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Since the 2000 U.S. Presidential election, social scientists have rediscovered a long tradition of research examining the effects of ballot
format on voting. Using a new dataset collected by The New York Times, we investigate the causal effect of being listed on the first ballot
page in the 2003 California gubernatorial recall election. California law mandates a unique randomization procedure of ballot order that,
when appropriately modeled, can be used to approximate a classical randomized experiment in a real world setting. We apply randomization
inference based on Fisher’s exact test, which directly incorporates the exact randomization procedure and yields accurate nonparametric
confidence intervals. Our results suggest that being listed on the first ballot page causes a statistically significant increase in vote shares
for more than 40% of the minor candidates, whereas there is no significant effect for the top two candidates. We also investigate how
randomization inference differs from conventional estimators that do not fully incorporate California’s complex treatment assignment
mechanism. The results indicate appreciable differences between the two approaches.
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1. INTRODUCTION

In the 2000 U.S. national election, George W. Bush became
President by winning 537 more votes than Al Gore in Florida.
Not only did this unusually close election appear to challenge
theoretical and empirical propositions that individual voters
are rarely decisive (e.g., Riker and Ordeshook 1968; Aldrich
1993; Gelman, King, and Boscardin 1998), but the election
also served as a reminder that the manner in which elections
are administered can change outcomes. Indeed, the 2000 elec-
tion spawned a host of scholarly and official investigations into
the causal effects of various administrative factors on elec-
tion outcomes. These factors include the butterfly ballot (Wand
et al. 2001), voting equipment (U.S. General Accounting Office
2001; Tomz and Van Houweling 2003), overseas absentee bal-
lots (Imai and King 2004), undervotes (Hansen 2003), and the
ballot order of candidates (Krosnick, Miller, and Tichy 2003;
Ho and Imai 2004). The election debacle of Bush v. Gore also
prompted election reform across the United States. Congress
authorized nearly $4 billion for voting reform with the Help
America Vote Act in 2002 alone.

Whereas the 2000 election highlighted the importance of
election administration and ballot format in particular, legal
scholars, political scientists, and psychologists have long been
interested in examining the causal effects of ballot format on
election outcomes (e.g., Gold 1952; Bain and Hecock 1957;
Scott 1972; Darcy 1986; Darcy and McAllister 1990; Miller and
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Krosnick 1998). But studies typically use observational data,
in which the resulting estimates of causal effects are subject
to potential confounding factors, and laboratory experiments,
in which results may lack external validity. We address these
shortcomings by analyzing a randomized natural experiment.
Because randomized experiments are difficult to conduct in real
elections for ethical and practical reasons, natural experiments
provide rare opportunities to make causal inferences with both
internal and external validity.

In particular, we study the causal effect of the page place-
ment of candidates in the 2003 California recall election us-
ing a unique dataset that was collected by The New York Times
(Kershaw 2003). Since 1975, California law has mandated that
the Secretary of State draw a random alphabet for each elec-
tion to determine the order of candidates for the first assembly
district [California Election Code § 13112 (2003)]. California
law further requires that the candidate order be systematically
rotated throughout the remaining assembly districts. We exploit
this randomization-rotation procedure to estimate the causal ef-
fect of being listed on the first ballot page on a candidate’s
vote share. This question is important from two perspectives.
First, from a behavioral voting perspective, our study investi-
gates whether voters are able to act as if they are fully informed
(e.g., Bartels 1996; Forsythe, Myerson, Rietz, and Weber 1993).
Second, from a policy making perspective, ballot design is seen
as central to electoral fairness and design (e.g., Garrett 2004;
the “Making Your Vote Count” series of The New York Times
editorials on voting fairness, 2004).

The analysis of the 2003 California recall election also poses
unique statistical challenges. First, treatment assignment is ran-
domized but in an unconventional way. The units of randomiza-
tion are the alphabet letters rather than the candidates, and the
randomization is followed by systematic rotation of the can-
didate order through 80 nonrandomly ordered assembly dis-
tricts. Second, the 58 counties in California each print unique
ballots, and an assembly district may contain more than one
county and/or only a part of a county. Third, the unusually high
level of media attention and low threshold of ballot access led
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to an unprecedented total of 135 candidates, from Hollywood
actor Arnold Schwarzenegger, who eventually won the elec-
tion, to child television star Gary Coleman. Challenges arise
primarily out of the fact that the randomization-rotation pro-
cedure was designed by policy makers for ease of implemen-
tation, not for ease of statistical estimation. Therefore, careful
statistical analysis is required to draw valid causal inferences.
Given the peculiarity of the recall election, we limit ourselves
to in-sample inferences; a comprehensive analysis of other Cal-
ifornia elections appears elsewhere (Ho and Imai 2004).

To address these challenges, we apply randomization infer-
ence, which was originally developed by Fisher (1935) and later
extended by others (see, e.g., Cox and Reid 2000; Rosenbaum
2002c). More recently, randomization inference has been ap-
plied to observational studies (e.g., Rosenbaum 2002a,b) and
instrumental variables (e.g., Rosenbaum 1996; Greevy, Silber,
Cnaan, and Rosenbaum 2004; Imbens and Rosenbaum 2005).
Our application illustrates that randomization inference may
be applied to various treatment assignment mechanisms, such
as the alphabetical randomization of the 1970 Vietnam draft
lottery (Starr 1997; Angrist 1990), randomization-rotation
commonly applied to reduce survey question order effects in
psychology (Shaughnessy, Zechmeister, and Zechmeister 2002,
chap. 7) and sequential randomization on covariates in clinical
trials (Pocock and Simon 1975).

We first use an extension of Fisher’s exact test to examine the
sharp null hypothesis of no ballot page effect. The result sug-
gests that being placed on the first page of ballot was associated
with a significant increase in vote shares for more than 40%
of the candidates. In contrast to the results based on conven-
tional estimators, we find that (a) page placement does not de-
crease vote shares and (b) there are no significant effects of page
placement for the top two candidates. These findings are con-
sistent with the results of Ho and Imai (2004), who analyzed
the causal effect of being placed first on the ballot (rather than
being placed on the first page) in other California general elec-
tions. Next, we invert Fisher’s exact test to obtain nonparamet-
ric confidence intervals for ballot page effects.

The article is organized as follows. In Section 2 we explain
the randomization-rotation procedure mandated by California
law and describe our dataset of the 2003 California recall elec-
tion. In Section 3 we place our analysis in a statistical frame-
work of causal inference and explain how Fisher’s exact test
can be extended to conduct distribution-free hypothesis testing
about causal effects. We also show how to obtain nonparamet-
ric confidence intervals of quantities of interest by inverting the
test. In Section 4 we present the results of our analysis based
on randomization inference, conduct sensitivity analyses, and
compare randomization inference with conventional estimators
that do not fully incorporate the treatment assignment mecha-
nism. We conclude in Section 5.

2. RANDOMIZATION–ROTATION PROCEDURE AND
RECALL ELECTION DATA

In this section we briefly explain the randomization-rotation
procedure used for California statewide elections. We also de-
scribe our dataset of California ballots, which was originally
collected by The New York Times. To supplement this data, we
also collected official election returns, voter registration data,
and Census data.

2.1 California Alphabet Lottery

Until 1975, incumbents appeared first on the ballot in most
California statewide elections. But then the California Supreme
Court ruled in Gould v. Grubb, 14 Cal. 3d 661 (1975) that listing
candidates by incumbency or alphabetical order was unconsti-
tutional (see also Scott 1972). In response, the California legis-
lature enacted a randomization procedure to determine the order
of candidates. According to California Elections Code § 13112
(2003), the alphabet lottery works in three steps. First, the Sec-
retary of State randomly draws the letters of the alphabet, so
that all 26! possible permutations of the alphabet are equally
possible. Second, names of candidates for each statewide of-
fice are ordered by this randomized alphabet for the first of
80 assembly districts. Third, candidate names are systemati-
cally rotated for each subsequent assembly district. That is, the
candidate listed first in a district moves to the last place in the
next district, and of all the other candidates move upward by
one position. In a typical race with between five and seven can-
didates, for example, this would ensure that all candidates were
listed roughly an equal number of times.

For the 2003 recall election, the actual randomized alphabet
was

R W Q O J M V A H B S G Z

X N T C I E K U P D Y F L.

Based on this randomized alphabet, the ballot order in the
first assembly district was determined, starting from Robinson,
Roscoe, Ramirez, and so on and proceeding to Lewis and
Leonard. This candidate order was then rotated throughout the
remaining assembly districts.

Ho and Imai (2004) first used the California alphabet lottery
to estimate the causal effect of ballot order on candidates for
statewide elections from 1978 to 2002. Their statistical tests
confirmed that the resulting alphabets from the California al-
phabet lottery were indeed random (see also Fig. 3 for tests to
show the complete randomization of page placement in the re-
call data). Ho and Imai (2004) also identified several statistical
challenges. Most importantly, the randomization-rotation pro-
cedure poses difficulties in identifying the variance of conven-
tional estimators such as a difference-in-means estimator and
a linear regression estimator. Ho and Imai (2004) pointed out
that a similar situation arises in systematic sampling in surveys;
the fact that randomization in systematic sampling occurs only
once makes identifying the variance difficult without making
distributional assumptions about the population order (see, e.g.,
Cochran 1977, chap. 8; Wolter 1984).

In our application, this variance identification problem is
exacerbated because the population order of the California dis-
tricts is nonrandom, its distribution is unknown, and the num-
ber of districts is small relative to the number of candidates.
Moreover, the unit of randomization is not the page position
of a candidate, but rather the alphabet, and ballot pages vary
across counties mainly because each county uses different vot-
ing equipment. This leads to unequal probability treatment
assignment that may be confounded, while making the iden-
tification of standard variance estimators even more difficult.
Ho and Imai (2004) found that in typical California elections
these challenges are not severe when analyzing the effect of
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being listed first on the (one-page) ballot (rather than the ef-
fect of being placed on the first page of the multipage ballot).
This is because in contrast to the recall election, the number of
candidates in typical elections is small (generally around five)
relative to the number of districts, and so the randomization-
rotation procedure leads to a good balance of observed district
characteristics and roughly equal probability assignment.

2.2 Recall Election Dataset

Our 2003 California recall election data consist of the ballot
page placement data collected by The New York Times, sup-
plemented by 2000 Census data as well as official election re-
sults and registration data obtained from the California Secre-
tary of State. The dataset comprises geographical units defined
by counties and assembly districts. Each of the 58 counties uses
a different ballot format with varying numbers of pages, and the
candidate order differs by each of 80 assembly districts. There-
fore, the page on which the name of each candidate appears de-
pends on both (a) the ballot format determined by each county
registrar, which is not randomized, and (b) the ballot order in
each of the 80 assembly districts, which is determined by ran-
domized alphabet and systematic rotation.

For example, Del Norte County and Humboldt County both
belong to the first assembly district. But while Humboldt
County uses a one-page ballot, listing all 135 candidates to-
gether on a single page, Del Norte County uses a five-page bal-
lot, listing only 23 candidates on the first page. Butte County
is split into two assembly districts; Schwarzenegger is listed on
the fourth page in the second assembly district but on the third
page in the third assembly district. In total, we have 158 unique
assembly district–counties, out of which 121 units have ballots
with more than one page. (For simplicity, we call these geo-
graphical units “districts” throughout the remainder of the arti-
cle.) These 121 districts serve as the units of our analysis. We
exclude the districts with one-page ballots, because for these
districts the in-sample causal effect of being listed on the first
page cannot be defined.

The New York Times data contain information on the page
placement of 135 candidates in each district. The data from the
California Secretary of State Office provide certified election
returns of all candidates as well as party registration rates (i.e.,
the number of registered Republican or Democratic voters di-
vided by the total number of registered voters) in each district.
One limitation of The New York Times dataset is that it does not
contain information about the placement of candidate names
within each ballot page. Using the 2000 Census, we also col-
lected data on income (mean household wage or salary income
in 1999) and gender and racial compositions (proportions of
male, whites, Asians, Latinos, and African-Americans for each
district, all of which take a value between 0 and 1). These vari-
ables are pretreatment covariates because they were measured
before the randomization of the treatment (although not neces-
sarily before the selection of ballot format for each district).

Figure 1 summarizes the page placement of each candidate
by the number of districts in which the candidate was listed on
the first page. We analyzed a total of 121 districts with multi-
page ballots. The vertical axis lists each of the 135 candidates
in order of the randomized alphabet. The horizontal axis rep-
resents the number of districts. The dark shading of the hor-
izontal bars indicates the number of districts in which voters

Figure 1. Page Placement for 135 Candidates by the Number of Dis-
tricts. Candidates are listed in order of the randomized alphabet. For
each candidate, the dark shading indicates the total number of districts
in which the candidate was listed on the first page. The gray shading in-
dicates the total number of districts in which the candidate was not listed
on the first page. Districts with single-page ballot are excluded from the
graph as well as from our analysis. The total number of districts with
multipage ballots is 121.

observed the candidate on the first page, whereas the gray shad-
ing corresponds to the districts in which the candidate was not
listed on the first ballot. The figure suggests that the Califor-
nia alphabet lottery does not result in complete randomization
of page placement across candidates or across districts. For
example, Robinson, who is first in the randomized alphabet
and represented by the top horizontal bar as candidate 1, ap-
pears on the first page in only 6 multipage districts, whereas
Schwarzenegger, who is candidate 74, is listed on the first page
in 38 districts. The 25 candidates at the end of the randomized
alphabet are all listed on the first page in fewer than 10 districts.

3. METHODOLOGY

In this section we present our approach to estimating bal-
lot page effects. We place our analysis in the formal statisti-
cal framework of causal inference based on potential outcomes
(e.g., Holland 1986). Within this framework, we describe ran-
domization inference derived from Fisher’s exact test (e.g.,
Rosenbaum 2002c). The key insight is to incorporate the exact
randomization-rotation procedure as a central part of statistical
estimation. In addition to testing the sharp null hypothesis of
no unit treatment effect, we invert Fisher’s exact test to obtain
nonparametric confidence intervals. We use a simple extension
of the bisection algorithm to conduct such distribution-free in-
ferences.

3.1 Framework of Causal Inference

We conduct our analysis separately for each of the 135 can-
didates. For each candidate, we observe vote shares for 121 dis-
tricts with multipage ballots. Let yi denote the observed vote
share for the ith district. For each district i = 1,2, . . . ,121, we
define two potential outcomes, Y1i and Y0i ∈ [0,1]. Y1i denotes
the potential vote share in district i when the candidate is placed
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on the first page of the ballot, whereas Y0i represents the poten-
tial vote share in district i when the candidate is not on the first
page. We use the indicator variable, Ti ∈ {0,1}, to denote the
treatment status in district i. Ti equals 1 if candidate i is listed
on the first page and 0 otherwise. Thus the observed outcome
variable is a function of the treatment variable and potential
outcomes, Yi = TiY1i + (1−Ti)Y0i. We use upper-case letters to
distinguish a random variable Yi from its realization yi. The fun-
damental problem of causal inference is that we observe only
one of the two potential outcomes (Holland 1986).

Instead of estimating the effect of being listed on the first
page, it may also be possible to analyze the effect of being
listed on each page as a multitreatment regime by assuming a
constant additive treatment effect (see, e.g., Angrist and Imbens
1995; Imai and van Dyk 2004; Imbens and Rosenbaum 2005).
But this assumption is implausible, because the effect of be-
ing listed on the first versus the second page, for example, may
well differ from the effect of being listed on the fifth versus
the sixth page (see, e.g., Ho and Imai 2004). Alternatively, one
might dichotomize the treatment for each position, which is a
straightforward extension of our approach. Similarly, if the data
were available, one might also estimate the vector of potential
outcomes for page placement and the ballot order within each
page.

Our adopted framework of potential outcomes implicitly
makes the following assumption (Cox 1958; Rubin 1990):

Assumption 1 (No interference among units). The potential
outcomes of one unit do not depend on the treatment of other
units.

In our application, making this assumption implies that po-
tential vote shares of a candidate in one district do not depend
on the same candidate’s ballot placement in another district.
This assumption is likely to hold, because voters usually do
not see ballots of other districts and hence are unlikely to be
affected by such ballots.

Assumption 1 would be violated if we considered joint vote
shares of all 135 candidates, which must sum to unity within
each district. To model candidates jointly, however, would im-
ply an extremely large number of missing potential outcomes
requiring strong assumptions for identification (e.g., that the
treatment effect of one candidate draws votes proportionally
from all other candidates). Because such assumptions are im-
plausible in this application, we focus on the estimation of
a separate causal effect for each candidate, which makes As-
sumption 1 more reasonable.

Within this framework of causal inference, we consider in-
sample inferences where Y1i and Y0i are assumed to be fixed
(but not necessarily observed) quantities. From this perspec-
tive, the treatment variable Ti is the only random variable and,
as explained later, completely determines the reference distrib-
utions of test statistics under the null hypothesis. (Because Yi is
a function of Ti, it is also a random variable.) Given this setup,
we define the unit ballot page effect (or treatment effect) in the
ith district as

τi ≡ Y1i − Y0i, (1)

which is also a fixed quantity. To make inferences beyond
the sample at hand, researchers typically consider a repeated-
sampling process and treat Y1i and Y0i as random variables (e.g.,

Imbens 2004). In this application, however, we confine our-
selves to in-sample inferences. Substantively, this means that
we investigate only the causal effects in the 2003 recall elec-
tion. Because an unprecedented number of candidates com-
peted in the recall election and media coverage was unusually
high, a population for which to draw out-of-sample inferences
may be difficult to define.

3.2 Randomization Inference Using Fisher’s Exact Test

When making in-sample causal inferences using Fisher’s ex-
act test, we use the null hypothesis about the unit ballot page
effect defined in (1). In particular, we hypothesize that the unit
treatment effect is zero for all districts,

H0 : τi = 0 for all i = 1, . . . ,121, (2)

which indicates that (potential) candidate vote shares in each
district are the same irrespective of candidate page placement.
This null hypothesis said to be sharp because it is about the
treatment effect of each observation rather than its average over
a group of observations.

Under the sharp null hypothesis, all potential outcomes are
known exactly. Consider, for example, the units in the treatment
group. For these units, we observe one of the fixed potential
outcomes under the treatment, that is, yi = Y1i, but Y0i is miss-
ing. Under the null hypothesis, however, the missing outcome
is equal to the observed outcome, Y0i = yi (similarly, Y1i = yi

for the control units). Given this setup, we formulate the follow-
ing test statistic, which corresponds to the differences-in-means
estimator for the sample average treatment effect:

WD(T) =
∑121

i=1 Tiyi

N1
−

∑121
i=1(1 − Ti)yi

N0
, (3)

where T = (T1,T2, . . . ,T121), N1 = ∑121
i=1 Ti, and N0 = 121 −

N1. Alternatively, we also formulate a covariance-adjusted test
statistic by linear least squares (Rosenbaum 2002b),

WL(T) = (T�MT)−1T�My, (4)

where y = (y1, y2, . . . , y121), M = I − X(X�X)−1X�, and X
is the matrix of the observed pretreatment covariates. We de-
note the observed value of these statistics as WD(t) and WL(t)
with the observed treatment status t = (t1, t2, . . . , t121). Other
potential test statistics that may be used here include the me-
dian test statistic and various rank sum statistics (e.g., Wilcoxon
1945; see Sec. 4.2). We choose WD(T) and WL(T) because they
correspond to conventional estimators discussed in Section 4.3,
where we investigate differences between randomization infer-
ence and conventional estimators based on these identical test
statistics. The two statistics also represent our scientific quan-
tity of interest, providing an intuitive interpretation.

The notations WD(T) and WL(T) emphasize the fact that un-
der the null hypothesis, only the treatment variable T is random.
Therefore, the reference distributions of the test statistics are
completely determined by the randomization distribution of T.
We assume knowledge of random assignment:

Assumption 2 (Known random assignment). Treatment is
randomly assigned by a known mechanism. Formally, p(Ti|Y1i,

Y0i) = p(Ti) is known for each i.
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In the context of the recall election, this assumption also
implies that county page formats are independent of the ran-
domized alphabet. This would be violated if county officials
designed ballot pages based on each election’s randomized al-
phabet. Such a scenario is unlikely, because the number of
possible ballot pages is driven primarily by the type of vot-
ing technology (Kershaw 2003). Because voting technology is
exogenous to the randomization (e.g., officials did not change
voting technology after observing that Schwarzenegger was
randomized to the end of the alphabet), the assumption is likely
to hold.

With knowledge of the assignment mechanism, the exact dis-
tribution of W under the null hypothesis can be derived. The
exact (one-tailed) p-values are then defined by

pD ≡ Pr
(
WD(T) ≥ WD(t)

)
,

(5)
pL ≡ Pr

(
WL(T) ≥ WL(t)

)
.

The null hypothesis is rejected when this p-value is less than a
predetermined significance level. In principle, this test is exact
in the sense that it requires no large-sample approximation. (For
computational reasons that we explain later, we approximate
the exact distribution of each test statistic with Monte Carlo
simulation.) The test is also distribution-free, because it does
not impose distributional assumptions that are typically invoked
to approximate the reference distribution in standard hypothesis
testing.

In our application, the California alphabet lottery procedure
defines the random treatment assignment and hence determines
the exact distribution of the test statistic. As described in Sec-
tion 2, treatment assignment in each district is determined sys-
tematically once the alphabet letters are randomized. Directly
incorporating the exact randomization procedure may be dif-
ficult in standard parametric frameworks. Although there are
135 ways to order a particular candidate in the first district, each
order is not equally likely. Moreover, with 135 candidates and
121 districts, systematic rotation does not ensure that each can-
didate is placed in the same position with equal probability in
each district. Indeed, as shown in Section 2.2, there is substan-
tial variation in the page placement of candidates. Accounting
for such complications may be difficult, especially when esti-
mating the variances of conventional estimators such as least
squares and difference in means. A similar situation arises in
systematic sampling methods in the context of survey sampling
where single randomization is followed by systematic rotation
(e.g., Cochran 1977).

In contrast, Fisher’s exact test allows us to directly incorpo-
rate the exact randomization procedure, that is, the systematic
rotation of the treatment after a random start. In natural exper-
iments, such deviations from simple random assignment may
be common (see, e.g., Starr 1997). In the California alphabet
lottery, there are 26! ≈ 4.0 × 1026 ways to order the alpha-
bet letters. Given a particular permutation of alphabet letters,
the candidate names are ordered and the treatment within each
district, Ti, is assigned deterministically. Because we analyze
each candidate separately, this means that alphabet randomiza-
tion gives different weights to each of 135 ways of ordering a
particular candidate in the first district. We can then compute
the exact distributions of the test statistics, WD(T) and WL(T),

by calculating the values that they take given each permutation
of alphabet letters.

In this application, the expressions in (5) are difficult to eval-
uate analytically because of the complex nature of the treatment
assignment rule used for California statewide elections. More-
over, a large number of permutations is produced by alphabet
randomization. Therefore, we use the following Monte Carlo
approximation to compute the p-values:

pD ≈ 1

m

m∑
j=1

I
{
WD(

T( j)) ≥ WD(t)
}
,

(6)

pL ≈ 1

m

m∑
j=1

I
{
WL(

T( j)) ≥ WL(t)
}
,

where T( j) is the jth draw of the random variable from its known
distribution, I{·} is the indicator function, and m is the total
number of draws to approximate the distribution. That is, we
randomly order alphabet letters and then deterministically ob-
tain the treatment assignment for each district. After testing var-
ious values of m, we find that 10,000 is sufficiently large to
provide a reliable approximation in our application.

3.3 Nonparametric Confidence Intervals

In-sample randomization inference using Fisher’s exact test
can be further extended by inverting the test. Test inversion is
a standard way to obtain confidence intervals (e.g., Cox and
Hinkley 1979). The resulting confidence intervals based on
Fisher’s exact test are distribution-free and have accurate cov-
erage probabilities.

To invert the test, we first assert a general null hypothesis,
under which the unit treatment effect is assumed to be constant
across all units in the sample,

H0 : τi = τ0 for all i = 1, . . . ,121, (7)

for some constant τ0. Under this sharp null hypothesis, missing
potential outcomes are known exactly as before. For the units in
the treatment group, the missing outcome can be computed by
Y0i = yi − τ0 under the null hypothesis (similarly, Y1i = yi + τ0
for the units in the control group). Given this sharp null hy-
pothesis, we generalize our test statistic, WD(T), to incorporate
arbitrary values of τ0,

WD
τ0

(T) =
∑121

i=1 Ti{yi + (1 − ti)τ0}∑121
i=1 Ti

−
∑121

i=1(1 − Ti)(yi − tiτ0)∑121
i=1(1 − Ti)

. (8)

The test statistic in (3), which is based on the difference-in-
means estimator, is simply a special case of WD

τ0
(T) when

τ0 = 0. The covariance-adjusted analog is

WL
τ0

(T) = (T�MT)−1T�My∗, (9)

where each element of y∗ is y∗
i = Ti{yi + (1 − ti)τ0} + (1 −

Ti)(yi − tiτ0). The test statistic in (4), which is based on the lin-
ear least squares regression, can be obtained by setting τ0 = 0.
Finally, we denote the observed values of the test statistics by
WD

τ0
(t) and WL

τ0
(t). Note that these observed values do not de-

pend on τ0.
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As before, the treatment assignment, Ti, is the only random
variable, and everything else is known and fixed under the sharp
null hypothesis. Therefore, the distribution of the test statistics
under any null value τ0 is solely determined by that of Ti. Then
our level-α hypothesis test (two-tailed) is described by the fol-
lowing decision rule: accept H0 if

t ∈ AD
α (τ0) =

{
u :

α

2
≤ Pr

(
WD

τ0
(T) ≥ WD

τ0
(u)

) ≤ 1 − α

2

}
, (10)

and reject H0 otherwise, where AD
α (τ0) denotes the accep-

tance region of the test for the difference-in-means test statis-
tic, WD

τ0
(T). For the covariance-adjusted test statistic, WL

τ0
(T),

the acceptance region, AL
α(τ0), can be defined in the same way.

Within this general setup, we obtain the (1 − α) confidence
intervals of τ by inverting the test. Here we describe our method
using the test statistic WD

τ0
(T); the same procedure can be

used for WL
τ0

(T). First, we note that the (1 − α) confidence
set is given by Cα(t) = {τ : t ∈ AD

α (τ )}. Second, we define the
(1 −α) confidence interval as the shortest interval that includes
the (1 − α) confidence set. Then we can compute the con-
fidence interval by identifying the upper and lower bounds,
τL = supτ AD

α (τ ) and τU = infτ AD
α (τ ). To obtain upper and

lower bounds of confidence intervals, we use a simple exten-
sion of the bisection algorithm (e.g., Lange 1999), details of
which are given in the Appendix.

Finally, although this application of Fisher’s exact test allows
for continuous outcomes and a large variety of treatment as-
signment mechanisms, the exact test is more commonly used in
testing the equality of two independent binomial proportions.
However, the fundamental idea of the generalized application
already existed in Fisher (1935) and Kempthorne (1952).

4. RESULTS FROM THE 2003 CALIFORNIA
RECALL ELECTION

In this section we analyze our dataset of the 2003 California
recall election. We first present the results based on random-
ization inference, which directly incorporates the known treat-
ment assignment mechanism. We also explore the possibilities
of using other test statistics and relaxing the constant additive
treatment effect assumption. Finally, we compare these results
with conventional estimators, which do not fully incorporate
the randomization procedure, and empirically examine the con-
sequences of ignoring the assignment mechanism.

4.1 Randomization Inference

We first test the sharp null hypothesis of no unit treatment ef-
fect as described in Section 3.2. Figure 2 presents (Monte Carlo
approximated) one-tailed p-values from Fisher’s exact test for
each candidate, using WD(T) as the test statistic. Candidates
are ordered by the size of their p-values. Here we follow others
(e.g., Rosenbaum 2002c) and use the one-tailed p-values by hy-
pothesizing that being listed on the first page does not decrease
a candidate’s vote share. Under the null hypothesis of no unit
treatment effects, these p-values are expected to be uniformly
distributed (i.e., roughly following the diagonal line of Fig. 2).
Instead, p-values are very small for a disproportionate number
of candidates, all of whom are minor candidates. For 59 out of
135 candidates, we reject the null hypothesis at the α level of .1.

(Because for each candidate the probability of rejecting the null
hypothesis when the null hypothesis is true is .1, the test is ex-
pected to reject about 14 candidates by chance even when there
is no ballot effect for all candidates.) Consistent with the main
results of Ho and Imai (2004), we find that none of major can-
didates exhibits statistically significant page effects.

To further illustrate these results, Figure 3 presents the
p-values from Fisher’s exact test in the same manner as in Fig-
ure 2, except that we test the null hypothesis of no effect on
pretreatment variables rather than on candidates’ vote shares.
We present the results for three covariates (number of registered
voters, proportion male, and Republican vote share in the 2002
gubernatorial election). Because the treatment is randomized,
we would expect no significant page effects on these variables,
which were measured before randomization of the treatment.
Under the sharp null hypothesis of no page effects, the p-values
are expected to be distributed uniformly, roughly following the
diagonal line. Figure 3 shows that, as expected, these pretreat-
ment variables are not affected by candidates’ page placement.
In contrast, Figure 2 shows that for a large number of minor
candidates, page placement has a statistically significant effect
on vote shares.

Next, we invert Fisher’s exact test to obtain nonparametric
confidence intervals. Figure 4 presents 90%, 80%, 70%, and
60% confidence intervals obtained from the inversion of (10).
For 16 candidates, the 90% confidence intervals include the en-
tire sample space, indicating that the data contain no informa-
tion about the effects of page placement for these candidates.
(For one candidate, only the upper bound is defined.) The rea-
son for this is that these candidates appeared on the first page
of multipage ballots in a very small number of districts be-
cause they were listed near the end of the candidate order for
the first district (see Fig. 1) and/or are minor candidates who
received no votes in many districts. This demonstrates one im-
portant virtue of the nonparametric approach. When the data are
uninformative, randomization inference cannot identify a confi-
dence interval, whereas a parametric approach may still provide
estimates. Imbens and Rosenbaum (2005) made an analogous
point, arguing that this is a primary reason for using nonpara-
metric confidence intervals for weak instrumental variables.

Substantively, our randomization-based confidence intervals
suggest that major candidates are not significantly affected
by page placement. The 90% nonparametric confidence in-
terval for the Democratic nominee, Bustamante, for example,
is (−.20, .20). Similarly, for Schwarzenegger, Huffington, and
McClintock, randomization inferences detect no significant ef-
fects. Moreover, being listed on the first page rarely hurts can-
didates, confirming our hypothesis about the one-tailed tests
shown in Figure 2. Randomization inference yields signifi-
cantly negative effects for only four candidates. The possibility
of losing votes due to early ballot placement has been a point
of debate among political scientists, with Miller and Krosnick
(1998) asserting that candidates might exhibit “recency effects”
of gaining votes when listed later in the ballot. In contrast,
our randomization inference suggests that in the recall election,
candidates did not lose votes from being listed on the first page.
This finding is consistent with the results of Ho and Imai (2004)
for other California elections.
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Figure 2. One-Tailed p-Values From Randomization Inference for All 135 Candidates, Arranged in Order of Magnitude. Gray dots denote the
p-values that are <.1. Under the sharp null hypothesis of no ballot page effects, the p-values are expected to be distributed uniformly, roughly
following the dashed diagonal line (see Fig. 3). The figure indicates, however, that the p-values exhibit a sharp kink toward rejection of the null
hypothesis at conventional levels.
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(a) (b) (c)

Figure 3. One-Tailed p-Values From Randomization Inference for Selected Pretreatment Covariates Not Affected by Page Placement. The
p-values are arranged in order of their magnitude for each of the three pretreatment covariates: (a) number of registered voters, (b) proportion male
in the total population, and (c) Republican vote share (Bill Simon) in the 2002 gubernatorial election. Gray dots denote the p-values which are <.1.
Under the sharp null hypothesis of no page effects, the p-values are expected to be distributed uniformly, roughly following the diagonal line. The
figure shows that unlike in Figure 2, this is indeed the case, indicating that these pretreatment covariates are not affected by the treatment.

4.2 Sensitivity Analyses

In this section we conduct two kinds of sensitivity analyses.
First, we explore the possibility of relaxing the assumption of
a constant additive treatment effect. So far, our estimation of
confidence intervals assumed that the ballot page effect for a
particular candidate is constant across districts. Although this
assumption is shared by common parametric and nonparamet-
ric models (see Rosenbaum 2002b, p. 289), it may not be
realistic in our application given the heterogeneity of Califor-
nia districts. Therefore, we estimate nonparametric confidence
intervals for different subsets of the sample (see Rosenbaum
2002b, pp. 322–324, for a more general discussion). Signifi-
cant differences in confidence intervals across those subsam-
ples would suggest possible violation of the constant additive
treatment effect assumption.

Figure 5 presents the estimated ballot page effects and their
90% nonparametric confidence intervals for major and selected
minor candidates. For each candidate, the ballot page effect
and their confidence intervals are estimated separately for Re-
publican and Democratic districts. [Republican (Democratic)
districts are defined as those districts where the proportion of
registered Republican (Democratic) voters exceeds the propor-
tion of Democratic (Republican) voters.] The results show that
for major candidates, the effect sizes are similar across Repub-
lican and Democratic districts and large portions of the two
estimated confidence intervals overlap with one another. For
minor candidates, the story is similar, although there appears
to be a noticeable difference between the two types of districts
for Ramirez. With the exception of Ramirez, the constant addi-
tive treatment effect assumption appears to be plausible, at least
with respect to these candidates and partisanship of the district.

We also attempted to test effects conditional on the total num-
ber of pages in a district, given the possibility that effects may
not be similar when there are two pages compared with more
than two pages. Unfortunately, identifying such heterogeneous
effects was not possible, because in a number of districts where
the total number of ballot pages exceeds two, candidates are
not listed first for many permutations. We also investigated the
heterogeneity of treatment effects of candidates by conducting

rank tests on the estimated p-values by race and gender of can-
didates. Page effects do not appear to be related to candidate
gender or race.

In our second sensitivity analysis, we examined the sensitiv-
ity of randomization inference to the choice of test statistics. In
particular, we considered rank sum and median test statistics in
addition to the difference-in-means and least squares test sta-
tistics. The rank sum test statistic is defined as

∑121
i=1 TiR(yi),

where R(yi) gives the rank of yi among the 121 observed out-
comes. The median test statistic represents the median value
of the potential outcomes among the treated units. Figure 6
plots the logit-transformed p-values based on least squares,
rank sum, and median test statistics against those based on
the difference-in-means test statistic. The graphs show that
similar inferences may be drawn from the different test sta-
tistics. The p-values based on these four test statistics are
highly correlated. Regressing the logit-transformed p-values
from the difference-in-means test statistic on those from other
test statistics gives fitted lines that closely follow the 45-degree
lines and yields a coefficient of determination approximately
equal to .8. In this application, randomization inference does
not appear particularly sensitive to the choice of test statis-
tics.

4.3 Comparison With Conventional Estimators

Finally, we compare randomization inference with conven-
tional estimators that do not fully incorporate the treatment
assignment mechanism. Conventional analyses might assume
complete or simple randomization of treatment assignment and
compute mean differences in vote shares between when a can-
didate was and was not listed on the first page (Neyman 1923).
Confidence intervals are often obtained by asymptotic normal
approximation. This strategy may be reasonable in typical elec-
tions where the number of candidates is small relative to the
number of districts (Ho and Imai 2004), but with 135 candidates
running in the recall election, complete randomization is not
ensured. Some candidates may be listed primarily on the first
page in liberal Northern California while listed primarily on
later pages of the ballot in conservative Southern California. As
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Figure 4. Nonparametric Confidence Intervals for Causal Effects of Being Listed on the First Ballot Page ( 60% interval; 70% interval;
80% interval; 90% interval). For 17 candidates (Tsangares, Prady, Price, Pawlik, Palmieri, Pineda, Peters, Dole, Davis, Friedman, Forte,

Foss, Fontanes, Farrell, Feinstein, Flynt, and Louie), the 90% confidence interval is not identifiable from the data. For 55 of the remaining 122
candidates, the 90% confidence interval exceeded the origin. Schwarzenegger, McClintock, Bustamante, Camejo, and Kunzman are excluded, to
keep the scale for remaining candidates comparable.
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(a) (b)

Major Candidates Minor Candidates

Figure 5. Estimated Ballot Page Effects for Major (a) and Selected Minor (b) Candidates for Republican and Democratic Districts. The graphs
display the estimated ballot page effects (dark dots) and their 90% confidence intervals for major and selected minor candidates. The ballot page
effects and their confidence intervals are estimated separately for Republican and Democratic districts. Republican (Democratic) districts are those
where the proportion of registered Republican (Democratic) voters exceeds the proportion of Democratic (Republican) voters.

a result, estimates that assume complete randomization, ignor-
ing the randomization-rotation procedure, may be confounded.
Moreover, standard variance calculations that assume simple
random assignment are invalid because of the systematic ro-
tation of the California alphabet lottery. This means that unlike
randomization inference, confidence intervals based on conven-
tional estimators are likely to have incorrect coverage probabil-
ities.

We investigate how randomization inference compares to
two conventional estimators: linear least squares, which models
vote shares, and the binomial generalized linear model (GLM)
with a logit link and overdispersion, which models vote counts
(McCullagh and Nelder 1989). We make the comparison twice,
with and without covariates, to account for potential confound-
ing effects due to incomplete randomization. The comparison
between least squares and randomization inference is based on
identical test statistics and the same covariate set defined in
Section 2.2. The difference is that the reference distribution is
derived from either the randomization of the treatment or the
asymptotic normal approximation based on the linear model.

We also note that these two conventional estimators may not
be the best available parametric methods. Rather, we use them
merely to compare the results of randomization inference with
estimators frequently used by applied researchers, which are
based on the same test statistics.

The upper part of Table 1 presents 90% confidence inter-
vals from randomization inference and two conventional para-
metric analyses for the top three candidates. The results with
and without covariance adjustment are given. Schwarzeneg-
ger was the Republican winner of the election and Bustamante
was its runner-up and the main Democratic candidate. The re-
sults show appreciable differences between randomization in-
ference and conventional estimators. For example, the estimates
based on least squares regression without covariates imply that
Schwarzenegger gained roughly 1–10 percentage points due to
being on the first page. In contrast, the confidence interval based
on randomization inference using the same test statistic is sig-
nificantly wider and contains the origin. Even when controlling
for the covariates, the confidence intervals based on the two
methods differ significantly for Schwarzenegger.

(a) (b) (c)

Least squares Rank Sum Median

Figure 6. Insensitivity of Randomization Inference to the Choice of Test Statistics. Each graph plots the logit-transformed p-values based on three
alternative test statistics against those based on the difference-in-means test statistic: (a) least squares; (b) rank sum; (c) median. The p-values are
computed separately for each candidate using the alphabet randomization. The dashed lines show 45-degree lines, and the solid lines represent
the least squares fit obtained by regressing the logit transformed p-values from the difference-in-means test statistic on those from an alternative
test statistic. (r 2 represents the value of the coefficient of determination for the fitted least squares.) These two lines are closely aligned, indicating
lack of sensitivity of randomization inference to the choice of test statistics in this application. Several candidates with p-values of 1 are omitted from
the graphs. The candidates falling in the gray area have p-values <.1 for both test statistics.
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Table 1. Comparison of Randomization Inference With Conventional Estimates That Do Not Incorporate
the Treatment Assignment Mechanism

Without covariates With covariates

Least squares Binomial GLM Randomization Least squares Binomial GLM Randomization
regression with logit link inference regression with logit link inference

Major candidates
Schwarzenegger 1.09 9.63 −1.23 7.53 −23.72 19.90 −2.97 .21 −4.98 −2.05 −6.44 6.87
Bustamante −8.46 .54 −5.37 4.04 −20.07 20.31 −1.12 1.78 .96 3.01 −5.86 5.64
McClintock .50 3.09 −1.10 1.24 −3.47 6.36 1.56 3.25 .29 2.05 .36 3.57

All candidates
Positive effects 56 (41%) 63 (47%) 55 (41%) 50 (37%) 59 (44%) 47 (35%)
Negative effects 11 (8%) 8 (6%) 4 (3%) 8 (6%) 17 (13%) 2 (1%)
Null effects 68 (50%) 64 (47%) 59 (44%) 77 (57%) 59 (44%) 64 (47%)
Unidentified 0 (0%) 0 (0%) 17 (13%) 0 (0%) 0 (0%) 22 (16%)

NOTE: The left columns give the results without covariate information, and the right columns give the results using the covariates. The upper part of the table shows the
90% confidence interval for the causal effect of page placement on major candidates’ vote shares. Randomization inference with covariates uses the test statistic defined
in (9). When fitting the binomial GLM, we allow for over-dispersion, and the results presented here are transformed to the scale of vote shares. The lower part of the table
presents the summary of the results for all candidates and comparison of least squares and binomial GLM with corresponding randomization inference. The figures show
the number and percentage of candidates whose 90% confidence intervals fall in each of the four categories: strictly positive (“Positive effects”), strictly negative (“Negative
effects”), containing zero (“Null effects”), and not identified (“Unidentified”).

We find similar differences between randomization inference
and the binomial GLM. When controlling for the covariates,
the result of the binomial GLM indicates that Schwarzenegger
might have lost votes by 2–5 percentage points when listed on
the first page. The results for Bustamante and McClintock dif-
fer less across three methods than do those for Schwarzenegger.
Nevertheless, we observe some noticeable differences; for ex-
ample, when controlling for the covariates, the binomial GLM
shows a significant positive effect for Bustamante, whereas ran-
domization inference and least squares regression do not.

The lower part of Table 1 summarizes the results for all
135 candidates. For example, randomization inference with-
out (with) covariates detects significantly positive effects for
55 (47) candidates and significantly negative effects for 4 (2)
candidates, whereas for 17 (22) candidates, confidence inter-
vals are not identified. These results differ significantly from
those based on the two conventional estimators. Regardless of
whether one controls for covariates and despite the fact that
the two methods use identical test statistics, substantive con-
clusions based on randomization inference agree with those
based on least squares regression for only about 65% of the
candidates. Moreover, conventional estimators detect signifi-
cantly negative effects for a larger number of candidates than
does randomization inference, contradicting the results of ear-
lier studies. For example, the results based on the binomial
GLM with covariates suggest that 17 candidates lost votes from
being placed on the first page, whereas randomization inference
with covariates indicate there are only two such candidates. Fi-
nally, the confidence interval based on randomization inference
will be unidentified when the data are not informative (e.g., Im-
bens and Rosenbaum 2005). In our application, this is true for
the candidates whose name appears on the first ballot page in
only a handful of districts. In contrast, the conventional estima-
tors identify significant effects for several of these candidates
by making parametric assumptions.

In general, conventional parametric confidence intervals tend
to be shorter than the nonparametric counterparts. Figure 7
compares the log length of the 90% parametric (linear least
squares with and without covariates) and corresponding 90%
nonparametric confidence intervals. We exclude those candi-
dates for whom nonparametric confidence intervals are not

identified. For comparison, we also conduct randomization in-
ference with covariance adjustment from (9). Irrespective of
whether or not the covariates are included, the length of the
parametric confidence intervals tends to be substantially shorter
than the nonparametric counterparts. The few dots below the
45 degree line represent candidates for whom the nonparamet-
ric confidence interval is shorter than the parametric counter-
part. These candidates were listed on the first page in very few
districts.

Finally, we compare the p-value curves of nonparametric and
parametric estimators. The p-value curve can be obtained by
plotting the null value of ballot page effect, τ0, against its cor-
responding p-value. The curve is a step function because the
total number of treatment assignment combinations is finite. As
before, we use the alphabet letters as units of randomization,
following the actual procedure of the recall election. For com-
parison, we also compute the p-value curve using the candidates
as units of randomization, while maintaining the rotation proce-
dure. The advantage of the latter approach is that it makes exact
computation possible.

Figure 8 presents the p-value curves for Schwarzenegger
with and without covariance adjustment. The p-value curves
based on candidate and alphabet randomization (in solid gray
and black lines, resp.) trail each other closely in both panels,
suggesting that for Schwarzenegger little is lost by using candi-
dates rather than alphabet letters as the unit of randomization as
long as the rotation procedure is modeled. The figure also plots
the p-value curve based on the asymptotic normal approxima-
tion of linear least squares regressions (with and without co-
variance adjustment). These parametric p-value curves deviate
significantly from the nonparametric counterparts, suggesting
that the large-sample normal approximation may not be appro-
priate in this application.

5. CONCLUSION

In this article we have illustrated how Fisher’s exact test can
be generalized to conduct (nonparametric) randomization in-
ference for randomized natural experiments. For ethical and
practical reasons, social scientists and policy makers can rarely
conduct classical randomized experiments in real-world set-
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(a) (b)

Without Covariates With Covariates

Figure 7. Comparing Length of 90% Confidence Intervals by Randomization Inference and Linear Least Squares. The log length of 90% non-
parametric confidence intervals is on the vertical axis, whereas that of 90% parametric confidence intervals is on the horizontal axis. Plots are based
on linear least squares (a) with and (b) without covariance adjustment. The plot omits 17 (22) candidates for which the nonparametric confidence
interval without (with) covariates is not identified.

tings. Therefore, natural experiments such as the California al-
phabet lottery provide a rare opportunity for researchers and
policy makers to draw causal inferences about particular quan-
tities of interest while maintaining both internal and external
validity. Randomization inference allows researchers to directly
incorporate exact randomization procedures of natural experi-
ments as the basis of statistical inference without introducing
unnecessary distributional assumptions. We have shown that by
inverting Fisher’s exact test, accurate nonparametric confidence

intervals can be obtained. In our analysis of the 2003 California
recall election, we find that the results based on conventional es-
timators differ appreciably from those based on randomization
inference that capitalizes on the systematic rotation of the treat-
ment with a random start. Although the recall election was a
peculiar election with an unprecedented number of candidates,
our analysis demonstrates that when modeled appropriately, the
results are consistent with those of other California general
elections.

(a) (b)

Without Covariates With Covariates

Figure 8. Comparison of p-Value Curves Between Parametric and Nonparametric Estimators. The figure plots (one-tailed) p-values against the
corresponding null value of the ballot page effect, τ0 , for Arnold Schwarzenegger. Part (a) presents the p-value curve without covariance adjustment.
Part (b) presents the p-value curve with covariance adjustment. The dashed lines represent the p-value curve from the linear least squares. For
nonparametric inference, the black solid lines are based on alphabet randomization, whereas the gray solid lines are based on the candidate
randomization. The vertical dotted line represents a treatment effect of 0, and the horizontal dotted lines represent bounds for a 90% confidence
interval.
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APPENDIX: COMPUTATION OF NONPARAMETRIC
CONFIDENCE INTERVALS

Computing randomization-based nonparametric confidence inter-
vals is approximately equivalent to finding the roots for the following
nonlinear equations:

f (τU) = Pr
(
WτU(T) ≥ W(t)

) − α

2
,

(A.1)
g(τL) = Pr

(
WτL(T) ≥ W(t)

) − 1 + α

2
,

where τU and τL are upper and lower bounds of the confidence set.
To solve these nonlinear equations, we use a simple extension of the
bisection algorithm, which in our current application is more appro-
priate than other nonlinear optimization techniques, such as Newton–
Raphson algorithms. This is because the latter methods require that
the objective functions be continuous and/or differentiable, whereas
f (·) and g(·) are discrete in our application. Our extension here is that
we use Monte Carlo simulation to approximate the values of the func-
tions, f (·) and g(·), the exact evaluations of which are computationally
demanding.

[Received September 2004. Revised April 2005.]
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