Black or African American: 9.00%, Asian: 2.23%, American Indian and Alaska
Native: 0.47%, Native Hawaiian and Other Pacific Islander: 0.23%

Features Baseline (𝑘=21)
First name James: 0.013%, Michael: 0.012%, John: 0.011%, Robert: 0.011%, David: 0.010%, Mary: 0.010%, William: 0.009%, · · ·
Surname Smith: 0.010%, Johnson: 0.007%, Williams: 0.006%, Jones: 0.006%, Brown: 0.006%, Davis: 0.005%, Miller: 0.005%, · · ·
Geography (census block group) 605301110510: 4.3E-04%, 310459507005: 3.7E-04%, 605301110320: 3.6E-04%, 605301110520: 3.2E-04%, · · ·

Demographic (𝑘=62)
Age 49.95 (23.51)
Gender Female: 55.26%, Male: 44.69%, Other: 0.05%
Marital status Married: 37.80%, Single: 30.86%, Other: 23.03%, Divorced/Separated: 4.84%, Widowed: 3.48%
State TX: 12.77%, CA: 7.20%, AR: 6.59%, VA: 5.11%, FL: 4.59%, IL: 3.90%, CO: 3.83%, NC: 3.54%, AL: 3.48%, OH: 2.40%, · · ·

Behavioral (𝑘=12)
Language preference English: 8.97%, Multiple: 3.86%, Other: 1.66%, Spanish: 0.18%, Vietnamese: 0.17%, Yiddish: 0.052%, Chinese: 0.035%, · · ·
Tobacco Has ever used tobacco or smoked: 30.30%

Administrative (𝑘=32)
Insurance group Had any: 89.89%, Had Blue Cross Blue Shield: 32.45%, Had Medicare: 21.73%, Had UnitedHealthcare: 14.06%, · · ·
Visit count per year 2010: 0.0387 (0.5003), 2011: 0.0645 (0.6035), 2012: 0.1354 (0.9317), 2013: 0.1755 (1.0543), 2014: 0.3839 (1.5000), · · ·

General Health (𝑘=48)
Allergies No known drug allergy: 6.67%, Penicillin: 5.15%, No known allergy: 4.78%, Sulfa: 3.15%, Codeine: 2.07%, · · ·
Immunizations count 0.29 (1.75)
Vital signs Body mass index: 28.39 (7.74), BMI observations: 12.23 (14.99), Systolic blood pressure: 124.03 (15.19), Systolic BP observa-

tions: 12.66 (16.52), · · ·
Medical (𝑘=1057)

Diagnosis codes Z0000 (General adult examination): 42.86%, Z23 (Immunization): 38.42%, I10 (Hypertension): 34.28%, · · ·
Procedure codes Medicine services: 97.54%, Evaluation and management: 96.64%, Pathology: 63.61%, Surgery: 47.25%, · · ·

Table 2: Example 𝑃 (𝐹 |𝑅), 𝑃 (𝑅 |𝑆), and 𝑃 (𝐺 |𝑅) probabilities. These are the probabilistic inputs to conventional BIFSG and the
baseline features for the machine learning models.

Name or Census Block Group Probabilities

Michael P(F|AIAN)=0.015 P(F|API)=0.009 P(F|BLACK)=0.015 P(F|HISP)=0.006 P(F|WHITE)=0.027 P(F|OTHER)=0.020
Smith P(AIAN|S)=0.009 P(API|S)=0.005 P(BLACK|S)=0.231 P(HISP|S)=0.024 P(WHITE|S)=0.709 P(OTHER|S)=0.022
310459507005 P(G|AIAN)=8.9E-05 P(G|API)=5.6E-11 P(G|BLACK)=1.3E-07 P(G|HISP)=4.6E-07 P(G|WHITE)=5.1E-06 P(G|OTHER)=5.0E-06

Jose P(F|AIAN)=0.002 P(F|API)=0.002 P(F|BLACK)=0.000 P(F|HISP)=0.047 P(F|WHITE)=0.000 P(F|OTHER)=0.001
Lopez P(AIAN|S)=0.004 P(API|S)=0.010 P(BLACK|S)=0.006 P(HISP|S)=0.929 P(WHITE|S)=0.049 P(OTHER|S)=0.003
605301050130 P(G|AIAN)=4.7E-10 P(G|API)=5.6E-11 P(G|BLACK)=2.5E-11 P(G|HISP)=6.0E-06 P(G|WHITE)=3.5E-06 P(G|OTHER)=4.6E-06

codes are one-hot encoded. In total, this preprocessing yields 1,000
diagnosis codes and 55 procedure codes.

We also create a missing indicator for each feature, with a value
of 1 if a subject has no records corresponding to that feature in the
AFC dataset, and 0 otherwise. These missingness indicators capture
social patterns that arise from lack of access to or utilization of
health care services [7, 68, 96], underdiagnosis of medical conditions
[21, 33, 34, 62, 89], lower rates of immunization [16, 43], and other
racial, socioeconomic, or geographic causes for missingness.

We derive 1,232 features in total across all the feature categories,
including missingness indicators. Additional details on feature
cleaning and coding can be found in Appendix C.

3.3 Imputation and Training Procedure
We implement conventional BIFSG using the baseline features: first
name priors, surname priors, and geography priors. The BIFSG
posterior probability that a person belongs to a race 𝑅 (including
Other), given their first name 𝐹 , surname 𝑆 , and geographic area𝐺 ,
is given by the following equation where 𝑛 is the number of racial
categories:

𝑃 (𝑅 |𝑆, 𝐹,𝐺) = 𝑃 (𝑅 |𝑆) · 𝑃 (𝐹 |𝑅) · 𝑃 (𝐺 |𝑅)∑𝑛
𝑅=1 𝑃 (𝑅 |𝑆) · 𝑃 (𝐹 |𝑅) · 𝑃 (𝐺 |𝑅) . (1)

The study population is randomly divided into training and test
sets with an 80%/20% split, stratified on the race label to preserve
the proportion of each race group across each split. To impute race
from AFC features, we train a random forest multi-class classifier.
Optimal hyperparameters are established using a stratified five-fold
cross validation on the training set. The model is trained using
scikit-learn 1.0.2. For hyperparameter tuning detail, see Appendix
E.

We train a random forest model with only baseline features,
the same probabilistic inputs that are used by the conventional
BIFSG model. We refer to this model as “ML BIFSG.” This allows
us to compare conventional BIFSG to an ML-based approach that
uses the same underlying information along with observed race
in the training data. For comparison with conventional BIFSG’s
racial categories, we use a single API category. We then train five
additional models, incrementally adding demographic, behavioral,
administrative, general health, and medical features as categorized
in Table 1 in §3.2. We compare the performance metrics across the
six models to understand how additional features impact the ability
to impute race. For all models, we calculate 95% confidence intervals
using 100 bootstrap replications on the test set predictions.

To assess performance, we calculate Area Under the Precision-
Recall Curve (AUPRC), AUROC, F1-score, precision, and recall. We
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focus on AUPRC due to large differences in the size of racial groups,
as AUROC can present deceptively good performance on such
imbalanced datasets [83]. The baseline of AUPRC is the fraction
of positive cases, which is the prevalence of each race shown in
Table 1. We present metrics at both the micro level – which weighs
all individuals equally – and the macro level – which weighs racial
subgroups equally. The latter is relevant for assessing disparities
between subgroups.

4 RESULTS
We now provide results on (a) how ML performs relative to conven-
tional BIFSG, (b) the impact of including more extensive features
to test the redundant encoding hypothesis, (c) the ability to disag-
gregate the API category, and (d) the relative performance gains to
increasing the feature set across subgroups.

4.1 Conventional and Machine Learning BIFSG
Comparison

Table 3 and Figure 1 summarize performancemetrics on the 20% test
set, comparing conventional BIFSG and ML with the same inputs.
Evaluation metrics by race for each model are in Appendix F.

First, we note that the conventional BIFSG model performs rea-
sonably well, comparable to or better than BIFSG performance
typically observed in other domains. BIFSG achieves a macro AU-
ROC of 0.861 (95% CI, 0.859-0.863), which is much higher than the
results from [64], which performs conventional BISG and BIFSG
using voter data from five states and achieves an AUROC of 0.74
on an Alabama validation set. It is also slightly higher than the ML
predictor that has an AUROC of 0.857 in [64]. It is comparable to the
AUROC of 0.833 in [55] which uses a multilayer perceptron model
with medical features derived from over 1.5 million unique patients’
anonymized EHR. The fact that the conventional BIFSG model
performs at least as well as other models that utilize many other
features shows that name and geographic location information are
quite informative. Figure 2, for instance, illustrates that using base-
line features alone, shown with the “x” marker, outperforms using
medical features alone.

Second, Table 3 shows thatMLBIFSG improves performance over
conventional BIFSG for every metric at both micro and macro lev-
els. The difference between macro and micro performance reflects
performance differences across very differently sized subgroups
because macro performance weighs the performance for minority
groups equally to performance for the majority White group, while
micro performance is dominated by the performance on the White
population. ML BIFSG improves upon conventional BIFSG by the
largest margin at the macro level, which is most relevant to dispar-
ity assessments. The ML approach has a macro AUPRC at 0.666
(95% CI, 0.663-0.668) compared to 0.597 (95% CI, 0.595-0.599) with
the conventional approach.

Third, to further understand what is driving the improvement,
we investigate the performance metrics by race and find that the
ML approach improves upon conventional BIFSG across all racial
groups, with the most significant improvement for smaller racial
minorities. Figure 1 compares conventional BIFSG with ML BIFSG,
with the former on the 𝑥-axis and the latter on the 𝑦-axis. Each dot
represents the correspondingmetrics for each race group, and the 45

Figure 1: Machine learning improvements to BIFSG with
a comparable feature set by race, with AUPRC on the left
and AUROC on the right. Error bars representing 95% con-
fidence intervals are too tight to be seen. Switching from
conventional BIFSG to ML-based imputation using BIFSG
probability priors yields better performance on both AUPRC
and AUROC (calculated as one vs. rest) for all racial groups.
Performance improves for all racial groups with the largest
gain for minority groups.

degree line would indicate identical performance. All race groups lie
on or above the 45 degree line, indicating that they all improve upon
AUPRC and AUROC by switching from conventional to ML BIFSG.
According to Table 6 in Appendix F, when comparing the difference
in means,White patients have the smallest increase in AUPRC, from
0.953 (95% CI, 0.953-0.954) to 0.964 (95% CI, 0.964-0.964). Hispanic
patients have the greatest increase in AUPRC, from 0.738 (95% CI,
0.735-0.741) to 0.853 (95% CI, 0.851-0.855), followed by AIAN and
Black patients. In terms of AUROC, we see slight improvements in
AUROC for White, Hispanic, Black, and API groups. AIAN subjects
see the greatest increase in AUROC from 0.690 (95% CI, 0.682-0.696)
with conventional BIFSG to 0.832 (95% CI, 0.825-0.837) with ML
BIFSG. Considering that the conventional BI(F)SG technique has
exhibited the poorest performance for AIAN and Black subjects
[2, 24, 95], these performance gains are important [22].

Last, we conduct several analyses in Appendix G to better un-
derstand the mechanism through which ML improves upon con-
ventional BIFSG. We show that ML does not simply improve upon
conventional BIFSG by adjusting for the difference in base rates be-
tween the Census and the AFC patient population. We also find that
the boost does not seem to stem from simple interaction terms and
relaxing the (Naive Bayes) independence assumption. Instead, we
find the most support for performance improvement frommodeling
non-linearities in the feature set, as displayed in Figure 5.

4.2 Machine Learning Performance with
Increasing Feature Set

We now assess the impact of features beyond BIFSG inputs. Figure 2
displays the micro and macro AUPRC and AUROC for six random
forest models to incrementally expand the feature set. The 𝑥-axis
shows the feature set on which each of the six models was trained,
beginning with baseline features alone, and incrementally adding
categories of features to the prior feature set. The performance
from a model that uses all previous feature sets and from a model
that uses only the current feature set are shown by the “o” and “x”
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Table 3: Micro and macro machine learning improvements to BIFSG with comparable feature set, with 95% confidence intervals.

Model AUPRC AUROC F1-Score Precision Recall

Micro

Conventional BIFSG 0.898 (0.898-0.899) 0.967 (0.967-0.967) 0.864 (0.864-0.865) 0.864 (0.864-0.865) 0.864 (0.864-0.865)
ML BIFSG 0.934 (0.933-0.934) 0.980 (0.980-0.980) 0.881 (0.881-0.881) 0.881 (0.881-0.881) 0.881 (0.881-0.881)

Macro

Conventional BIFSG 0.597 (0.595-0.599) 0.861 (0.859-0.863) 0.596 (0.594-0.599) 0.677 (0.673-0.683) 0.560 (0.558-0.562)
ML BIFSG 0.666 (0.663-0.668) 0.912 (0.911-0.913) 0.620 (0.617-0.621) 0.813 (0.802-0.825) 0.581 (0.580-0.583)

markers respectively; Table 7 in Appendix F reports the numerical
values of these metrics. We note that all metrics have very tight
confidence intervals.

As we add in more feature sets, we observe a steady but very
small increase in both micro and macro AUPRC and AUROC as the
blue and orange lines trend slightly upwards but stay relatively flat
in Figure 2. There is only a marginal improvement of micro AUPRC
from 0.933 (95% CI, 0.933-0.934) with baseline features alone to
0.944 (95% CI, 0.943-0.944) with the full feature set. The addition of
demographic features produces the largest increase in performance
from 0.933 to 0.939 (95% CI, 0.938-0.939). For macro AUPRC, we
observe an increase with more features from 0.585 (95% CI, 0.581-
0.588) to 0.621 (95% CI, 0.618-0.625). Turning to AUROC, we see
nearly no change in micro AUROC, from 0.983 (95% CI, 0.983-0.983)
with baseline features alone to 0.985 (95% CI, 0.985-0.986) with the
full feature set, and a small increase in macro AUROC from 0.893
(95% CI, 0.891-0.896) to 0.907 (95% CI, 0.906-0.909). Moreover, we
observe that baseline features alone yield the best performance
followed by demographics, medical, general health, administrative,
and behavioral data, tempering the concern that unexpected data
sources will recover race as well as features that are most closely
related to race such as name, geography, and demographics. We
provide a similar analysis in Appendix F in a setting where baseline
features are not available (i.e., anonymized datasets) and find that
models trained with all other feature sets never reach the same
performance as using name and geography probabilistic priors.
This shows that while including additional features does encode
further probabilistic information about race, using EHR-derived
information excluding name and geography probabilistic priors
still results in a significant amount of uncertainty.

The small performance boost is surprising from the perspective
of redundant encodings. Adding over 1,000 rich features, includ-
ing more demographic information, insurance groups, health care
visits, medical diagnoses, and procedures, yields no substantive
prediction gain in addition to the baseline features, and nothing
close to the textbook exposition that posits that the probability
of correctly inferring race should approach one. This finding is
highly relevant for understanding redundant encodings in the wild.
First, redundant encodings are less about “big data” than the un-
derlying quality of the data. In this setting, name and geography
appear to be the most highly relevant features, affirming the value
of BIFSG against existing criticisms. Second, we observe only mod-
est evidence that race imputations improve as EHR information is
added, notwithstanding extensive research documenting disparities
in health conditions that are encoded in our medical diagnostic
codes. In contrast to textbook theoretical examples, our evidence

Figure 2: Micro andmacro performance for an increasing fea-
ture set, with AUPRC on the left and AUROC on the right. “x”
markers indicate the micro and macro performance for each
feature set alone. Error bars representing 95% confidence in-
tervals are too tight to be seen. There is a steady but very
small increase in both micro and macro AUPRC and AUROC
when incorporating additional features (increasing set). Base-
line features alone yield the best performance followed by
demographics, medical, general health, administrative, and
behavioral data (individual set).

suggests that each additional feature is not an independent signal of
race. Third, this evidence does not corroborate the sharpest claims
that big data violate anti-discrimination law’s anti-classification
principle, as race remains measured with substantial uncertainty,
particularly for smaller racial groups.

4.3 Disaggregating the API Category
While many administrative datasets follow the 1977 OMB standard
and use the API category, we have access to the underlying Asian
and NHPI labels which cannot be used within conventional BIFSG.
We now disaggregate our predictions to present results of six race
and ethnicity categories instead of five as in §4.2, which simulates
the impact of OMB’s revision of race reporting standards in 1997.
Here we focus on the impact of the disaggregating the API category,
before turning to insights across all six subgroups in §4.4.

Table 4 and Table 8 in Appendix F show how precision and
recall change as the feature sets increase, and illustrate that the
subgroups of the API category experience quite different impacts of
incorporating additional features. First, using only baseline features
yields a precision of 0.829 (95% CI, 0.824-0.834) for Asian subjects
and 0.645 (95% CI, 0.582-0.692) for NHPI subjects, and a recall of
0.722 (95% CI, 0.716-0.727) for Asian subjects and only 0.070 (95% CI,
0.059-0.080) for NHPI subjects. We then find that while the addition
of general health data increases precision by only 0.4% (95% CI,
0.2%-0.6%) for Asian subjects, it increases precision by 7.4% (95%
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CI, 2.4%-11.5%) for NHPI subjects. Similarly, while the addition of
medical features changes recall slightly by -0.1% (95% CI, -0.2%-0.1%)
for Asian subjects, it increases recall by 5.9% (95% CI, 1.2%-11.8%) for
NHPI subjects. This exercise shows that further disaggregating race
categories, as increasingly advocated by the medical community
[52, 81, 100], in conjunction with ML-based approaches can unlock
more actionable and valuable insights. As illustrated in Appendix H,
such disaggregation matters. Conventional BIFSG estimates the
prevalence of asthma diagnostics, for instance, as 620 (per 10,000)
API patients. But this masks dramatic differences, with the NHPI
rate of 1,363 nearly twice that for Asians. Although estimates are
noisy, ML-based approaches are able to substantially disaggregate
and detect those dramatic disparities within the API category.

4.4 Performance by Racial Groups with
Increasing Feature Set

We now investigate the performance gains across all subgroups
from increasing the feature set. We demonstrate a more nuanced
effect where the trade-offs between precision and recall can differ
in subtle ways for different groups under prevailing practice.

Figure 3 illustrates the changes in and trade-offs between preci-
sion and recall measures with each incremental feature category
added at the 0.5 threshold for each racial group. The color of each
marker signifies the race of each group. The size of each marker is
proportional to the prevalence of the racial group. The transparency
of the circle represents the richness of the features used to generate
the performance (e.g., the most transparent circle represents the
baseline features, while the non-transparent circle represents the
full feature set). For instance, for the green dots representing the
prediction performance of Black patients, following the trace from
the most to least transparent performance markers going from
bottom left to top right, we observe a steady increase in precision
and recall as we add in demographics, behavioral, administrative,
general health, and medical features. According to Table 8 in Appen-
dix F, which shows the values of precision and recall, we observe a
cumulative 10% change in recall from 0.401 (95% CI, 0.398-0.405) to
0.442 (95% CI, 0.439-0.445) as we add in demographic, behavioral,
administrative, general health, and medical features, as well as a
cumulative 6% change in precision from 0.742 (95% CI, 0.740-0.746)
to 0.788 (95% CI, 0.784-0.791) with the addition of demographic to
medical features.

We find that the impacts on precision and recall are different for
racial groups as more features are incorporated. White patients ex-
perience the smallest cumulative changes with less than 1% change
in precision and less than 2% change in recall as we increase the
feature set from baseline to medical. Asian subjects also see less
than 2% cumulative changes in precision and recall, while, as we
previously highlighted, NHPI subjects disaggregated from the same
shared API category see larger cumulative changes of 3% in pre-
cision and 6% in recall. Though Hispanic subjects see very little
change in recall, there is a more substantial cumulative change
of 6% increase in precision. For Black and AIAN subjects, we see
increases in both precision and recall, with demographic features
providing the greatest increase for the Black group, and adminis-
trative and general health features providing the greatest increases
for the AIAN group.

Figure 3: Precision and recall at the 0.5 threshold for an in-
creasing feature set for each racial group. The color of each
marker signifies the race of each group, and the size of each
marker is proportional to the prevalence of the racial group.
Following the gradient of the circles allows us to track the
precision and recall trade-offs for each racial group. For ex-
ample, while we see an increase in precision and recall when
adding features for Black patients, we observe much smaller
magnitudes of change in the samemetrics forWhite patients.

These findings add important considerations regarding data qual-
ity and trade-offs between performance metrics when we use more
data to conduct racial imputation. While we have shown in §4.2 that
additional features do not substantially improve imputation overall,
they can impact subgroups to substantially different degrees, par-
ticularly smaller racial minorities. This finding contributes to the
empirical evidence that increased dataset size does not necessarily
close all performance gaps between subgroups, echoing [25]. That
being said, we find that additional features do sharpen our ability to
discern differences between some subgroups, as we demonstrated
with the dramatic health disparities detected between Asian and
NHPI – a demonstration, also, of the importance of disaggregation
of race groups into more granular subgroups.

5 DISCUSSION
In this paper, we have presented evidence that ML can improve in-
ferences about race using name and census geography information,
but that additional and richer demographic and health care features
from a highly realistic EHR dataset yield only marginal improve-
ments. These findings address one of the most widespread con-
jectures in algorithmic fairness, namely that redundant encodings
with ML and big data threaten a core tenet of anti-discrimination
law. Our results highlight the encoding of race information in name
and geography, and provide important context on redundant en-
codings in the health care setting. Redundant encodings are less
a function of the size of data, than of specific informative inputs.
These findings also reveal the differential gains that a large feature
set can have for minority groups, with different precision and recall
trade-offs for each racial groups, as well as for each category of data
with varying levels of quality. We have also shown how ML can
enable data disaggregation of the API group, enabling researchers
to identify important health disparities between Asian and NHPI
subgroups [37, 46, 100].
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Table 4: Percent change in performance for each increasing feature set by race, with 95% confidence intervals.

(a) Percent change in precision.
Features AIAN ASIAN BLACK HISP NHPI WHITE
Baseline – – – – – –
+ Demographic 2.2% (0.6%-5.0%) 0.7% (0.5%-0.9%) 1.8% (1.5%-2.2%) 3.8% (3.7%-4.0%) -1.6% (-8.1%-4.1%) 0.1% (0.1%-0.2%)
+ Behavioral -1.7% (-4.0%-0.5%) 0.1% (-0.0%-0.2%) 0.5% (0.3%-0.7%) 0.9% (0.8%-1.0%) 1.8% (-2.1%-7.7%) -0.0% (-0.0%- -0.0%)
+ Administrative 7.1% (3.7%-11.8%) 0.2% (0.0%-0.3%) 0.8% (0.6%-1.1%) 0.6% (0.5%-0.6%) 0.7% (-3.3%-4.9%) 0.2% (0.1%-0.2%)
+ General Health 5.8% (3.8%-8.0%) 0.4% (0.2%-0.6%) 1.1% (0.9%-1.4%) 0.3% (0.2%-0.4%) 7.4% (2.4%-11.5%) 0.0% (0.0%-0.1%)
+ Medical 0.7% (-0.7%-2.2%) 0.1% (-0.0%-0.2%) 1.7% (1.5%-1.9%) 0.1% (0.1%-0.2%) -4.7% (-8.7%- -1.8%) 0.1% (0.1%-0.1%)

(b) Percent change in recall.
Features AIAN ASIAN BLACK HISP NHPI WHITE
Baseline – – – – – –
+ Demographic 0.0% (-2.2%-3.2%) -0.1% (-0.3%-0.2%) 6.1% (5.7%-6.6%) -0.5% (-0.6%- -0.4%) 5.9% (1.1%-12.1%) 0.6% (0.5%-0.6%)
+ Behavioral 1.7% (-1.8%-5.4%) 1.0% (0.8%-1.2%) 0.5% (0.2%-0.7%) -0.4% (-0.5%- -0.4%) -1.1% (-5.7%-4.3%) 0.2% (0.1%-0.2%)
+ Administrative 44.8% (34.7%-58.2%) -0.2% (-0.3%- -0.0%) 1.4% (1.2%-1.7%) 0.6% (0.5%-0.6%) -2.3% (-7.6%-3.6%) 0.1% (0.1%-0.1%)
+ General Health 22.5% (17.3%-30.6%) 0.2% (0.0%-0.4%) 0.5% (0.2%-0.9%) 0.1% (0.0%-0.1%) -2.3% (-8.4%-3.8%) 0.1% (0.1%-0.1%)
+ Medical 9.3% (4.9%-16.7%) -0.1% (-0.2%-0.1%) 1.3% (1.0%-1.6%) 0.1% (0.0%-0.1%) 5.9% (1.2%-11.8%) 0.1% (0.1%-0.1%)

We note several limitations to our work. First, our results do not
allow us to reject the presence of redundant encodings in other
settings. That said, the AFC dataset is a rich, real-world, and highly
relevant dataset for health care, representing the actual information
that health care providers utilize to algorithmically improve care
[69, 87, 101]. Second, because EHR information is complex, and
ours is the first to structure the AFC dataset for this kind of analy-
sis, we are unable to use all available information. This is because
EHR data are primarily used for efficient record-keeping for health
care systems, and EHR data in informatics and ML research appli-
cations often require extensive pre-processing and cleaning (see
Appendix C). That said, our analysis focuses on highly prevalent
and important features that provide a comprehensive summary of
subjects’ demographics, patient history, and interactions with the
health care system. Third, our analysis has only embarked on a
demonstration by disaggregating the Asian and NHPI subgroups
in the API category. The aggregation of widely varying subgroups
into the broad race groups defined by OMB is a pervasive issue
that extends far beyond the API group or the initial disaggrega-
tion we have offered, affecting many other subgroups across all
races and ethnicities [6, 37, 46, 86]. As we show in Appendix B,
our disaggregation of the API group is based on the OMB’s 1997
revision [72], but even this reform was limited, given that the un-
derlying EHR data contains richer information about subgroups
for some health care providers. One of the main limiting factors is
that Census tables that present the racial demographics of names
and geographic regions, for example, still use the coarse 1977 OMB
standard. Future work on disaggregation for racial inference and
measurement, therefore, depends heavily on the U.S. Census and
OMB to collect and report subgroup data.

Despite these limitations, our results provide evidence that theo-
retical concerns about redundant encodings – which are a mainstay
in the algorithmic fairness literature – may not hold in practice
across all settings in the way conventionally posited, including our
rich data setting of health care delivery. At minimum, our findings
suggest that concerns about redundant encodings be spelled out
with greater specificity. We find that ML applied to a rich feature set

does not capture race information substantially beyond what is al-
ready encoded in name and geography characteristics. As a corollary,
the importance of name and geography features highlights that
the conventional BI(F)SG methods do in fact already encapsulate
high-quality information for race inference, which supports the
use of these approaches to measure racial disparities. We provide
evidence that a ML approach can improve inferences using the
same feature set as for BI(F)SG methods. This finding dispels some
skepticism of conventional BI(F)SG. When the Consumer Financial
Protection Bureau used such methods to identify discrimination,
for instance, critics charged these methods as “junk science” [56].
In practice, such imputation methods are increasingly relevant to
measure racial disparities, as mandated by law, when race cannot
be observed [29].

Even though the incorporation of richer features provides lim-
ited improvements over conventional BI(F)SG with moderated risk
of redundant encoding, this does not mean that rich feature sets can
be used indiscriminately. As illustrated in Appendix F, additional
features used in increasing number do encode further probabilis-
tic information about race, approaching the performance obtained
from using name and geography features alone, albeit with signif-
icant uncertainty. Additionally, the varying impacts on precision
and recall for the least-represented minority groups compared to
the majority White group as the feature set grows is a subtle, yet
important, effect. This impact can be hidden by cruder overall met-
rics like AUROC and micro-based metrics, so we emphasize a need
for careful monitoring of more granular, group-specific metrics to
identify such impacts of large feature sets. Of course, these effects
can be best understood when racial groups are further disaggre-
gated; for example, we observe significant differences in precision
and recall between the disaggregated Asian and NHPI groups of
the API category. Our ability to disaggregate the API group at all –
which conventional BI(F)SG cannot do with the current name and
geography tables – highlights the ability of ML to advance data
disaggregation. Fundamentally, though, this points to the impor-
tance of improving race collection and reporting standards. A key
area of future work is in developing name and geography tables
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with disaggregated categories; such efforts can leverage the AFC
dataset and other auxiliary datasets with more granular subgroup
information to enable further our understanding of demographic
disparities.

In sum, our work illustrates how ML with a rich feature set can
improve the measurement of racial disparities, demonstrates these
concerns in a rich, new dataset of health care practice, and shows
that a widely cited theoretical concern of redundant encodings as
undercutting anti-discrimination principles may not in practice
operate across all settings, at least as conventionally posited as
being about data size.
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A ETHICS AND SOCIAL IMPACTS OF OUR
WORK

In this section, we address ethical considerations on the imputation
of race and the use of the medical dataset. First, we reiterate our
understanding of race as a social construct and the importance
of measuring it despite the imperfect choices involved. Second,
we discuss the practical implications of the study and the risks
involved with inferring race using medical data. Lastly, we provide
justification for the use of the dataset.

Throughout this study, we emphasize that race is not a fixed
biological or genetic concept, but rather a social construct that
categorizes people based on historical and social factors. As Lu et al.
[60] suggests, race, ethnicity, and ancestry are distinct but over-
lapping concepts that should be considered separately in medical
research. We recognize that racial categories are not static and can
change over time. Consequently, it can be challenging to design a
precise measure to capture the effects of race and to define what
constitutes an "accurate" racial inference. Additionally, the use of
racial labels is becoming more complex as they fail to account for
the growing number of mixed-race individuals and the increasing
diversity within each racial group.

We emphasize the difference between using race to evaluate
disparities and using race to make adverse decisions. Race-based
decisions pose grave problems, for instance, for content delivery,
lending, employment, or housing [11, 78]. Rather, measuring racial
disparities is important precisely because disparities can arise from
the social construct of race. Imputation allows us to define, quan-
tify, and bring awareness to racial disparities, despite the imperfect
nature of demographic measurement [80]. In fact, there are sev-
eral instances when there are no legitimate alternatives to race
imputation for measuring disparities. U.S. Executive Order 13,985
[29], for example, requires federal agencies to conduct racial equity
assessments, even though many of these agencies lack records of
individual self-reported race. Similarly, racially polarized voting
analyses under the Voting Rights Act [88] require measurement of
themajority- andminority-race voters in a district, but self-reported
race is again often lacking. Under the government settlement with
Meta for violations of the Fair Housing Act [30], Meta agreed to use
BISG to estimate the race and ethnicity of its users. Beyond legal
requirements for disparity assessments, race imputation can also
fulfill an urgent need to understand health disparities, where race
is often missing, as emphasized by the U.S. Department of Health
and Human Services [71]. Critically, the need for imputation as a
tool to evaluate disparities when race is so often missing does not
imply that it should be used in decision making [44]. Our goal is
not to reify race as a concept, but to improve the reliability of asso-
ciating people with racial and ethnic categories to enable disparity
measurement for race-associated conditions, diagnoses, treatment
effects, and outcomes that are not necessarily the result of cultural,
societal, and individual biases, regardless of reporting categories
used. Our work exploring disaggregation precisely speaks to this.

In terms of practical implications, our study shows that name
and geography information alone provide strong signals for pre-
dicting race, and additional information derived from EHR data
provide only incremental improvements. Predicting race using only
name and geography information can produce biased estimates

[59]. At the same time, we show that although more information
could improve the overall imputation performance, there are dif-
ferent trade-offs for different racial groups. The information and
imputation methods used should be dependent on data access and
quality. For example, studies show that racial minorities are more
likely to be under- or misdiagnosed [21, 33, 34, 45, 62, 89] and that
the collection of medical information can be disproportionately less
accurate for racial minorities as well [73, 85]. The variance in data
quality would likely bias the prediction outcomes.

Lastly, we use this dataset solely for research purposes with
IRB approval, including Waiver of Informed Consent, Waiver of
Assent, and Waiver of HIPAA Authorization, on servers approved
for High Risk and Protected Health Information data. The dataset
provides a unique setting to investigate redundant encodings and
core questions of health disparities (see Appendix D), as it is a
comprehensive dataset that covers many under-served patients
from rural, low-income, and racial minority populations. The use
of race imputation in medical decision making raises much more
acute ethical concerns than the use of imputation to enable the
assessment of health disparities.

B CONSTRUCTION OF RACE AND ETHNICITY
VARIABLE IN THE AMERICAN FAMILY
COHORT

B.1 Construction of race variable
The American Family Cohort (AFC) dataset contains two race fields
for each patient: patientracecode and patientracetext. patientrace-
code contains HL7 codes established by the U.S. Centers for Disease
Control and Prevention (CDC). The coding system has six racial cat-
egories: American Indian and Alaska Native, Asian, Black or African
American, Native Hawaiian and Other Pacific Islander, White, and
Other Race. Each category has one parent code (e.g., 1002-5 for
American Indian or Alaska Native), and most have multiple child
codes (e.g., 1010-8 for Apache), each paired with a text description.
patientracecode may contain one or more parent codes and/or child
codes, which may not match official HL7 codes, or no codes at all.
patientracetext contains free text. AFC exhibits wide heterogeneity
in the consistency and clarity of provider data standards, ranging
from codes and text that always exactly match the CDC system to
providing no code and only single characters.

A derived race variable was constructed using the following steps.
First, for each of the six racial categories, a string match was sought
between any code in patientracecode and any HL7 code within the
category, and between any subset of terms of patientracetext and
any text description within the category, including some spelling
variations. The terms “caucasian”, “wh”, and “w”, among others,
were considered text matches to White. The terms “blk”, “b”, and
“aa”, among others, were considered textmatches to Black or African
American. Second, patients were assigned a racial category based on
code matches and another based on text matches, where matches in
more than one category were assigned Multiple Races. Third, a final
racial categorywas assigned, prioritizing the code-basedmatch over
the text-based match. If patientracecode matched 2131-1 for Other
Race, but patientracetext matched to a racial category, the text-
based match was used. The remaining patients, who have neither a
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code-based or text-based match, including text descriptions such
as “unknown”, “decline”, or “refused”, were assigned Unknown.

B.2 Construction of ethnicity variable
The AFC dataset contains two ethnicity fields for each patient: pa-
tientethnicitycode and patientethnicitytext. The CDC HL7 coding
system has one parent code and about 40 child codes for Hispanic
or Latino and one parent code for Not Hispanic or Latino. A sin-
gle ethnicity variable was constructed using the same three steps.
The terms “hispanic”, “latino”, “hispa”, “his”, or “h”, among others,
were considered text matches to Hispanic or Latino. Any code-
based match, or text-based match if there was no code-based match,
to Hispanic or Latino led to the final assignment of Hispanic or
Latino. All other patients were assigned Not Hispanic or Latino, or
Unknown.

B.3 Construction of variable combining race
and ethnicity

A final variable combining race and ethnicity prioritizes ethnicity
over race. If the ethnicity variable was Hispanic or Latino, then the
combined variable was assigned Hispanic or Latino. If the ethnicity
variable was Not Hispanic or Latino, or Unknown, then the com-
bined variable was assigned the value of the race variable. If the
ethnicity variable was Not Hispanic or Latino, or Unknown, and
the race variable was Unknown, then the combined variable was
assigned Unknown. In conclusion, the combined variable standard-
izes across the varied provider information from four AFC data
fields into a race and ethnicity classification that aligns with the
OMB’s 1997 Revisions to the Standards for the Classification of
Federal Data on Race and Ethnicity.

C FEATURE CLEANING AND CODING
A detailed description of feature cleaning for each category of
features is outlined below. The full list of features can be found at
https://github.com/reglab/redundant-encodings.

C.1 Baseline
Baseline features comprise prior probabilities for race given first
name, surname given race, and race given geographic area, based
on name and geography tables from [14, 92, 93]. Prior to lookup in
the name tables, we convert all first and last names to uppercase
and keep only the characters before the first whitespace. Because
only letter characters A-Z are present in the first name and surname
tables, non-letter characters are also removed. To handle patients
with duplicate first or last names listed due to typos (e.g., ATHENA
v. ATEHNA), we keep the name that matches a name in the Census
name tables where possible. For duplicates still unresolved, we keep
the patient’s given name (name when marital status is Single, then
Divorced, then Married), and if still unresolved, we keep the earliest
appearance of the patient’s name.

For geography priors, we retain only one address for each patient,
consisting of street address, city, and ZIP Code, and geocode using
a combination of the Census Geocoder and the Google Geocoding
API. The geocoded coordinates are then spatially joined to 2020
census block group shapefiles. In the event a census block group-
based geography prior cannot be obtained, if the patient has both

first and last name priors, our BIFSG algorithm falls back on only
those two priors. If the patient only has a last name prior, our BIFSG
algorithm uses that in combination with a state-based geography
prior.

C.2 Demographic
Age is calculated using the patient’s date of birth with respect to the
most recent visit date. Gender, marital status, and state are one-hot
encoded. A separate missingness feature is created for state; for
gender and marital status, we use the “Other/Unknown” category
to represent both missingness and other levels.

C.3 Behavioral
Behavioral features are identified by searching free-text patient
records of social history observations. Smoking and tobacco history
is determined by searching for the terms “smoke”, “smok”, “smk”,
and “tobacco” that appear with an affirmative observation, indi-
cated by the terms “yes”, “Y”, “current”, “every day”, “some day”,
and “former”, and that do not appear with a negative or unknown
observation, indicated by the terms “never”, “non”, or “unknown”.

Language preferences are identified by searching free-text lan-
guage text and language code fields of patient language records.
We limit the set of languages to the most prevalent ones in the
dataset with at least 1,000 subjects: English, Spanish, Vietnamese,
Chinese, Tagalog, Yiddish, and Armenian. Language preferences are
determined by the terms “English”, “eng”, “en”, “151”, and “593” for
English; “Spanish”, “spa”, “17117”, and “312741” for Spanish; “Viet-
namese”, “vie”, “312743”, and “132317644” for Vietnamese; “Chinese”,
“chi”, “zho”, “312733”, and “17110” for Chinese; “Tagalog” and “tgl”
for Tagalog; “Yiddish” and “yid” for Yiddish; and “Armenian”, “hye”,
and “arm” for Armenian.

C.4 Administrative
To extract insurance information, we search several fields includ-
ing insurance plan, insurance company, documentation date, ex-
piration date, and active or inactive status. We search for terms
“blue cross”, “blue shield”, “bc/bs”, “medicare”, “medical”, “medica”,
“aetna”, “united”, “united health care”, “united healthcare”, “UHC”,
“cigna”, “private”, “commercial”, “preferred provider organization”,
“group policy”, “hmo/managed care”, “humana”, “private”, “self pay”,
“capitated”, “tricare”, and “coventry”. Each insurance plan is rep-
resented with a Boolean variable, which indicates if a patient has
ever had the plan at any time in their record. The total number of
recorded insurance plans and the total number of active insurance
plans are represented as numeric features.

Visit counts per year are generated by counting the number of
unique encounter dates in each year from 2010 to 2022.

C.5 General Health
Allergy features are determined by searching for the following
terms in allergy descriptions: “NKDA”, “NKA”, “no known aller-
gies”, “no known medication allergies”, “no known drug allergies”,
“no known active allergies”, “penicillin”, “sulfa”, “sulfonamide”,
“sulfa drug”, “sulfamethoxazole”, “latex”, “codeine”, “aspirin”, “pril”,
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“ACE inhibitor”, “angiotensin converting enzyme inhibitor”, “doxy-
cycline”, “amoxicillin”, “statin”, “zocor”, “morphine”, “ibuprofen”,
“NSAIDs”, “iodine”, “biaxin”, and “prednisone”.

Immunization features are generated from immunization records
for patients. Because immunization records are available for less
than 10% of the patient population, we consider only the count of
immunizations a patient has on record and forgo any more granular
immunization features.

Vital signs are generated from observation names and codes
for body mass index, systolic and diastolic blood pressure, height,
weight, heart rate, oxygen saturation, respiratory rate, and temper-
ature. We identify each measurement with both textual terms (e.g.,
“systolicbp”, “systolic”, “bpsystolic”, “bloodpressuresystolic”, and
more for systolic blood pressure), as well as Logical Observation
Identifiers Names and Codes (LOINC) codes, which provide a clini-
cal standard for laboratory and clinical test results, and SNOMED
CT codes (e.g., “8480-6”, “271649006”, and more for systolic blood
pressure). For each measurement, we convert all records to the
same units.

C.6 Medical
Diagnosis codes are generated from current and historical clinical
problems. We identify the type of code (ICD-10, ICD-9, or SNOMED
CT) by the listed problem category, or with regular expression pat-
terns for codes with an ambiguous category. ICD-9 and SNOMED
CT codes are mapped to their ICD-10 equivalent with crosswalks
published by [66] and [67], respectively. After performing a 𝜒2 test
and calculating the mutual information between diagnosis codes
and race class labels, we take the union of codes from the literature
described in Appendix D and codes with non-zero mutual informa-
tion and 𝑝 ≤ 0.05. Of these codes, the 1,000 codes with the highest
mutual information are selected.

Procedure codes are documented in the Current Procedural Ter-
minology (CPT) and the Healthcare Common Procedure Coding
System (HCPCS). These are collections of standardized codes that
represent medical procedures, supplies, products, and services. All
codes are aggregated at the CPT Category I and HCPCS Level II
levels of aggregation, which include high-level categorization of
procedures such as evaluation & management, anesthesia, surgery,
radiology procedures, pathology, and laboratory procedures. We
additionally include more granular CPT Category II codes. The
final feature set contains 55 categories of procedures and the total
counts of procedures for each patient.

D LITERATURE REVIEW FOR SELECTING
DIAGNOSIS CODES

There are over 68,000 ICD-10 codes [10], which poses computa-
tional challenges in feature encoding, hyperparameter searching,
and model training. To filter the full set of diagnostic codes to the
most relevant ones, we conduct a substantive literature review and
include diagnosis codes that appear in the literature to dispropor-
tionately impact certain racial groups. Table 5 shows examples
of these ICD-10 codes, with their prevalence by racial group (per
10,000 patients) for our study population in the AFC dataset. For
racial minority groups, we additionally indicate with an asterisk

which codes are documented in the literature to have a higher preva-
lence compared to the White population. We observe differences in
prevalence among racial groups that largely comport with existing
literature, though we note that the AFC data provides unique op-
portunities for future work to reexamine and expand on existing
knowledge about racial disparities in health through its rich and
traditionally underrepresented cohort.

E HYPERPARAMETER TUNING PROCEDURE
We use the following training procedure to select optimal hyper-
parameters and train and test each random forest model. We first
randomly split the study population into training and test sets rep-
resenting 80% and 20% of the data, respectively. The train/test split
is stratified on the race class label to preserve the percentage of
each racial group in each split.

Next, we tune the random forest hyperparameters to select opti-
mal values. To do so, we perform five-fold cross validation within
the 80% training set, splitting the training data into five folds, and
then iterating through each fold, using one fold as the validation
set and training on the remaining folds. We use this five-fold cross
validation procedure to perform a search over the following distri-
bution of parameters:

• Number of estimators: 100, 1000
• Maximum depth of tree: 3, 10, 15, 20, 25, 50, None
• Minimum samples required for a leaf node: 1, 10, 25, 50
• Minimum samples required to split a node: 2, 10, 25, 50, 100
• Number of features to consider: 25%, 50%, 75%, square root
of total number of features

We perform a randomized search (as opposed to a grid search) due
to the magnitude of the data, with over 4 million training examples,
which leads to long computation times to perform the five-fold cross
validation over a large number of hyperparameter combinations.
All random forest models use bootstrapped samples when building
the trees. We use the same train/test split across all random forest
models, but perform a separate hyperparameter search for each
feature set we consider (i.e., baseline, demographic, etc.).

We select the hyperparameter values from the search with the
highest mean micro AUPRC across the five validation folds, with
a percent difference in train and validation performance less than
2% to prevent overfitting. We choose AUPRC instead of the typical
AUROC because of the highly imbalanced nature of the dataset,
and because we wish to make positive predictions while minimiz-
ing false positive predictions for the minority groups. This is also
aligned with the conventional practice. (We are exploring a cost-
sensitive learning approach for a future iteration of the work, which
would allow us to explicitly increase the cost of mis-classifying a
minority group member and control the level of disparity among
groups.) We evaluate at the micro level so we can choose the model
that performs the best at the individual level. This also means that
the model does not explicitly consider the group disparity. In the
main text we present and contextualize both micro and macro level
statistics. Using this set of optimal hyperparameter values, we train
the final model on the 80% training set. We evaluate the trained
model on the unseen 20% test set.
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Table 5: Example literature-based diagnosis codes. For each code in the literature, we show the prevalence by racial group (per
10,000 patients) for our study population. An asterisk indicates for which racial minority groups the codes are documented in
the literature to have a higher prevalence compared to the White population.

Description ICD-10 Code AIAN ASIAN BLACK HISP NHPI WHITE

Asthma [70] J45 900* 700 1,000* 830 1,300* 820
Stomach cancer [70] C16 3.7* 7.5* 5.3* 3.7* 2.5* 3
Liver & IBD cancer [70] C22 3.7* 7.5* 5.3* 5.6* 12* 5.2
Diabetes [65, 70] E08-E13 1,400* 1,500* 1,900* 1,500* 1,500* 1,300
Alcohol use disorder [31] F10 170* 41 100 97 110 140
Illicit drug use disorder [31] F11-F16, F18-F19 210* 43 130 110 160 150
Coronary heart disease [70] I20-I25 610* 360 460 360 440* 700
Chronic hepatitis B [70] B16 1.7 23* 6 2.9 9.1* 2.6
Underimmunization [70] Z28 150* 260* 320* 270* 300 230
Perinatal conditions [70] P00-P96 320* 170 350* 290* 150* 250
History of pyschological trauma [7, 70, 98] Z91.4 5.4* 0.86 4.4 3.6* 2.5 3.1
Obesity [65, 70] E65-E68 1,300* 830 2,000* 1,600* 1,700* 1,400
Transplanted organ [70] Z94 9.1 11 16* 12 11 11
End stage renal disease [33] N18.6 43* 23 73* 37 45 15
Sickle cell disorders [58, 76] D57 11 2.9 67* 4.7 6.6 3.0
Homelessness [5, 63] Z59.0 5.8* 0.69 7.1* 2.7* 2.5 4.7
Syphilis [53] A50-A53 8.3 7.4 33* 16 6.6 10
Tuberculosis [53] A15-A19 5* 25* 8* 7.5* 11* 3.5

F ADDITIONAL METRICS
Table 6 provides AUPRC, AUROC, F1-score, precision, and recall for
each racial group for the conventional BIFSG andML BIFSGmodels;
the use of ML leads to an increase in imputation performance for
each of these metrics for every racial group. Table 7 shows micro
and macro AUPRC, AUROC, F1-score, precision, and recall for
an increasing feature set, beginning with baseline features alone,
and incrementally growing the feature set. Table 8 shows AUPRC,
AUROC, F1-score, precision, and recall for each racial group with
an increasing feature set. 95% confidence intervals are shown for
each of these tables.

We also further explore the risk of redundant encodings for fea-
tures beyond name and geography. As described in §4.2, the risk
of redundant encodings is not exacerbated with the addition of
our richer feature sets beyond baseline features. To provide supple-
mentary evidence of this finding, we compare the performance of
five random forest models with increasing feature sets, beginning
with demographic features and incrementally adding behavioral,
administrative, general health, and medical features; all models
exclude baseline features. These models represent a realistic setting
when name or geography information may be unavailable. Figure
4 displays the micro and macro AUPRC and AUROC for the five
random forest models; the 𝑥-axis shows the feature set on which
each of the five models was trained. The performance for each
individual feature set is shown with “x” markers. Though micro
and macro AUPRC and AUROC all increase monotonically from
demographic features alone to the full feature set excluding baseline
features, the performance never reaches that of baseline features
alone. This finding provides further evidence that, although addi-
tional features do encode further probabilistic information about
race, concerns of redundant encodings are most warranted when
name and geography features are readily accessible.

Figure 4: Micro and macro performance for an increasing
feature set with baseline features excluded, with AUPRC on
the left and AUROC on the right. “x” markers indicate the
micro and macro performance for each feature set alone. Er-
ror bars representing 95% confidence intervals are too tight
to be seen. In situations where only anonymized data is avail-
able to researchers, we observe improvement in both micro
and macro AUPRC and AUROC when adding more features.
However, neither the model trained with the largest feature
set nor the models trained on each of the individual feature
sets perform as well as the model trained with baseline fea-
tures.

G INVESTIGATION OF MECHANISM BY
WHICH ML IMPROVES UPON BI(F)SG

To better understand the mechanism through which ML improves
upon conventional BIFSG, we train two Logistic Regression (LR)
models with BIFSG priors, and with BIFSG priors plus the interac-
tion terms of the priors, respectively. By including the interaction
terms, we explicitly provide hints that there may be interactions
between race and geographic area (e.g., the same name may be
associated with different probabilities of being a certain race de-
pending on the geographic location) to the otherwise linear model.
We would expect to observe improvement in performance upon LR
with only BIFSG priors by including interaction terms if the inde-
pendence assumption of BIFSG is violated in practice. We would
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Table 6: Machine learning improvements to BIFSG by race with comparable feature set, with 95% confidence intervals.

Model AIAN API BLACK HISP WHITE

AUPRC Conventional BIFSG 0.048 (0.041-0.054) 0.694 (0.688-0.699) 0.552 (0.548-0.556) 0.738 (0.735-0.741) 0.953 (0.953-0.954)
ML BIFSG 0.124 (0.113-0.134) 0.759 (0.754-0.764) 0.629 (0.626-0.632) 0.853 (0.851-0.855) 0.964 (0.964-0.964)

AUROC Conventional BIFSG 0.690 (0.682-0.696) 0.909 (0.906-0.911) 0.879 (0.878-0.880) 0.933 (0.932-0.933) 0.896 (0.895-0.896)
ML BIFSG 0.832 (0.825-0.837) 0.941 (0.938-0.943) 0.917 (0.917-0.918) 0.954 (0.954-0.955) 0.917 (0.917-0.918)

F1-Score Conventional BIFSG 0.085 (0.076-0.096) 0.706 (0.702-0.710) 0.472 (0.469-0.476) 0.798 (0.796-0.799) 0.918 (0.918-0.919)
ML BIFSG 0.070 (0.059-0.078) 0.751 (0.747-0.755) 0.521 (0.518-0.524) 0.829 (0.828-0.831) 0.928 (0.927-0.928)

Precision Conventional BIFSG 0.241 (0.219-0.272) 0.821 (0.816-0.826) 0.647 (0.642-0.651) 0.785 (0.783-0.787) 0.893 (0.893-0.894)
ML BIFSG 0.754 (0.698-0.814) 0.845 (0.841-0.851) 0.742 (0.740-0.746) 0.823 (0.821-0.825) 0.900 (0.899-0.900)

Recall Conventional BIFSG 0.051 (0.046-0.059) 0.619 (0.615-0.624) 0.372 (0.369-0.375) 0.812 (0.810-0.814) 0.945 (0.944-0.945)
ML BIFSG 0.037 (0.031-0.041) 0.676 (0.670-0.680) 0.401 (0.398-0.405) 0.836 (0.834-0.838) 0.958 (0.957-0.958)

Table 7: Micro and macro performance for an increasing feature set, with 95% confidence intervals.

Model AUPRC AUROC F1-Score Precision Recall

Micro

Baseline 0.933 (0.933-0.934) 0.983 (0.983-0.983) 0.881 (0.880-0.881) 0.881 (0.880-0.881) 0.881 (0.880-0.881)
+ Demographic 0.939 (0.938-0.939) 0.984 (0.984-0.985) 0.886 (0.886-0.887) 0.886 (0.886-0.887) 0.886 (0.886-0.887)
+ Behavioral 0.940 (0.940-0.941) 0.985 (0.985-0.985) 0.887 (0.887-0.888) 0.887 (0.887-0.888) 0.887 (0.887-0.888)

+ Administrative 0.942 (0.941-0.942) 0.985 (0.985-0.985) 0.889 (0.889-0.890) 0.889 (0.889-0.890) 0.889 (0.889-0.890)
+ General Health 0.943 (0.943-0.944) 0.985 (0.985-0.986) 0.891 (0.890-0.891) 0.891 (0.890-0.891) 0.891 (0.890-0.891)

+ Medical 0.944 (0.943-0.944) 0.985 (0.985-0.986) 0.892 (0.892-0.892) 0.892 (0.892-0.892) 0.892 (0.892-0.892)

Macro

Baseline 0.585 (0.581-0.588) 0.893 (0.891-0.896) 0.541 (0.537-0.544) 0.782 (0.768-0.796) 0.504 (0.501-0.506)
+ Demographic 0.598 (0.594-0.602) 0.901 (0.899-0.903) 0.549 (0.545-0.553) 0.792 (0.777-0.803) 0.509 (0.506-0.511)
+ Behavioral 0.602 (0.598-0.605) 0.904 (0.902-0.905) 0.551 (0.547-0.554) 0.794 (0.779-0.806) 0.510 (0.507-0.512)

+ Administrative 0.610 (0.607-0.614) 0.906 (0.904-0.908) 0.557 (0.554-0.561) 0.806 (0.793-0.815) 0.514 (0.512-0.516)
+ General Health 0.618 (0.614-0.621) 0.908 (0.906-0.910) 0.562 (0.558-0.565) 0.824 (0.811-0.833) 0.517 (0.515-0.519)

+ Medical 0.621 (0.618-0.625) 0.907 (0.906-0.909) 0.567 (0.563-0.570) 0.822 (0.809-0.831) 0.520 (0.518-0.522)

Table 8: Performance by race for an increasing feature set, with 95% confidence intervals.

Model AIAN ASIAN BLACK HISP NHPI WHITE

AUPRC

Baseline 0.124 (0.113-0.134) 0.785 (0.780-0.790) 0.629 (0.626-0.632) 0.853 (0.851-0.855) 0.152 (0.134-0.169) 0.964 (0.964-0.964)
+ Demographic 0.135 (0.125-0.146) 0.795 (0.790-0.800) 0.654 (0.651-0.657) 0.873 (0.871-0.875) 0.164 (0.143-0.181) 0.968 (0.967-0.968)
+ Behavioral 0.143 (0.132-0.152) 0.799 (0.794-0.804) 0.656 (0.654-0.660) 0.880 (0.879-0.882) 0.165 (0.145-0.182) 0.968 (0.968-0.968)

+ Administrative 0.174 (0.162-0.184) 0.800 (0.795-0.805) 0.662 (0.660-0.666) 0.886 (0.885-0.888) 0.171 (0.152-0.187) 0.969 (0.968-0.969)
+ General Health 0.198 (0.185-0.207) 0.806 (0.801-0.811) 0.670 (0.668-0.674) 0.891 (0.889-0.892) 0.175 (0.157-0.192) 0.970 (0.969-0.970)

+ Medical 0.198 (0.186-0.210) 0.806 (0.801-0.811) 0.681 (0.679-0.685) 0.891 (0.890-0.892) 0.182 (0.164-0.200) 0.970 (0.970-0.970)

AUROC

Baseline 0.832 (0.825-0.837) 0.956 (0.954-0.957) 0.917 (0.917-0.918) 0.954 (0.954-0.955) 0.783 (0.769-0.794) 0.917 (0.917-0.918)
+ Demographic 0.838 (0.831-0.844) 0.962 (0.960-0.964) 0.925 (0.925-0.926) 0.959 (0.959-0.960) 0.797 (0.786-0.807) 0.924 (0.923-0.925)
+ Behavioral 0.841 (0.834-0.846) 0.962 (0.960-0.964) 0.926 (0.925-0.927) 0.961 (0.960-0.961) 0.807 (0.797-0.817) 0.925 (0.925-0.926)

+ Administrative 0.843 (0.836-0.848) 0.962 (0.961-0.964) 0.927 (0.926-0.928) 0.961 (0.961-0.962) 0.816 (0.806-0.825) 0.927 (0.926-0.927)
+ General Health 0.845 (0.838-0.850) 0.965 (0.964-0.967) 0.929 (0.928-0.930) 0.962 (0.962-0.963) 0.816 (0.803-0.826) 0.929 (0.928-0.929)

+ Medical 0.839 (0.833-0.845) 0.964 (0.963-0.966) 0.931 (0.930-0.932) 0.962 (0.961-0.963) 0.817 (0.805-0.827) 0.930 (0.929-0.930)

F1-Score

Baseline 0.070 (0.059-0.078) 0.772 (0.767-0.776) 0.521 (0.518-0.524) 0.829 (0.828-0.831) 0.126 (0.108-0.143) 0.928 (0.927-0.928)
+ Demographic 0.070 (0.059-0.079) 0.774 (0.770-0.779) 0.544 (0.542-0.548) 0.843 (0.841-0.844) 0.132 (0.114-0.148) 0.931 (0.931-0.931)
+ Behavioral 0.071 (0.060-0.079) 0.779 (0.775-0.783) 0.547 (0.544-0.550) 0.845 (0.843-0.846) 0.131 (0.113-0.146) 0.932 (0.931-0.932)

+ Administrative 0.102 (0.089-0.112) 0.779 (0.775-0.783) 0.554 (0.551-0.557) 0.849 (0.848-0.851) 0.128 (0.110-0.144) 0.933 (0.932-0.933)
+ General Health 0.123 (0.110-0.131) 0.781 (0.777-0.785) 0.558 (0.555-0.561) 0.851 (0.850-0.852) 0.127 (0.107-0.142) 0.933 (0.933-0.934)

+ Medical 0.134 (0.122-0.144) 0.781 (0.777-0.785) 0.566 (0.563-0.569) 0.852 (0.851-0.853) 0.133 (0.113-0.150) 0.934 (0.934-0.935)

Precision

Baseline 0.754 (0.698-0.814) 0.829 (0.824-0.834) 0.742 (0.740-0.746) 0.823 (0.821-0.825) 0.645 (0.582-0.692) 0.900 (0.899-0.900)
+ Demographic 0.771 (0.717-0.832) 0.835 (0.829-0.840) 0.756 (0.753-0.759) 0.854 (0.852-0.855) 0.635 (0.565-0.682) 0.901 (0.900-0.901)
+ Behavioral 0.757 (0.704-0.820) 0.836 (0.831-0.841) 0.759 (0.757-0.763) 0.862 (0.860-0.863) 0.646 (0.579-0.688) 0.901 (0.900-0.901)

+ Administrative 0.811 (0.775-0.853) 0.837 (0.832-0.843) 0.766 (0.763-0.769) 0.867 (0.865-0.868) 0.650 (0.594-0.694) 0.902 (0.901-0.902)
+ General Health 0.858 (0.828-0.897) 0.840 (0.835-0.846) 0.774 (0.771-0.778) 0.869 (0.868-0.871) 0.698 (0.629-0.740) 0.902 (0.902-0.903)

+ Medical 0.865 (0.831-0.895) 0.841 (0.836-0.846) 0.788 (0.784-0.791) 0.870 (0.869-0.872) 0.665 (0.602-0.714) 0.903 (0.902-0.904)

Recall

Baseline 0.037 (0.031-0.041) 0.722 (0.716-0.727) 0.401 (0.398-0.405) 0.836 (0.834-0.838) 0.070 (0.059-0.080) 0.958 (0.957-0.958)
+ Demographic 0.037 (0.031-0.041) 0.722 (0.716-0.727) 0.425 (0.423-0.429) 0.832 (0.830-0.833) 0.074 (0.063-0.083) 0.963 (0.963-0.963)
+ Behavioral 0.037 (0.031-0.042) 0.729 (0.723-0.734) 0.427 (0.424-0.430) 0.828 (0.826-0.830) 0.073 (0.062-0.082) 0.965 (0.964-0.965)

+ Administrative 0.054 (0.047-0.060) 0.728 (0.722-0.733) 0.434 (0.430-0.437) 0.833 (0.831-0.834) 0.071 (0.061-0.081) 0.966 (0.965-0.966)
+ General Health 0.066 (0.059-0.071) 0.730 (0.725-0.735) 0.436 (0.433-0.439) 0.833 (0.832-0.835) 0.070 (0.058-0.079) 0.967 (0.966-0.967)

+ Medical 0.073 (0.066-0.079) 0.729 (0.723-0.734) 0.442 (0.439-0.445) 0.834 (0.832-0.835) 0.074 (0.062-0.084) 0.968 (0.967-0.968)
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also expect the performance of the LR with interaction term to
be on par with BIFSG if the main mechanism through which ML
models improve upon BIFSG is by accounting for more complex
interaction among the features.

According to Table 9, we observe small improvement in all mea-
sures when comparing LR with interaction terms with the LR with
only BIFSG priors. However, when looking at macro performance,
LR (BIFSG + Interaction) does not perform better than the conven-
tional BIFSG on AUPRC, AUROC, and F1-score. It also performs
uniformly worse than the Random Forest that only uses BIFSG
features. Together this shows that the ML Random Forest model
does not improve upon conventional BIFSG by simply adjusting
for the difference in base rate between AFC population and the
census population or by being able to consider interaction terms
and account for the violation of independence assumptions. ML
likely performs better than conventional BIFSG by being able to
identify non-linear relationships among features.

To further identify the relationship among the features, we take
one subtree from the random forest, and apply the first three split-
ting rules to obtain a smaller subsample that can nonetheless demon-
strate some of the nonlinearities based on the decision rules. In
Figure 5, we show, for each individual, given their last name prior
of being a certain race, the probability they would be predicted
to be a particular race. We observe non-linear relationships that
cannot be captured by a simple linear model.

H DISAGGREGATION OF THE API CATEGORY
TO UNDERSTAND HEALTH DISPARITIES

To illustrate how ML-based imputation methods can capture un-
derlying racial health disparities when race is missing, we compute
the prevalence of asthma and obesity using the conventional BIFSG
technique, ML-based BIFSG, and the ML imputation model that
includes all features except medical ones (the asthma and obesity
diagnosis codes are included in the medical features). Table 10
shows the prevalence of each condition using a weighting estima-
tor, weighting each positive diagnosis by the subject’s predicted
race probabilities (e.g., a patient with asthma who has a 50% prob-
ability of being White and a 50% probability of being API counts
as 0.5 asthma prevalence for White and 0.5 prevalence for API).
Ground truth is established using patient’s self-reported race.

We select asthma and obesity because these conditions have sub-
stantial disparities between the Asian and NHPI populations in the
AFC dataset and documented in the literature [65, 70]. We can see
from ground truth that the NHPI population has a higher prevalence
than the Asian population for both asthma and obesity, a dispar-
ity hidden by the collapsed API category. Because conventional
BIFSG reports only the aggregated API category, the disparities
between Asian and NHPI subjects cannot be captured. Turning to
the ML-based methods, both ML BIFSG and ML (+ General Health)
capture the disparity for both conditions. As we add more features,
the accuracy in the level of disparity increases. These findings
highlight the importance of disaggregation and the applicability
of ML-based imputation approaches to uncover health disparities
between subgroups.
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Table 9:Micro andmacro performance ofmachine learningmethods and BIFSGwith comparable feature set, with 95% confidence
intervals.

Model AUPRC AUROC F1-Score Precision Recall

Micro

Conventional BIFSG 0.898 (0.898-0.899) 0.967 (0.967-0.967) 0.864 (0.864-0.865) 0.864 (0.864-0.865) 0.864 (0.864-0.865)
LR (BIFSG) 0.906 (0.905-0.906) 0.976 (0.976-0.976) 0.856 (0.855-0.856) 0.856 (0.855-0.856) 0.856 (0.855-0.856)

LR (BIFSG + Interaction) 0.908 (0.908-0.909) 0.977 (0.977-0.977) 0.857 (0.856-0.857) 0.857 (0.856-0.857) 0.857 (0.856-0.857)
RF (BIFSG) 0.934 (0.933-0.934) 0.980 (0.980-0.980) 0.881 (0.881-0.881) 0.881 (0.881-0.881) 0.881 (0.881-0.881)

Macro

Conventional BIFSG 0.597 (0.595-0.599) 0.861 (0.859-0.863) 0.596 (0.594-0.599) 0.677 (0.673-0.683) 0.560 (0.558-0.562)
LR (BIFSG) 0.508 (0.506-0.511) 0.850 (0.850-0.852) 0.486 (0.482-0.489) 0.707 (0.693-0.718) 0.460 (0.457 - 0.461)

LR (BIFSG + Interaction) 0.515 (0.512-0.518) 0.858 (0.856-0.860) 0.491 (0.487-0.494) 0.707 (0.692-0.720) 0.465 (0.462-0.467)
RF (BIFSG) 0.666 (0.663-0.668) 0.912 (0.911-0.913) 0.620 (0.617-0.621) 0.813 (0.802-0.825) 0.581 (0.580-0.583)

* RF (BIFSG) is the same as "ML BIFSG" in Table 3. We rename it here for a more clear comparison between the methods.

Table 10: Prevalence of asthma and obesity (per 10,000 patients) by API and disaggreated Asian and NHPI groups. AFC dataset
ground truth (via self-reported race) is compared to predictions by conventional BIFSG (restricted to API), ML BIFSG, and ML +
General Health (via weighted estimator). Weighted means and weighted standard errors (in parentheses) are shown for each
imputation model.

Diagnosis Race Ground Truth Conventional BIFSG ML BIFSG ML (+ General Health)

Asthma
API 752.7 620.4 (18.6) 653.9 (18.3) 667.9 (18.4)
Asian 688.6 – 620.9 (18.1) 635.6 (18.2)
NHPI 1363.3 – 1587.1 (71.5) 1579.4 (70.7)

Obesity
API 925.5 816.6 (21.2) 818.9 (20.3) 818.2 (20.2)
Asian 844.6 – 799.1 (20.3) 791.3 (20.1)
NHPI 1696.9 – 1378.8 (67.4) 1576.8 (70.6)
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Figure 5: Predicted probabilities of being a race (𝑦-axis, from top to bottom: AIAN, Asian, Black, Hispanic, NHPI, White) given
the last name priors of being a race (𝑥-axis, from left to right: AIAN, API, Black, Hispanic, White, Other). We observe some
non-linear relationships – for example, between surname priors and the probabilities of being predicted to be Black – which
are captured by the RF model.
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