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ABSTRACT
This study examines issues of algorithmic fairness in the context of

systems that inform tax audit selection by the United States Internal

Revenue Service (IRS). While the field of algorithmic fairness has de-

veloped primarily around notions of treating like individuals alike,

we instead explore the concept of vertical equity—appropriately
accounting for relevant differences across individuals—which is a

central component of fairness in many public policy settings. Ap-

plied to the design of the U.S. individual income tax system, vertical

equity relates to the fair allocation of tax and enforcement burdens

across taxpayers of different income levels. Through a unique col-

laboration with the Treasury Department and IRS, we use access to

detailed, anonymized individual taxpayer microdata, risk-selected

audits, and random audits from 2010-14 to study vertical equity in

tax administration. In particular, we assess how the adoption of

modern machine learning methods for selecting taxpayer audits

may affect vertical equity. Our paper makes four contributions.

First, we show how the adoption of more flexible machine learning

(classification) methods—as opposed to simpler models—shapes ver-

tical equity by shifting audit burdens from high to middle-income

taxpayers. Second, given concerns about high audit rates of low-

income taxpayers, we investigate how existing algorithmic fair-

ness techniques would change the audit distribution. We find that

such methods can mitigate some disparities across income buck-

ets, but that these come at a steep cost to performance. Third, we

show that the choice of whether to treat risk of underreporting

as a classification or regression problem is highly consequential.

Moving from a classification approach to a regression approach
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to predict the expected magnitude of underreporting shifts the

audit burden substantially toward high income individuals, while

increasing revenue. Last, we investigate the role of differential audit

cost in shaping the distribution of audits. Audits of lower income

taxpayers, for instance, are typically conducted by mail and hence

pose much lower cost to the IRS. We show that a narrow focus on

return-on-investment can undermine vertical equity. Our results

have implications for ongoing policy debates and the design of

algorithmic tools across the public sector.
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The annual tax gap, namely the difference between taxes owed

and taxes paid, is estimated to be $440B in the United States [28].

Audits are the principal mechanism by which the Internal Revenue

Service (IRS), the agency responsible for tax collection, verifies tax

compliance and deters non-compliance. IRS resources are limited

and the agency must use audits judiciously. During audits, the IRS

typically solicits additional information from taxpayers to support

information reported on filed returns. For the taxpayer, audits can

be time-consuming, stressful, and costly [34, 39]. Low-income tax-

payers, for whom refunds can comprise a substantial part of income,

may wait “on their refunds to pay day-to-day living expenses such

as rent, car repairs, or healthcare, and any delay can cause taxpayers

significant hardship" [1].

Since the 1970s, the IRS has used classification models as part of

its audit selection process to detect which individuals aremost likely

to havemisreported their tax liability.While the use of both classical

and modern machine-learning models is foundational to many

government agencies’ efforts to modernize predictive and allocative

tasks [16], the adoption of such tools comes with considerable risks.

The algorithmic fairness literature has amply documented how

disparate impact and other negative outcomes can arise from the

uncritical adoption and application of such models [4, 11, 38]. Given

the scale and impact government decisions may have, mitigating

these risks is a key priority for researchers and policy [44, 48]. In

this work we study the impact of, and safeguards for, fairness of

machine learning models in the IRS tax audit context.
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Specifically, our analysis focuses on fairness defined in terms of

vertical equity, namely, appropriately accounting for relevant differ-

ences across individuals. This notion is central to public finance and

public policy. By contrast, the algorithmic fairness literature has

developed many formal definitions of fairness and techniques to

satisfy notions of horizontal equity (treating like individuals alike)

[14, 21, 35]. The applicability of these techniques to improve verti-

cal equity has been little-explored. More generally, the literature on

how to apply algorithmic fairness techniques to improve real-world

systems remains in a nascent stage, especially in high-stakes policy

settings where direct data and systems access can be challenging.

Using anonymized IRS microdata, our work (i) examines the appli-

cability of existing methods for promoting vertical equity in the

tax audit context, (ii) introduces new algorithmic fairness problems

motivated by vertical equity considerations, and (iii) provides a

case study of addressing vertical equity concerns in a real-world

algorithmic decision system. By introducing vertical equity to al-

gorithmic fairness, we follow in the footsteps of others [5, 23, 26]

that situate fairness in broader frameworks.

Our point of departure and the key motivation for our study

is summed up in two key observations that, taken together, point

to a discrepancy between the distribution of misreporting com-

pared to the distribution of audits: (1) the audit rate for lower-to-

middle income earners is often as high or higher in recent recent

years than that of high income earners; yet (2) an analysis of ran-

domly conducted audits reveals that the amount of misreported

tax liability (which we refer to, interchangeably, as the “misreport

amount” or “adjustment”) is highest among the highest income earn-

ers and the rate of misreporting—defined as misreporting above

$200—increases roughly monotonically with income. With this con-

text, our key research questions are as follows:

(1) To what extent does the choice of audit selection al-
gorithm affect the noted discrepancy? Given the discrepancy

between ground truth misreporting and audit allocations, we might

expect that introducing a more accurate model may mitigate the

issue. However, we observe empirically that more flexible models,

while indeed increasing accuracy, have the effect of even further
concentrating of the audit burden on the lower-to-middle income

taxpayers.

(2) Can existing algorithmic fairness methods, originally
designed to promote horizontal equity, be applied to improve
vertical equity? In our context, one conception of vertical equity

consists of monotonicity of the audit rate with respect to income.

We show that, under some conditions, a selection process
1
that sat-

isfies the well-known fairness metrics of equal true positive rates

and equalized odds also requires monotonicity of the audit rate

with respect to the misreport rate. Given our empirical findings,

this also implies monotonicity with respect to income. We thus

divide taxpayers into income buckets and explore to what extent

conventional fairness methods applied to such buckets can resolve

the apparent discrepancy between the audit rate and misreporting.

We show that such methods come at a steep cost to revenue.

(3) What techniques can we use to more directly address

1
By ‘selection process,’ we mean the prediction model and the process by which

predictions are used to allocate audits together.

vertical equity in the IRS audit allocation context? We im-

plement a direct approach to achieve monotonicity by imposing

allocation constraints on model outputs, and find that this approach

results in a modest cost to revenue. However, we find that switching

the prediction task from classification to regression not only also

achieves a roughly monotonic shape, closely matching the audit dis-

tribution of an oracle with knowledge of the true misreport amount,

but also obtains significantly more revenue than even unconstrained

classification. This is because regression shifts focus to taxpayers

likely to have high amounts of underreporting rather than simply

high probabilities of a misreport.

(4) Can differential audit costs explain the status quo mis-
match?We show that fully optimizing for return-on-investment

with respect to the IRS’ audit costs concentrates audits nearly ex-

clusively on lower income taxpayers, even when using predictions

arrived at via regression. This suggests that IRS budgetary con-

straints may play an important role in shaping the agency’s ability

to more equitably allocate audits without sacrificing the detection

of under-reported taxes. A narrow focus on return-on-investment

can seriously undermine vertical equity goals.

A major contribution of this paper is that we conduct all our

experiments on real, detailed, audit data collected by the IRS. We

view this collaboration as an important case study to assess and

mitigate disparities in real-world, public sector settings that operate

subject to binding operational constraints [see 8, 17, 24, 37, 42]. Our

primary dataset consists of a stratified random sample of taxpay-

ers collected as part of the IRS’ National Research Program (NRP),

allowing us to avoid the selective labels problem [36], to draw infer-

ences on a representative dataset, and to directly measure the risk

of misreporting. Our work also connects to work that emphasizes

the choice of prediction task [41, 42] and problem formulation [46]

for algorithmic fairness. In addition, our results speak to current

policy debates about the fairness of tax administration [33] and

appropriate funding levels for the IRS [2].

The paper proceeds as follows. Section 1 provides background

on the U.S. tax system and spells out the motivating stylized facts,

setting up the question of what the IRS’s turn to machine learning

may portend for vertical equity. Section 2 provides background

on data and key definitions. Section 3 formally describes the audit

problem, introduces notation, and discusses how extant fairness

metrics might apply to the IRS context. Our main investigation

is presented in four parts. First, Section 4 examines the impact of

more powerful classifiers on audit distribution. Second, Section 5

presents the results of applying established algorithmic fairness

techniques in our setting. Third, Section 7 studies the incorporation

of monotonicity constraints as well as the simple but fundamen-

tal change of switching from classification to regression. Fourth,

Section 8 examines the implications of accounting for audit costs.

Section 9 concludes.

1 BACKGROUND ON THE US TAX SYSTEM
We examine individual federal income taxes in the US system. Taxes

are assessed based on self-reported liability statements called tax
returns, which can be time consuming and complicated to prepare;

many taxpayers use commercial software or paid preparers. The tax

rate on income is progressive, with marginal tax rates increasing

in income.
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As the tax code is very complicated, taxpayers (and their pre-

parers [40]) often make errors when calculating the amount they

owe and are thus inadvertently non-compliant; others are willfully

non-compliant, i.e., evade paying taxes. The annual gross tax gap,

which measures total noncompliance, is approximately $440B [28].

In order to recover lost revenue, and to promote compliance with

the income tax law, the IRS audits individuals that it believes may

not be paying their full owed tax—due to, e.g., erroneously claiming

credits or under-reporting income.

The IRS’ audit selection system is complex, with many parts.

It principally relies on: (i) algorithmic methods to predict which

taxpayers are most likely to underreport taxes, which serves as

our main focus, (ii) a combination of simple rules that flag returns

automatically; and, to a lesser extent, (iii) tips and other third party

information, such as from whistleblowers. We focus on the algo-

rithmic component of the IRS audit selection process, which has

historically been a classification algorithm predicting individual tax-

payer misreport [25]. The details of existing modeling approaches

are confidential, but historically, the basic approach involves a form

of linear discriminant analysis.

Audits are conducted in different ways depending on the size and

scope of issues identified. Some audits, including most involving

the Earned Income Tax Credit (EITC), are conducted by mail at

relatively low cost to the IRS. More complicated and extensive

audits may be conducted by interview or by IRS examiner field

visits. The timing of an audit relative to the processing of a return

also varies. For instance, audits may be conducted on taxpayers

claiming refunds before a check is sent out; this is known as revenue

protection, and such audits are called “pre-refund”. Audits occurring

after a check has been sent out to, or received from, the taxpayer are

known as “post-refund.” These timing distinctions create differential

impact on taxpayers, and may also affect the ease with which the

IRS conducts audits.

Over the last eight years, budget cuts have decreased the audit

rate, from an overall rate of 1% of individual filings receiving audits

in 2010 to just 0.5% in 2016 [27]. The audit rate has decreased most

significantly for individuals earning between $1-5M. Such individu-

als were audited at a rate of ≈8% in 2010 but just 2.2% in 2016 [27].

These changes in audit rates correspond to disproportionate reduc-

tions in examiners with more specialized expertise: while there was

a 15% reduction in examiners conducting correspondence audits

(i.e. audits by mail) from 2010 to 2019, there was a 25-40% reduction

in examiners conducting in-person audits, which are utilized more

for higher-income individuals [29].

1.1 Motivating Facts
We highlight two motivating facts relevant to our investigation.

First, in the most recent years, the lowest income earners have been

audited at the same rate as the highest income earners. The left

panel of Figure 1 plots income in $10K bins from $0 to $1M on

the x-axis against the audit rate on the y-axis. Each line represents

one year, from 2010 in lightest to 2014 in darkest blue. This panel

shows the clear trend of the declining overall audit rate over time,

which affects higher income groups most acutely. In addition, while

audit rates generally increase in income, there is a large spike of

audits in the lowest income groups. In 2014, the lowest earners are

audited at a higher rate than all other income groups, except for

those earning nearly $1M. The middle panel depicts the same data

using income deciles. After 2010, low-to-middle income taxpayers

(i.e. those in the 2nd-4th income deciles from $6.7K to $26K), were

audited at a higher rate than all higher income deciles. This reflects

the particular focus on pre-refund audits done principally by mail.

Second, the rate at which taxpayers understate their tax liability

increases monotonically with income and average adjustments are

highest in the highest income decile. The right panel presents audit

outcomes estimated on the NRP data (described in Section 2 below).

The blue line in this panel depicts the estimated fraction of audits

in each decile with a true misreport of at least $200, while the red

line depicts the average adjustment by decile. Because this is a

stratified random sample with corresponding sampling weights, it

is free of the selection bias inherent in measuring outcomes among

risk-selected audits, and can thus be used to construct consistent

estimates of population non-compliance.

These facts raise the motivating questions of this work: if adjust-

ments are highest in the highest income decile, and the misreport

rate increases monotonically with income, then why are audits so

highly concentrated on lower-to-middle income taxpayers? Towhat

extent can such patterns be exacerbated or mitigated by machine

learning techniques? And are there opportunities for improving

vertical equity given this mismatch?

2 DATA AND KEY TERMINOLOGY
We address these questions through a unique collaboration with

the Treasury Department and IRS, which provides us access to two

data sets previously unexplored in the computer science literature:

(1) the NRP data, which consists of line-by-line audits of a stratified

random sample of the US population (n=71.9K ) from 2010-14 [30];

and (2) all Operational Audits (OP) for 2014 (n=791.9K), which

are risk-selected audits to identify tax evasion. Each observation

contains information filed in a tax return. All dollar amounts are

adjusted for inflation to 2014 dollars.

We train and evaluate our machine learning models on NRP

data, as this data is a random, representative sample of the US

population and does not suffer from selection bias [36].
2
We note

that the OP audit data includes observations that were selected for

audit not solely through machine learning tools, but also through

rule-based flags such as internal inconsistencies, and other methods

of selecting audits. We use the OP data to display the status quo of

audit selection in the IRS as of 2014, for example, in the left-most

graphs in Figure 1.

In this data, three concepts are particularly important. First, by

income, we mean the taxpayer’s reported total positive income (TPI).
TPI captures all positive income an individual receives, gross of any

losses.
3
We focus on reported (rather than audit-adjusted) income

because that is what the IRS observes at the time it selects taxpayers

for audit, and we focus on TPI (rather than taxable income) because

it represents a simple measure of earnings that is less likely to be

affected by audit determinations. Many of the analyses in this paper

2
That is, when a return is selected for OP audit, the IRS has reason to believe that the

return represents a misreport. Hence, the return is likelier to have a large adjustment

than a randomly selected return from the population, and may be more generally

non-representative as well. That said, one limitation is that prior work has found that

NRP data under-reports higher income tax evasion [19].

3
Not all this income is taxable—for instance, tax deductions for losses or charitable

contributions may reduce the total amount of taxable income.
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Figure 1: Left two graphs: Audit Rate vs. Total Positive Income over time. Both of these graphs are calculated on operational
audit (OP) data. Each line of a different color represents a different year, from 2010 to 2014. The x-axis indicates income binned
into buckets of income, while the y-axis is the fraction of taxpayers in each bucket audited. On the leftmost, we have reported
income buckets of $10,000, while on the second graph, we show the same analysis over reported income deciles. Note that
as the 10th income decile starts at 127K, this graph is comparatively compressed. Right: Ground truth rates of misreporting
(over $200) (left) and average amount of misreporting conditional on misreport, aka average adjustment (over $ 200), (right)
over income. The results here are presented over five years of NRP data 2010-2014, adjusted to 2014 dollars. The x-axis denotes
income deciles, and the y-axis denotes rate ofmisreporting and average amount ofmisreporting in dollars, respectively. Taken
together, we can see that there is a mismatch between audit allocation and ground truth noncompliance.

will be over binned income, i.e. discretized income into equal-sized

buckets, typically taken to be deciles of the income distribution.
4

Second, we refer to the amount by which a taxpayer’s return

understates true tax liability as the misreport amount. If a taxpayer
overstates their tax liability, then their misreport amount is negative.

Throughout, we use the terms “adjustment” and misreport amount

interchangeably. For classification, we define a significant misreport
as whether the taxpayer’s understated tax liability exceeds a de

minimis amount ($200). For brevity, we refer to these simply as

misreports. Our findings are consistent across different choices of
threshold (see Appendix C).

Third, we define the cost of an audit to the IRS as the total cost

of the auditor’s time recorded on the particular audit, which we

compute from auditor time
5
and wage data. In principle, audit costs

also include other components, such as overhead or attorney’s fees

for litigated cases, but these are not possible for us to measure

with our data. Note that we are focusing only on the budgetary

costs of audits to the IRS, not the broader societal costs imposed on

taxpayers.

3 THE AUDIT PROBLEM
To explore vertical fairness in audit allocations, we start with the

tools most readily available to improve the fairness of algorithmic

tools: the now-canonical fairness definitions applied in the litera-

ture [21, 50]. In this section, we first formalize the audit selection

problem. Second, we discuss vertical equity in the context of the

audit allocation problem, and consider how common fairness def-

initions may improve vertical as well as horizontal equity in this

4
While these bins and associated thresholds are relevant to our analysis and imple-

mented algorithms, to our knowledge they are not currently used by IRS to categorize

returns or to determine taxpayer eligibility for benefits.

5
Notably, our available data for auditor time does not account for auditor time spent

on audit appeals.

context. Third, we discuss implementation of these metrics and

model evaluation.

3.1 Formal Definitions and Preliminaries
In this paper we define the basic audit problem as the following:

given a budget and a set of taxpayers with associated features and

audit costs, return a selection of taxpayers for audit that detects and

recovers as much under-reported tax liability as possible within

the given budget.
6

For the majority of this paper, we model the budget K as a fixed

number of audited tax returns, which we represent as a percentage

of the population. We use a budget of 0.644%, which is the average

percentage of audit coverage between 2010-2014. Taxpayers are

indexed by i ∈ 1, ...,N and have features Xi . One of the features in
X is Ii , the taxpayer’s income. The income bucket bi ∈ B = 1...10

of the taxpayer is the decile of Ii . Taxpayers submit a report of

tax liability
˜ℓi , which may be different than their true liability ℓi .

We let δi = ℓi − ˜ℓi denote the taxpayer’s adjustment or misreport

amount. We will also usemi = 1[δi > τ ] for an indicator variable

being above the misreport threshold τ . In our main experiments,

we set τ = 200, and write πi := Pr[δi ≥ τ |Xi ]. We denote the cost

incurred to the IRS by auditing an individual i as ci . We use ai as an
indicator for whether taxpayer i is audited, and αi for a probabilistic

relaxation. Occasionally, we use ·̂ to indicate prediction, e.g.
ˆδi as

predicted misreport amount.

The machine learning models we use throughout this paper

which we integrate into the audit selection process either predict

probability of misreporting π̂i (for classificationmodels), or expected
amount of misreporting

ˆδi (for regressionmodels). In order to create

an audit allocation from these predictions, however, we must select

6
In practice, the audit problem undertaken by the IRS must balance a variety of

objectives, including revenue maximization, deterrence, minimization of taxpayer

burden, and reduction of improper payments.
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only 0.644% of the population, which is in practice much less than

the percentage of individuals predicted to not comply. Thus in

order to create an audit allocation from machine learning model

predictions, we rank model outputs by magnitude of prediction

and take the top 0.644%. The audit problem can be formalized as:

maxa
∑
i δi · ai such that

∑
i ai
N < K .

If we consider K to denote a dollar budget as opposed to an audit

rate budget, as we do in Section 8, the constraint will be changed

to

∑
i aici < K . In practice, we use

ˆδi or π̂i to approximate δi .
7

3.2 Algorithmic Fairness and Vertical Equity
We now discuss vertical equity in the IRS audit allocation context

and its connection to several common algorithmic fairness metrics

from the literature.

Vertical Equity. Vertical equity requires that different individ-

uals be treated appropriately differently. In the taxation and audit

context, we focus on vertical equity with respect to the appropriate

treatment of taxpayers at different income levels. Appropriately

different treatment depends on context-specific considerations and

value judgments. To illustrate, given the fact that audits are costly

for taxpayers (in terms of money as well as time, effort, and mental

stress), policymakers may wish to avoid models that concentrate

audits on low-income taxpayers out of concern for distributional

social goals and in recognition of the declining marginal utility of

taxpayers’ income. Other potential baselines for setting policy in

this space are aligning audit rates with true rates of non-compliance,

or with an Oracle-based selection, i.e. an allocation which selects in-

dividuals in order of true misreport amount. In our setting, because

under-reporting rates increase with income (Figure 1) and an oracle

places a higher probability of selection as income increases, these

factors would suggest that audit rates should increase in income

as well. Motivated by such considerations, we explore formalizing

the notion of vertical equity as monotonicity and evaluate the dis-

crepancy between audit allocation and true rates of misreport as an

important component of vertical equity. Our focus on monotonicity

is intended to illustrate how one might incorporate vertical equity

concerns into algorithmic fairness, but we note that a fuller analysis

from an optimal tax framework is beyond our scope here.
8

MontonicityMonotonicity (with respect to income) would re-

quire that the audit probability increase as income increases. For-

mally, given income buckets b and b ′, b ≥ b ′ =⇒ Pr[ai = 1|bi =
b] ≥ Pr[ai = 1|bi = b

′]. We consider directly constraining the audit

allocation to be monotonic in Section 6.

Oracle Allocation An oracle is a theoretical omniscient model

with access to the true amounts of misreporting in the data (i.e.

the ground truth labels). Formally, the oracle represents the model

ˆδi = δi , where δi is the amount of true misreport of individual

i . The oracle creates an audit allocation by selecting individuals

7
As stated, this is an integer program, but we solve the linear relaxation due to

computing constraints and because observations represent many people.

8
A full optimal policy analysis would have to consider such factors as heterogeneity

in the audit burden or in the deterrence effect of audits by income. For example,

audits of higher income taxpayers can be more involved, but audits of lower-income

taxpayers may require obtaining harder to produce information and often involve

freezing refunds for liquidity-constrained taxpayers while the audit proceeds. A fuller

optimal policy analysis would also need to consider how audit policies interact with

other tax variables (such as the income tax schedule and underpayment penalties) for

achieving revenue and distributional goals. Each of these factors may impact vertical

equity.

for audit in order of their true amount of misreport amount until

exhausting the allocation budget. Thus, the audit allocation selected

by the oracle is naturally aligned with true incidence of misreport.

Although we do not explicitly enforce this behavior, we evaluate

the vertical equity of model allocations by the extent to which they

match the audit rate by income of the oracle model.

Demographic Parity. Demographic Parity (DP) requires, in

our context, equal audit probability across income buckets. That

is: Pr[ai = 1|bi = b] = Pr[ai = 1|bi = b ′],∀ b, b ′. Note that with
a fixed budget and groups of equal size, asking for DP amounts to

requiring the same audit rate for each group, which weakly satisfies

monotonicity. Compared to the status quo described in Figure 1,

this would result in lower audit rates for low-to-middle income

taxpayers as well as very high income taxpayers, and higher audit

rates for middle-to-upper income taxpayers. Important limitations

to DP include that (1) as noted, equal audit rates do not imply equal

audit burdens if taxpayers bear different costs, and (2) a perfectly

accurate classifier would not satisfy DP unless the misreporting

rates are exactly equal, which they are not.

Equal True Positive Rates [21]. Equal True Positive Rates

(TPR) requires that the audit probability of non-compliant taxpayers
not depend on income group, i.e., Pr[ai = 1|mi = 1,bi = b] =
Pr[ai = 1|mi = 1,bi = b ′],∀ b, b ′. Equal TPR ensures that no

group of non-compliant taxpayers can expect a higher or lower

chance of audit based solely on their income, but this does not

mean that compliant taxpayers of each income group face the same

chance of an audit.

Equalized Odds. Equalized Odds (EO) asks that the audit prob-

ability of both compliant and non-compliant taxpayers should not

depend on their income group, i.e.: Pr[ai = 1|mi = 0,bi = b] =
Pr[ai = 1|mi = 0,bi = b

′], and Pr[ai = 1|mi = 1,bi = b] = Pr[ai =
1|mi = 1,bi = b ′]. EO extends equal TPR fairness by requiring

audits of compliant taxpayers at the same rate across groups in ad-

dition to auditing non-compliant taxpayers at the same rate across

groups.

In Appendix A, we consider conditions under which equal TPR

or EO will result in monotonicity of the audit rate with respect

to income. Specifically, we consider a hypothetical allocation that

audits all taxpayers with π̂i > 0.5, and show that under certain (dif-

fering) conditions, audit allocations that satisfy either either equal

TPR or EO will result in monotonicity of the audit rate with respect

to the misreport rate. Because the misreport rate increases with

income (Figure 1), this suggests that enforcing one of the fairness

constraints on a model generating audit allocations may also lead

to monotonicity of audits with respect to income. We note that this

result is suggestive, since models that satisfy a fairness constraint

for the hypothetical allocation described above need not do so for

the actual audit allocation induced after imposing a budget. Thus,

we must ultimately test whether the targeted fairness constraints

are satisfied on the audit allocation that results from a model once

a budget is incorporated. Next, we describe algorithms to instanti-

ate these conditions and evaluate the performance tradeoffs. We

implement these algorithms and report results in Section 5.

3.3 Model Evaluation
In order to compare model allocations, we will consider several

performance metrics. First, in order to approximate how well an
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audit allocation matches the ground truth rate of misreport, we

consider how closely audit rates correspond to selection based on

an oracle. Specifically, we calculate the overlap between a model’s

allocation and the oracle’s, formally, the size of the intersection of

the model and oracle’s audit allocation over the total number of

audits in an allocation:

∑
i ai,Oai,M
K×N , where ai,O and ai,M represent

audit indicators for the oracle and a model respectively, K is the

audit budget as a percentage of the population, and N is the total

number of taxpayers.
9
Note that the overlap will be between 0 and

1, with 1 representing an exact match of the oracle’s allocation. We

consider models that more closely match the oracle allocation with

respect to income to have preferable vertical equity performance

in our context.

Second, we consider revenue collected, which is simply the sum

of adjustments over all audits. Recovering revenue is one of the key

goals of the IRS and is itself relevant for distributive policy, since it

funds services provided to citizens. We define revenue as follows:∑
i aiδi .10

Third, we consider the no-change rate, which is the fraction of

audits resulting in no (substantial) adjustment. No-change audits

are undesirable from both IRS and taxpayer perspective, as both

the auditor and taxpayer could have saved significant time, effort,

and stress. We define the no-change rate as

∑
i ai ·(1−mi )∑

i ai
.

Fourth, we consider the cost of the audit to the IRS, which is

important both in terms of the feasibility of an audit policy and

its net revenue implications. We define cost as

∑
i aici , where ci

is our estimate of cost per return.
11

We describe how we obtain

cost estimates in Section 8. In Sections 4-7, we hold audit rates

fixed and measure incurred cost. In Section 8, however, we consider

constraints on the total dollar cost of policies, and show how they

may help explain the existing discrepancy between income and the

audit rate.

3.4 Model Implementation
There exists a large body of research surrounding how to best

implement and guarantee the common fairness metrics outlined

above [3, 9, 13, 21, 32, 52]. From this rich literature, we choose to rely

on a technique developed by Agarwal et al. [3], which intervenes

in a model’s training process to add a constraint during optimiza-

tion which incentivizes the model to satisfy a given constraint in

its predictions [3, 13]. Methods that enforce fairness constraints

during training time are often described as “in-processing," as op-

posed to those which intervene at prediction time, which are called

“post-processing." Agarwal et al.’s (in-processing) technique allows

for demographic parity, true positive rate parity, equalized odds,

and other constraints to be satisfied in expectation in a model’s

predictions on the training distribution. We include results from

other methods of enforcing fairness constraints, including post-

processing techniques, as a discussion of the differences between

various methods in Appendix F.

9
The total number of taxpayers, taking into account the sampling weights. This metric

is equivalent to the top-k intersection of model outputs, where k is the audit allocation

budget. This metric is often used to compare model-generated explanations [7, 12, 18].

10
We take sampling weights into account in this calculation, so in practice we calculate

revenue as

∑
i∈|D | aiwiδi , where |D | is the size of the NRP data set, and wi is the

sample weight assigned to each row.

11
Similarly to revenue, in practice, we calculate cost as

∑
i∈|D | aiwici .

4 FLEXIBLE CLASSIFIERS AND AUDIT
CLASSIFICATION

We begin by examining the hypothesis that the disproportionately

high audit rate observed for low income earners may stem from

using simpler classification models in guiding audit allocations. We

demonstrate that (i) the disparity displayed in audit rates does not

appear to arise from the less complexmodels similar to those the IRS

has historically used; and, (ii) applying more complex models—in

this case, Random Forests and Gradient Boosting— actually exacer-
bates the burden on lower income taxpayers.

4.1 Experimental Setup
In this section, we consider the audit allocation determined by Lin-

ear Discriminant Analysis (LDA) (an approximation of the historical

choice by the IRS), a Random Forest Classifier, and a Gradient Boost-

ing Classifier. In principle, classifiers may perform well at reducing

the no-change rate, furthering IRS’s objective to avoid burdening

compliant taxpayers. To be clear, the audit allocation is not sim-

ply the model’s predictions, but rather the individuals most highly

predicted for misreport up to the audit budget, as described in Sec-

tion 3.1. We use NRP data from 2010-2014 to train all models in this

paper to predict the likelihood of misreporting. We randomly split

this data into a train and validation (75%) and test (25%) sets. We

search for optimal hyperparameters using sklearn’s GridSearchCV
method with 5-fold cross validation.

12

All results in this and following sections are calculated on the

test set, which is reserved for reporting results. Results are reported

by rescaling costs and revenues to reflect estimated average annual

values for the full population (averaged between 2010-2014). For

each classification model, we sort taxpayers in descending order

of predicted misreport probability to produce a ranking. We then

apply an audit rate budget of 0.644% of the population, reflecting

the average audit rate from 2010-2014, and select audits ai by taking
the top 0.644% of the population (i.e. 1125000 audits)in rank order.

Further details are in Appendix B.

4.2 Results
Figure 2 displays the audit rate by income of allocations obtained

via ranking the predictions of LDA, Random Forest Classification,

and Gradient Boosted models by predicted probability of misreport

and selecting the top 0.644% of the population. Revenue and no-

change rate of these models are included in Table 1. We highlight

implications below.

First, higher model flexibility can lead to high audit focus on

lower and middle income populations. As Table 1 shows, the Ran-

dom Forest Classifier is well-optimized for the classification task:

it has an extremely low no-change rate—just 3.5%—whereas sim-

pler models have no-change rates higher than 12.8%. However,

the Random Forest Classifier focuses almost exclusively on the

lower-middle and middle of the income spectrum, not targeting the

12
As described in detail in Appendix B, we train all but LDA models with sampling

weights provided in the NRP data, meant to ensure the data is representative of the

taxpayer population. For LDA models, we sub-sample a dataset from the NRP data

that respects the sample weights by randomly selecting (with replacement) rows from

the weighted training data according to the weights. For example, suppose that each

row x has a sample weight w , and the sum of all weights in the training set isW .

Then each observation has a
w
W chance of getting selected as any given row in the

sub-sampled data.
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Model Type Label Fairness Revenue No-Change Cost Net Revenue Oracle

Type Constraint ($B) Rate ($B) ($B) Overlap

Oracle - × 29.40 0.0% 0.33 29.07 1.00

LDA Class × 6.07 12.8% 0.21 5.86 0.09

Random Forest Class × 3.05 3.5% 0.08 2.97 0.00

Grad Boosted Class × 4.05 4.2% 0.08 3.97 0.00

Random Forest Class ✓(DP) 2.75 8.0% 0.07 2.67 0.08

Random Forest Class ✓(TPR) 0.69 12.4% 0.15 0.54 0.04

Random Forest Class ✓(EO) 0.53 13.6% 0.15 0.38 0.04

Random Forest Class ✓(Mono) 3.00 4.0% 0.10 2.90 0.01

Random Forest Reg × 10.22 23.3% 0.50 9.72 0.23

Grad Boost Reg × 10.20 20.0% 0.50 9.70 0.22

Table 1: Revenue, no-change rate, cost, net revenue, and oracle overlap for all models considered in this paper. No-change
rate represents the percentage of audits that were allocated to compliant taxpayers; cost reflects cost to the IRS as described
in Section 8. These results reflect audit allocations that select the top 0.644% of taxpayers predicted most likely to misreport
from each model. All metrics are reported on the test set, using the representative NRP sampling weights to scale up to the
US taxpayer population.

Figure 2: From Left to right: Audit Rate by Income LDA Classifier, Random Forest Classifier, and Gradient Boosted Classifier,
presented in black. The oracle allocation on the same budget is presented in red on the same graph.
highest earning 20% at all. Similarly, the Gradient Boosted classifi-

cation model concentrates most of the audit selection to the middle

of the income spectrum (4-8th decile), with a strong drop-off for the

top 20% of the population. (Appendix D shows that another simpler

model (logistic regression) also results in rough monotonicity.)

Second, the simpler LDA model more closely matches the oracle.

The LDA classifier has an audit selection curve that is roughly

monotonic in income, with large increases in audit rate in the

high income region. As LDA has been the IRS’ historical modeling

approach (although it differs in practice with our implementation),

this suggests that the large spike in operational audit selection rate

on the lower end of the income spectrum apparent in 2014 may not

stem directly from the predictions algorithmic components of the

decision system, but rather other policy and modeling choices.

Third, increased classification accuracy does not imply increased

revenue. Table 1 shows that the RandomForest andGradient Boosted

models have significantly lower no-change rates than the LDA

model (3.5% and 4.2% vs. 12.8%), yet also substantially lower revenue
(≈$3B and $4B vs. ≈6B). This highlights that improved performance

on one objective (e.g., accuracy) may come at the expense of other

seemingly intertwined objectives (e.g., revenue).

5 FAIRNESS CONSTRAINED
CLASSIFICATION

We now explore the use of bias mitigation methods to promote

vertical equity.

5.1 Experimental Details
We enforce algorithmic fairness definitions on the Random For-

est model at different points in the audit selection process: during
training, or in-processing, following Agarwal et al. [3], and af-
ter training but before prediction, or post-processing (deferred to

Appendix F, following Hardt et al. [21]). Our setup for training

the fairness-constrained models mirrors our setup for the fairness-

unconstrained models, with the exception that we do not train the

models with sampling weights, but rather subsample a dataset from

the NRP weighted data as we do for LDA models as described in

Section 4. This is because the in-processing methods are imple-

mented using the FairLearn package [6], and the FairLearn package

leverages sklearn’s sampling weight functionality in the course of

their algorithm.

5.2 Results
Our high-level result is that enforcing fairness constraints during

training results in steep trade-offs with limited fairness payoffs

for the budgeted allocation problem. Figure 3 displays audit rate

by income decile for Random Forest Classifier trained to respect

each of the fairness definitions considered. We present revenue and

no-change rate in Table 1.

Equal TPR and EO models do lead to overall lower focus on low

and middle income groups. However, they continue to under-target

the highest end of the income spectrum when compared with the

oracle predictor. And perhaps surprisingly, despite this shift to focus
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Figure 3: In-process fairness techniques imposed on a Random Forest model. From left to right: enforcing Demographic Parity
(DP), Equal True Positive Rates (TPR), and Equalized Odds (EO). Black (blue) series represent the unconstrained (constrained)
allocation.

slightly more on higher ends of the income spectrum, enforcing

these constraints actually leads to a large decrease in revenue:

from over $3B to as low as $600M in revenue. We additionally

notice a decrease in the no-change rate towards levels closer to

the baseline LDA predictor. Finally, they imperfectly enforce the

targeted fairness constraints once the audit budget is imposed: this

is immediately evident in the allocation from a model constrained

to respect demographic parity, as the audit rate is not equal across

groups.

Given these results, we argue that enforcing fairness constraints

during training is not an effective technique to improve vertical

equity in an audit allocation setting. We highlight some broader

implications of vertical equity for algorithmic fairness in Section 9.

6 ENFORCING MONOTONICITY
In this section, we instead enforce monotonicity directly. We do

this by solving the following linear program:

max

α

∑
b∈B

∑
i∈b

αi π̂iwi s.t. αi ∈ [0, 1]∀i ;
∑
b∈B

∑
i∈b

wiαi = 1;∑
i∈b1

αiwi ≤
∑
i∈b2

αiwi · · ·∑
i∈b9

αiwi ≤
∑
i∈b10

αiwi

where all notation follows Section 3.1, wi represents sampling

weights, and the Random Forest Classifier generates π̂i .
The leftmost panel of Figure 4 shows the audit distribution of the

solution to the linear program. Notably, all income buckets from

the fourth decile and above are audited at the same rate. In other

words, the constrained solution audits higher income deciles at

the minimum in order to focus most energy on the fourth decile.

The trade-off with performance is relatively modest relative to the

unconstrained classifier, as seen in Table 1: revenue does decrease,

but by only $50 million; the no-change rate increases by half a

percentage point. These results indicate that, especially compared

to enforcing traditional fairness constraints, enforcing monotonic-

ity may be a relatively economical approach to encourage (one

notion of) vertical equity. The next section shows, however, that

this approach may be far from optimal.

7 FROM CLASSIFICATION TO REGRESSION
We now demonstrate that changing the model’s prediction target

from the probability of misreport to expected misreport amount—
i.e. changing from a classification to regression algorithm— can

reduce burden on lower-income taxpayers and make audit rates

more closely mirror the oracle while also increasing revenue. This

demonstrates that, in some circumstances, changing the model’s

prediction task to reflect behavioral desiderata–rather than enforc-

ing a constraint on top of a model optimizing for an imperfectly

aligned task—is a more effective technique to reach equity goals.

We train regression models with the same process described in

Section 4 for classification models, but use the misreport amount as

the label rather than to a binary indicator of misreport. The audit

rate by income decile of Random Forest and Gradient Boosting

regression models are displayed in black in Figure 4, along with the

oracle in dashed red.

We highlight two chief results. First, shifting the prediction target

from the probability of misreport (classification) to the expected

amount of misreport (regression) shifts audit focus from lower

income to higher income taxpayers, resulting an audit allocation

that is not only nearly monotonic, but also closely matches the

oracle allocation. As can be seen in Figure 4 and the right column

of Table 1, the resulting allocation is in fact closer to the oracle than

any other prior allocation. Thus, changing from a classification to

a regression task can be seen as one method to directly optimize

for (multiple notions of) vertical equity in the IRS context.

Second, while changing the prediction target from presence of

significant misreport to amount of misreport does increase the no-

change rate (up to 20-23%), it also results in a dramatic increase

in revenue. Table 1 shows that assessed revenue under regression

rises to $10B, compared to the $3.6B baseline of high-powered

classification models.

Thus, within the set of higher complexity models, switching from

classification to regressionmay provide an effective way to decrease

the mismatch between audit allocations and ground truth levels

of misreport, as well as decrease audit focus on lower and middle

income individuals, while increasing under-reported tax liability

detected by the IRS. We leave the discussion of how regression-

based allocations interact with the IRS goal of broad-spectrum
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Figure 4: Left: Monotonicity constraints explicitly enforced on audit allocations of a Random Forest Classifier. The black line
represents the allocation, the red line represents the oracle. Right: Audit Rate by Income in Random Forest Regressor, and
Gradient Boosted Regressor, presented in black. The oracle allocation on the same budget is presented in red on the same
graph.

noncompliance deterrence—which may necessitate additional focus

on lower-magnitude noncompliance—to future work.

8 AGENCY RESOURCES AND THE IMPACT
OF A NARROW RETURN-ON-INVESTMENT
APPROACH

We now turn to examining the relationship between vertical equity

and agency resources. As noted, how an audit proceeds depends

upon the type of noncompliance suspected: for example, many au-

dits on lower-to-middle income individuals concern a potentially

incorrectly claimed tax credit, whereas audits on higher income in-

dividuals more often involve insufficient taxes being paid on income

or other assets [29]. Audits concerning tax credits are largely done

via correspondence, where the IRS sends a letter to the taxpayer

requesting verification of qualification for the claimed credit [29].

Other types of misreporting often incur in-person IRS audits [29].

Correspondence audits are extremely resource-efficient for the IRS.

On the other hand, in-person audits requiremore time and expertise,

and tend to incur much higher costs. Further, a non-response from

a correspondence audit is taken as an admission of non-compliance,

resulting in revenue returned to the IRS [20], and keeping investiga-

tion costs low. One study on EITC correspondence audits found that

up to 75% were determined to be noncompliant due to nonresponse,

undeliverable mail, or insufficient response [20]. Thus, the ease of

correspondence audits, coupled with the high nonresponse rate

leading to frequent revenue returned to the IRS, may result in more

reliably recovered income than in-person audits, in addition to their

lower direct costs. Here, we use a simple model to explore whether

a constrained monetary budget, coupled with differential cost of

audits across the income spectrum, might affect audit allocation.

We model the audit budget in terms of a dollar cost13 as opposed
to a constraint on the fraction of the population audited.

13
We note that a fixed monetary budget may not perfectly capture the resource con-

straints faced in practice; for instance, the limited number of auditors of a given

expertise level may bind more tightly than any short-term dollar budgets. Still, this

simplification captures important heterogeneity in the degree to which audits push

against agency resource constraints. In addition to shedding light on the status quo

audit distribution, such analysis may be interesting to the field of applied ML, as

relatively few papers consider budget-constrained allocation models.

8.1 Experimental Details
In our consideration of the effects of agency resource limitations on

audit allocation, we focus on the dollar cost of audits to the IRS and

its budgetary constraints. We calculate a simplified version of cost

that only takes into account the cost of the actual tax examination,

based on data from previous real operational audits. We calculate

cost as the product of the examiner’s time spent on a given audit

with their hourly pay. We average this product over income deciles

and activity code, which roughly corresponds to groupings of indi-

viduals based upon what tax forms they have filled out, to estimate

audit cost. We incorporate cost into our analysis by directly includ-

ing the dollar budget as an audit selection constraint, thus creating

a linear program to maximize total predictive value (i.e. probability

or amount of misreport) with respect to the dollar budget. As we

show in Appendix G, this formulation is equivalent to a fractional

knapsack problem; thus, the optimal solution is to select individuals

in order of their ratio of cost to return to the IRS, in other words,

return-on-investment. We use a dollar budget of $125M, the average

estimated total cost of audits from years 2010-2014. Further details

are in Appendix H.

8.2 Results
We present three main results. First, due to the differing audit costs
to the IRS by income, return-on-investment focused audit selection

results in an allocation which overwhelmingly targets lower in-

come taxpayers. In the left panel of Figure 5, we show the optimal

audit selection policy under a dollar budget with rankings from

each of the models considered in our paper thus far. As described

in Appendix G, the revenue-optimal audit allocation is to choose

returns with the return on investment, i.e. the best ratio of pre-

dicted reward (adjustment in regression or change probability in

classification) to audit cost. Based on our calculations of audit cost,

audits in the highest income decile may cost up to 41 times the least

costly audits. Given the disparities in audit costs over the income

spectrum, the revenue-optimal audit selection method results in an

allocation that almost exclusively targets lower income individuals.
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Figure 5: Left: Revenue-optimal allocation from all models considered in paper so far, considering budget as a dollar amount.
The x-axis represents income deciles, and the y-axis represents audit rate. We consider the budget to be 125 million, or the av-
erage budget over 2010-2014 using our approximation of cost described in Section 8. The revenue-optimal allocation requires
that the individuals with the highest ratio of revenue returned to IRS over cost to the IRS are selected for audit up to the dollar
budget, which results in a similar allocation from all models. Right: No-change rate, revenue, cost, and net revenue of alloca-
tions from different models considered in the paper whenmodeling audit budget as a dollar amount, for both for net-revenue
optimal and naive allocations.

Second, the return on investment of auditing lower income indi-

viduals may shed light on the status quo allocation’s focus on low

and middle income individuals. We note that the optimal allocation

with a dollar budget looks similar to the 2014 operational audit

selection policy (Figure 1). Given the decreasing IRS budget over

time, prioritization of net revenue maximization may influence the

vertical equity of status-quo allocations. However, we note that the

extremely low cost of audits on the lower end of the income spec-

trum result at least partially from a policy choice made to proceed

with different types of audits in asymmetric ways: i.e., via correspon-
dence audits on the lower end of the spectrum, and in-person audits

on the higher end. This decision, coupled with the choice to view a

lack of response as noncompliance, results in less time, and fewer

resources, spent on audits for individuals in the lower end of the in-

come spectrum, thus resulting in the constrained revenue-optimal

allocation focusing so highly on low-income individuals.

Third, we find that to improve vertical equity and increase rev-

enue collected, regression models require a higher dollar budget. As

demonstrated in Section 7 and Table 1, regression models produce

the highest net revenue allocations amongst models constrained to

only audit a given percentage of the population (0.644%). However,

the cost to the IRS of these allocations are considerably higher than

classification methods—and indeed, higher than our approximation

of average IRS budget between 2010-2014, $125M. At this low dollar

budget, regression models under-perform on revenue compared to

classification models, demonstrated in the right panel of Figure 5:

this is because regression models target individuals in the higher

income realm, where the audit cost is greater, thus preventing such

allocations from targeting enough individuals to generate high

revenue returns. This suggests that increasing the dollar budget

available for audits may present an opportunity for not only more

net revenue, but also in a more equitable allocation of audits.

9 DISCUSSION
Through this unique collaboration with the Treasury Department

and IRS, we have studied the impact of machine learning on ver-

tical equity. Our work suggests that: (1) more accurate classifiers
may exacerbate rather than improve income fairness concerns; (2)

off-the-shelf fairness solutions are not well-suited for attaining in-

come fairness; (3) fundamental modeling changes, like switching

from a binary target to a regression target, can improve income

fairness; and (4) external constraints, like institutional budgets, may

influence fairness regardless of what underlying predictive model

is used. Specifically, a return-on-investment focused audit alloca-

tion may undermine vertical equity under current conditions. More

broadly, this work underscores the importance of vertical equity,

in addition to horizontal equity, in real-world application areas of

machine learning. To our knowledge, the term does not appear in

the algorithmic fairness literature,
14

and traditional fairness metrics

can be seen as focusing on horizontal, rather than vertical, equity.

Given the importance of achieving vertical equity for policy, this

work points towards further development of algorithmic fairness

techniques as a promising path for future research.

Our results also reveal a subtle dimension of fairness when re-

sources are allocated under a budget constraint. When there is

greater uncertainty for high-income individuals, classification risk

scores can shift audit allocations to lower-income individuals sim-

ply because misreports are easier to predict. Exploring the role of

heterogeneity in uncertainty and its fairness implications might ex-

plain a wide range of other policies that have disparate impact (e.g.,

enforcement against blue collar vs. white collar crime). In the tax

context, this insight also underscores the need for information col-

lection mechanisms (e.g., third party reporting by offshore financial

14
Outside the fairness community, but inside the general umbrella of technology

and engineering, the term has been used; in particular, [51] use both terms in a

study of equity in access to transportation, and point towards a possible link to

algorithmic fairness. However, their interpretation of vertical and horizontal equity

are substantially different from ours; for instance, they suggest that group fairness

should be linked to vertical equity.
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institutions) to reduce such uncertainty in the high income space,

which has been the subject of significant policy debate [15, 43].

We conclude by noting several limitations and opportunities for

further work. First, we do not have access to the exact models em-

ployed by the IRS or the complete procedures, so we cannot make

definitive inferences about past or current practice. Second, we only

observe (an imperfect proxy of) the IRS cost of an audit, not tax-

payer costs; the true societal cost of an audit may thus be materially

different than what is used in Section 8. Third, our approach has not

distinguished between underreporting from misreported income

versus over-claimed refundable credits; some policymakers may

view these forms of noncompliance differently. Finally, while the no-

tion of monotonicity is motivated in part by the near-monotonicity

of adjustments and the oracle results, it is not grounded in a full

welfare analysis. Such an approach might take into account audit

costs to taxpayers, deterrence effects, and other policy levers, such

as tax rates or penalty amounts. Accounting for these dimensions

may not necessarily yield strict monotonicity as a form of vertical

equity, and we view this theoretical development as an important

path to refining vertical fairness.

Despite these limitations, this work represents an important step

given the policy significance and complexity of this setting. The

scale of the problem is substantial — amongst U.S. taxpayers alone,

improvements in this area can affect more than 100M individuals

annually. Moreover, “government by algorithm” continues to grow

[16], and understanding how to incorporate fundamental fairness

and redistribution concerns in taxation may serve as a model for

other governance-related settings. Finally, insights derived in this

setting — such as the differing effects of costs when considered as

a constraint rather than in the objective — may carry over to other

unrelated settings. Our finding that a narrow return-on-investment

approach may degrade rather than improve vertical equity may be

critical in a range of policy contexts [45]. Thus, both the technical

concepts and policy problem are important and vital avenues for

future research.
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APPENDIX
A FAIRNESS CONSTRAINTS AND

MONOTONICITY
In this section, we show that a selection process which achieves

either equal true positive rates or equalized odds will, under certain

(differing) conditions, satisfy monotonicity with respect to the rank-

ing of bins by true misreport rate. That is, such models must choose

a higher audit rate in a group with a higher rate of misreport than

it chooses in a group with a lower rate of misreport. Given that, in

our setting, misreport rate appears to be monotonic with respect

to income, such results would imply audit rate monotonicity with

respect to income as well.

For this section, we assume the following setup. There are two

groups of observationsG1 andG2 of equal size n, and they havem1

andm2 positive labels respectively and r1 = n−m1 and r2 = n−m2

negative labels. An auditor selects A1 observations for audit from

G1 and A2 from G2 such that the total audits A1 +A2 is their audit

budget A. The auditor has access to a modelM which gives binary

predictions ŷ ∈ {0, 1}. The auditor would like to select A1 and

A2 in such a way that she maximizes true positives selected; we

assume thatA <<
∑
j ∈{1,2}

∑
i ∈G j M(Xi ) - that is, the audit budget

is much smaller than the total amount of positive predictions by

the model.

After the auditor makes selections A1 and A2, we define the α1
as the false positive rate of the audits for G1; that is,

α1 = FPR1 =
False Positives in G1 selected

r1
.

In other words, α1 is the false positive rate of the composition of

whatever the auditor’s selection process is with the predictions of

the model (not the false positive rate of the model itself). We define

α2 similarly. Additionally, we define β1 as the true positive rate of
the audits for G1, i.e.:

β1 = TPR1 =
True Positives in G1 selected

m1

and β2 similarly. Finally, let pi =
True Positive Predictions for group i

Ai ,

often known as precision.

A.1 Equal TPR and Monotonicity
Our first lemma relates monotonicity to precision in the case of a

selection process satisfying equal true positive rates:

Lemma A.1. Suppose that the selection process satisfies equal true
positive rates. Then with Ai , mi , and pi defined as above: A2 ≥

A1 ⇐⇒
m1

m2

≤
p1
p2 .

Proof. Note that:

pi =
True Positive Predictions

All Positive Predictions

=⇒ True Positivesi = Aipi .

Then the true positive rate can be written as

βi =
True Positivei
Positivesi

=
Aipi
mi
.

But by assumption, β1 = β2 = β , so

A1p1
m1

=
A2p2
m2

.

But this implies that

A1

A2

=
m1

m2

p2
p1
.

Hence, A2 ≥ A1 if and only if
m1

m2

p2
p1 ≤ 1, or in other words:

A2 ≥ A1 ⇐⇒
m1

m2

≤
p1
p2
.

□

To interpret this lemma, suppose that Group 2 has a higher

misreport rate than Group 1 by some factor. Then the lemma states

that for any selection process satisfying equal true positive rates,

monotonicity with respect to misreport rate requires precision in

Group 2 greater than in Group 1 by at least the same factor, and

vice versa.

A.2 Equalized Odds and Monotonicity
The following lemma shows that, in this setting, any allocation that

satisfies equalized odds (i.e. α1 = α2 = α and β1 = β2 = β) must

audit the group with a higher misreport rate at a higher rate if the
true positive rate is larger than the false positive rate; conversely,

it must audit the group with a higher misreport rate at a lower rate
if the true positive rate is lower than the false positive rate.

Lemma A.2. Suppose that the allocation A1,A2 satisfies equalized
odds. That is, α1 = α2 = α and β1 = β2 = β . If β ≥ α , then
A2 ≥ A1 ⇐⇒ m2 ≥ m1; otherwise, A2 ≥ A1 ⇐⇒ m1 ≥ m2.

Proof. Note that A1 is the sum of true and false positives in G1

and A2 is the sum of true and false positives in G2. Since

α = α1 =
FP1

r1
and β = β1 =

TP1

m1

,

we can observe that:

A1 = r1α +m1β

and similarly for A2. But then:

A2 −A1 = r2α +m1β − (r1α +m1β)

= α(r2 − r1) + β(m2 −m1)

= α((n −m2) − (n −m1)) + β(m2 −m1)

= α(m1 −m2) + β(m2 −m1)

= (β − α)(m2 −m1).

But then we have that:

A2 −A1 > 0 ⇐⇒ (β − α)(m2 −m1) > 0,

yielding the claimed result. □

LemmaA.2 shows that if the selection process as a whole satisfies

equalized odds, then groups with higher misreport rates will be

audited at a higher rate if and only if the process catches a larger

fraction of misreporters than the fraction of non-misreporters it

ensnares. In balanced settings and with good models, we might

expect that generally the true positive rate will be higher than the

false positive rate, and this is what provides intuition that imposing

equalized odds might push the process towards monotonicity in

misreport rate. But these rates interact with the overall audit budget:

in the regime where the budget is very small and models are good,
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then it may be possible to obtain a low false positive rate but an even
lower true positive rate. In that case, equalized odds will require

that the group with higher non-compliance is audited less.

B FURTHER EXPERIMENTAL DETAILS
In this paper, we compare LDA, Random Forest Classifier, Random

Forest Regressor, Gradient Boost Classifier, and Gradient Boost

Regressor models. We use the sklearn python package [47] to im-

plement all models except for gradient boosted models, and search

for optimal hyperparameters using sklearn’s GridSearchCV method

with 5-fold cross validation. Gradient boosted models are created

through the XGBoost python package, and optimal hyperparam-

eters are also found using GridSearchCV. We use NRP data from

2010-2014 to train all models in this paper, with dollar values scaled

to 2014 values. Our threshold for determining what qualifies as a tax

misreport is a $200 difference between paid tax and amount owed.

We winsorize amount of misreport to the 1st and 99th percentiles.

We split the data into train, test, and validation sets randomly. Our

train and validation sets comprise 75% of the data, with a test set

of 25% of the data.

We note that the IRS NRP data contains sampling weights, which

are used to ensure that the NRP data is representative of the true un-

derlying distribution of taxpayers [31]. We train all unconstrained

models with sampling weights included in the NRP data using

sklearn’s built in data-weighting feature, except LDA, whose sklearn
implementation does not does not support training weights. For

LDA, we create a representative dataset from the NRP data by ran-

domly subsampling rows from the weighted training data according

to the weights. For example, consider that each row x has a weight

w , and the sum of all weights in the training set isW . Then each

observation has probability
w
W of getting selected as any given

row in the subsampled data. This produces an unweighted training

set reflecting the same proportions as the weighted training data,

with one million samples. As mentioned in Section 5, the FairLearn
package [6] requires the use of the sklearn training weights feature

to implement its in-process fairness enforcement algorithms. As a

result, we also use the subsampling technique to create training sets

for in-process fairness models, but with samples of 100, 000 points,

as the algorithm is extremely time-intensive on large datasets (over

48 hours for one model). In order to show that the use of sampling

weights during training, or the difference in training set size from

100k to 1M, does not strongly affect the results presented in the

paper, we show the audit allocations and revenue, cost, and no-

change rates of the LDA, Random Forest, and XGBoost classifiers

in Figure 6 and Table 2 respectively.

All analyses sections are produced on the test set. Cost and

revenue calculations are reported by rescaling costs and revenues

to reflect estimated annual values for the full population, for each

year 2010-2014, and then dividing by five.

We sort taxpayers by descending order of predicted misreport
probability from all classificationmodels (using sklearn’s predict_proba())
method, in order to produce a ranking. We use sklearn’s predict
method to return expected misreport for regression models. We use

an audit rate budget of 0.644% of the taxpayer population, reflecting

the average audit rate from 2010-2014, and select audits ai by taking
the top 0.644% of the taxpayer population in rank order. This 0.644%

corresponds to weighted percentage of the population, computed

with sampling weights, i.e.

∑
aiwi∑
wi

where i is an observation in the

weighted dataset, ai is an indicator of whether to audit that obser-

vation, andwi is the number of people the observation represents

to create a representative population from the sampling data. The

audit budget of 0.644% of the taxpayer population, is equivalent to

1125000 audits.

C ROBUSTNESS CHECKS ON
CLASSIFICATION THRESHOLDS

In this section, we compare the audit allocations of high-flexibility

classification models (namely, random forest classifiers) with differ-

ent thresholds for what constitutes a significant adjustment. In the

main text, we use a threshold of $200 to signify a significant misre-

port. In these experiments, we consider thresholds of $1,000, $5,000,

and $10,000. Experimental setup is identical to that described in

Section B, with the exception of the change in threshold. We display

our results in Figure 7, and Table 3.

The results show us that changing the threshold of a significant

adjustment to $1,000 does not significantly impact audit allocation

compared to the results presented in the main text. A threshold of

$5,000 exacerbates the classification model’s excess focus on the

lower end of the income spectrum, even beyond results shown in

the main paper. Only a threshold of $10,000 makes a significant

difference in terms of the audit allocation—shifting the focus to

high income individuals almost exclusively— however, it results in

an extremely high no-change rate.

D INCREASED AUDIT FOCUS ON
LOWER-AND-MIDDLE INCOME ONLY IN
HIGH COMPLEXITY MODELS

In this section, we provide results from a logistic regression model

to further buttress the claim that only higher-complexity classifi-

cation models result in audit allocations which exacerbate focus

on lower and middle-income taxpayers. We train the Logistic Re-

gression classification model with the same procedure outlined in

Appendix B, with sampling weights directly included during train-

ing. The audit allocation is depicted in Figure 8: the allocation is

more monotonic than the higher complexity classification models;

and is apparent in Table 4, the no-change rate is higher, but the

revenue is higher as well.

E ADDITIONAL ROBUSTNESS CHECKS
As noted in the main text, we make several important choices. First,

we focus on total positive income (TPI), rather than adjusted gross

income (AGI; roughly corresponding to the taxpayer’s total net

income) because it it represents a simple measure of earnings that

is less likely to be affected by audit determinations. Second, for our

analysis of the status quo, we do not differentiate between EITC-

specific audits for EITC claimants (e.g. qualifying child eligibility)

and income-centered audits (e.g. confirmation of reported small

business or self-employment income). Aswe note above, this distinc-

tion is not relevant for the purposes of an ultimate determination

as to a liability to the government, but for operational purposes, it

may be meaningful to understand which type of audit is driving the
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Figure 6: Audit rate over income deciles, for LDA, Random Forest, and XGBoost classifiers trained with unweighted datasets
of size 100k, subsampled from the weighted NRP data. (These allocations are in black, with oracle in red).

Figure 7: Audit rate over income deciles, for random forest classification models trained with different thresholds for what
consitutes a significant amount of misreport. From left to right, we have the allocation for a model trained with a threshold
of $1,000, $5,000, and $10,000. (These allocations are in black, with oracle in red).

Figure 8: Audit rate over income deciles, for LDA, Logisitc Regression, Random Forest, and XGBoost classifiers trained on
NRP data. The new figure included in this graph, relative to the figures in the main paper, is the introduction of the logistic
regression model. (These allocations are in black, with oracle in red).
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Model Type Label Subsampled Revenue No-Change Cost Net Revenue Oracle

Type (Data Size) ($B) Rate ($B) ($B) Overlap

Oracle - × 29.40 0.0% 0.33 29.07 1.00

LDA Class ✓11M 6.07 12.8% 0.21 5.86 0.09

LDA Class ✓1100k 6.61 16.0% 0.30 6.31 0.09

Random Forest Class × 3.05 3.5% 0.08 2.97 0.00

Random Forest Class ✓1100k 3.19 4.5% 0.07 3.12 0.01

Grad Boost Class × 4.05 4.2% 0.08 3.97 0.00

Grad Boost Class ✓1100k 3.72 4.7% 0.09 3.61 0.00

Table 2: Revenue, No-change rate, cost, and net revenue for models trained on a subsampled dataset of size 100k. No-change
rate represents the percentage of audits that were allocated to compliant tax-payers; cost reflects cost to the IRS as described
in Section 8. These results reflect audit allocations which select the top 0.644% of taxpayers predicted most likely to misreport
from each model. All metrics are reported on the test set, weighted using the sampling weights provided by the IRS to scale
up to a representative sample of the US population.

Model Type Label Revenue No-Change Cost Net Revenue

Type Threshold ($B) Rate ($B) ($B)

Oracle - × 29.40 0.0% 0.33 29.07

LDA Class 200 6.07 12.8% 0.21 5.86

Random Forest Class 200 3.05 3.5% 0.08 2.97

Random Forest Class 1,000 4.92 5.6% 0.10 2.87

Random Forest Class 5,000 6.48 43.6% 0.15 6.35

Random Forest Class 10,000 10.1 64.1% .45 10.55

LDA Class 1,000 6.3 17.4% 0.20 6.1

LDA Class 5,000 7.52 53.3% 0.30 7.22

LDA Class 10,000 9.0 70.8% .47 8.53

Table 3: Revenue, No-change rate, cost, and net revenue for models with different thresholds for what constitutes a significant
misreport. No-change rate represents the percentage of audits that were allocated to compliant tax-payers; cost reflects cost
to the IRS as described in Section 8. These results reflect audit allocations which select the top 0.644% of taxpayers (i.e. top
1125000 taxpayers) predicted most likely to misreport from each model. All metrics are reported on the test set, weighted
using the sampling weights provided by the IRS to scale up to a representative sample of the US population.

Model Type Label Subsampled Revenue No-Change Cost Net Revenue Oracle

Type (Data Size) ($B) Rate ($B) ($B) Overlap

Oracle - × 29.40 0.0% 0.33 29.07 1.00

LDA Class ✓11M 6.07 12.8% 0.21 5.86 0.09

Random Forest Class × 3.05 3.5% 0.08 2.97 0.00

Grad Boost Class × 4.05 4.2% 0.08 3.97 0.00

Log. Reg. Class × 5.42 15.3% 0.19 5.23 0.06

Table 4: Revenue, No-change rate, cost, and net revenue for models presented in the paper alongside results for a logistic
regressionmodel. No-change rate represents the percentage of audits that were allocated to compliant tax-payers; cost reflects
cost to the IRS as described in Section 8. These results reflect audit allocationswhich select the top 0.644%of taxpayers predicted
most likely to misreport from each model. All metrics are reported on the test set, weighted using the sampling weights
provided by the IRS to scale up to a representative sample of the US population.

vertical equity findings. Third, we focus on reported income figures

rather than audit-adjusted figures. This is because, by definition,

audit-adjusted income is not available to the IRS before auditing,

so any policy or choice that relies on access to audit-adjusted in-

come is unimplementable. However, audit-adjusted income may

provide a better picture of distributional effects (at least for audited

taxpayers).

E.1 Status Quo
In this section, we consider how the alternative choices (using

AGI, splitting up EITC and income audits, and measuring model

outcomes with respect to audit-adjusted income) in turn affect

our status quo findings. We interpret these results as primarily

confirming our main results.

Adjusted Gross Income. First, we consider whether our motivat-

ing stylized facts — that low-income taxpayers are audited at rates

about as high as very-high income taxpayers despite change rate

being monotonic in income and average adjustment being much

higher for high income taxpayers — is dependent on the choice of

TPI rather than AGI. We thus recreate the left-most and right-most

panels of Figure 1 with AGI as our feature in the x-axis. We use NRP

data, which is selected via stratified random sampling, as before to

avoid selection bias.

The left panel of Figure 9 shows the 2014 audit rate for taxpayers

in each $10,000-wide bin of AGI. The figure shows that the large

spike near 0 observed with respect to TPI remains for AGI as well.

However, the graph looks different in that AGI, unlike TPI, can

be negative; the negative-AGI portion of the graph qualitatively
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resembles a (much noisier) mirror image of the non-negative-AGI

porion, though negative-AGI taxpayers made up just over 1% of all

taxpayers according to NRP data.

The right panel of Figure 9 depicts change rate and average

adjustment across AGI bins. Here, the bins consist of AGI deciles

for non-negative AGI taxpayers augmented by a single bin for

all negative-AGI taxpayers. Excluding the negative-AGI bin, the

change rate and average adjustment follow a qualitatively similar

trend to their counterparts observed on TPI. That is, the change rate

increases nearly monotonically, while the average adjustment is

increasing overall but has a decreasing or flat portion. However, the

overall difference between the average adjustment in the highest

AGI bin and highest average adjustment among the lower-AGI

bins is smaller than for TPI. As for the negative AGI bin, it has a

relatively low (compared to other bins) change rate, but a higher

average adjustment than any positive-AGI bin. Recall that AGI

is income less various adjustments (e.g. for student loan interest,

alimony payments, health insurance for self-employed taxpayers,

etc.). As mentioned, given additional scope relative to TPI for errors,

subjective determinations, or manipulation to influence ultimate

AGI figures, we focus on TPI as our primary measure of income.

Income vs. EITC Audits. Next, we explore whether the extent

to which the observed non-monotonicity in audit rates by income

is driven primarily by income-related audits (e.g. verifying that

claimed income was truly received, that reported income presents

a full picture of true income, etc.) or eligibity-related audits (e.g.,

whether a claimed dependent satisfies residency or relationship

tests for EITC eligibility). To do this, we replicate our main audit-

rate analysis after removing dependent-related audits. We do this

using project codes. Projects codes are given to returns upon audit

and correspond to a focus on particular issues. These do not nec-

essarily map one-to-one with the income/EITC distinction — for

example, some project codes correspond to a particular flag being

triggered, and can result in focus on both eligibility and/or income

issues depending on the return; still, careful examination of the

issues considered allow us to develop an approximate measure of

the intent of the audit.
15

We categorize EITC-related projects into three categories: most

narrowly, EITC-eligibility projects, which only consider questions

related to whether a taxpayer’s EITC claim satisfies eligibility re-

quirements; more generally, EITC-Only projects, which may con-

sider more than eligibility but are still related to the EITC claim (e.g.

verifiability of Schedule C income for EITC claimants); and most

broadly, EITC-mentioning projects, which constitute any project

which mentions EITC as the population of interest. So, for instance,

audits about the premium tax credit within EITC claimants would

be considered as part of the EITC-mentioning projects but not the

EITC-Only or EITC-eligibility projects. Note that these categories

are nested, so if we move from excluding only the first to the next

to the last we end up with a successively narrower set of included

audits. In particular, the set of audits that fall into EITC-eligibility
projects but not EITC-Only projects are those which correspond

15
We started with a list of project codes, project titles, and project descriptions. We

examined all projects with EITC-related words in the title (e.g. “EITC" or “EIC"), as

well as all projects indicated to be related to EITC by 4.19.14.4 in the Internal Revenue

Manual.

Figure 9: Robustness checks with adjusted gross income.
Left: The figure shows the audit rate by year at a given
amount of adjusted gross income (discretized into bins of
$10,000. Note that AGI may be negative; however, just over
1% of NRP observations submit negative AGI, so the noise in
the left half of the graph is due to small sample size. Right:
The figure shows outcomes in terms of misreport rate and
average adjustment byAGI “deciles” (we compute deciles for
observations non-negative AGI and add all negative AGI ob-
servations as an additional initial bin).

strictly to eligibility questions, and so the effect of removing them

shows (a lower bound on) the portion of audits which are due to

eligibility and not income. (It is a lower bound because some projects

in the EITC-Only do not only focus on income, but may also focus

on eligibility; without further detail unavailable in our data, we

cannot further distinguish between specific issues considered for

each return within the same project code.)

Figure 10 shows the results of this analysis for the tax year 2014.

The figure depicts audit rate by TPI, but with several different lines

indicating different levels of exclusions that have been made when

calculating the audit rate. The shading increases with the breadth

of exclusions (no exclusions, corresponding to our results in Figure
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Figure 10: Audit rate by TPI for tax year 2014 after exclud-
ing EITC-related projects of varying stringency of defini-
tion. The shades of lines move from light to dark mirror-
ing how the consider exclusions move from very little to
very broad. In particular, the lightest shade shows audit rate
before any exclusions, the next shows audit rate after ex-
cluding projects related specifically to EITC eligibility, the
next after excluding all projects related only to EITC, and
the darkest after excluding all projects whichmention EITC
even if focused on unrelated issues.

1, are plotted in lightest red, while the broadest exclusions, of all

projects with any mention of EITC at all, are plotted in darkest red).

Notice that the lightest color shows the ‘spike’ in audit rates for low

income taxpayers, as displayed before, and excluding successively

more returns unsurprisingly diminishes the calculated audit rate,

until we are left with very few audits that are entirely unrelated

to EITC claims for near-zero TPI taxpayers. Most interestingly,

moving from no exclusions to excluding EITC-eligibility-specific

projects decreases the audit rate at the spike from about 1.2% to

about .7%. This indicates that, as a lower bound, about half of the

spike is explained by EITC-eligibility-related projects.

More coarsely, we can simply look at to what extent the spike

is being driven by EITC claimants at all, as indicated by claimants’

activity codes. Activity code 270 correspond to EITC claimants with

less than $25,000 of Schedule C (non-wage) income (e.g. income

from self-employment), while activity code 271 captures the re-

mainder. (Recall that income for the purposes of the EITC is not

TPI, but AGI, as described above. So it is possible, though rare, for

a taxpayer with high TPI to nonetheless be eligible for the EITC.)

Figure 11 displays the results of a similar exercise, moving from

excluding 270 to excluding 270 and 271. The fact that the spike

is essentially eliminated moving from no exclusions to excluding

270 suggests that non-monotonicity is driven by EITC claimants.

(Note that this is not inconsistent with Figure 10 because EITC

claimants in 270 may be audited for non-eligibility matters, like

income verification.)

Outcomes with respect to true TPI. Finally, we recalculate no-

change rates and average adjustments by corrected, rather than

reported, TPI and AGI. (Note that since outcomes are measured in

NRP, we have corrected incomes for nearly all taxpayers, modulo

Figure 11: Audit rate by TPI for tax year 2014 after excluding
EITC-related activity codes. The lightest line corresponds
to the underlying audit rate without exclusions, the next
darkest to the audit rate after excluding activity code 270,
and the darkest to after removing 270 and 271 (i.e. all EITC
claimants).

a small number of missing observations.) The outcomes are dis-

played in Figure 12. Qualitatively, the TPI picture (left panel) looks

similar to the right panel of Figure 1, but with an even clearer mono-

tonicity pattern in average adjustment, as the downward trend in

adjustments in between the 3rd-7th bins of (uncorrected) TPI is

replaced by a plateau. Moreover, measured according to corrected

TPI, the average adjustment is higher in the highest-income bin

than according to reported TPI, but lower in the lower-income bins;

in other words, the overall trend is much starker for corrected than

reported TPI. The AGI picture (right panel) appears qualitatively

very similar to the TPI picture, indicating that monotonicity of

change rate and adjustment holds regardless of income measure, at

least after correcting for the truth.

E.2 Fairness methods and Modeling Choices
In this section, we display audit rate by income of classification,

regression, and fairness-constrained models presented in the main

paper, but with income buckets over audit-adjusted adjusted gross
income (AA-AGI), and audit-adjusted total positive income (AA-TPI).
This provides a robustness check to test whether models which

display low audit focus on reported low income also do so on true
low income populations, and if this pattern carries over to other

notions of income, such as taxable (and not total) income.

Experimental Setup. For AA-TPI, we use the same income buckets

as we have throughout the paper (which determine deciles on total

positive income) for consistency and ease of comparison. For AA-

AGI, we re-compute buckets, and also create a separate bucket for

individuals with negative AGI, but note that they only make up

approximately 0.7% of the population (less than 1/10 of a decile),

and thus the results on this population are not directly comparable

to those on the rest of the deciles due to the vastly different sample

size. For bothmeasures of income, approximately 1,000 out of 71,000

rows do not contain audit-adjusted AGI or TPI, which we exclude

from the analysis.
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Figure 12: The figures display outcomes — no-change rate, in blue and measured on the left y-axis, and average adjustment, in
red and measured on the right y-axis — by corrected TPI (left panel) and corrected AGI (right panel).

Results. The audit distributions over income deciles over AA-AGI

and AA-TPI are largely similar. For AA-AGI, the boosted regressor

focuses slightly less on middle-to-high income. For both AA-TPI

and AA-AGI, the EO constrained classifier focuses lightly less on

middle income individuals (∼47k). Regression and LDA models

select a high rate for individuals with negative AA-AGI, but this

is drawn from a very small percentage of the population (0.7%).

Otherwise, the overall trends of audit focus for audit focus across

the different classifiers remains the same.

The most notable change from reported TPI to AA-TPI and AA-

AGI is the extent to which the oracle focuses on “truly” high income

individuals — whereas the oracle audited up to 1% individuals with

zero and middling reported TPI, from the perspective of AA-TPI

and AGI, the oracle focuses almost exclusively on the upper third

of the income spectrum, and most dramatically (approx 4.5%, as

opposed to approx. 2% for reported TPI) on the highest income

decile.

F FURTHER FAIRNESS RESULTS
In this section, we present complete in-processing results, and also

show results from another technique, specifically, post-processing

techniques for enforcing fairness constraints. We also discuss why

pre-processing techniques, and perhaps counterintuitively, fair

ranking methods are not well-suited to our setting.

F.1 In-processing
As noted in Section 5, the in-processing results do not result in

audit allocations which respect the fairness constraints the models

are trained to obey, partially due to the fact that the audit allocation

focuses only on the top 0.644% of predictions. First, we present (i)

numerical evidence that in-process fairness constrained models

do not produce allocations which respect the constraints they are

trained to satisfy (Tables 5 and 6), (ii) we show evidence that the

in-processing results did perform according to expectation, i.e., they

do produce models which satisfy their respective constraints over

the full suite of predictions on the training set, in Table 7.

We present only numeric clarification for the fact that the alloca-

tions do not satisfy the constraints which are enforced on the model

for true positive and false positive rates, as the fact that selection

rate parity is not upheld is clear from the graph of the allocation

(as an allocation which satisfies selection rate parity would have

equal audit rate across all income groups).

We note that we present the true and false positive rates cal-

culated over the weighted population—i.e. calculating all metrics

taking into account the sample weight of each row—as well as over

the unweighted raw data. This is due to the fact that the algorithm

used to implement these results do not offer any guarantees over

weighted data [3]. However, we find that the results are qualitatively

similar.

F.2 Post-processing
Post-processing involves intervening at prediction time by develop-

ing group-specific thresholds for positive predictions on top of the

original model to ensure a model’s predictions satisfy the relevant

fairness constraints. We use a method developed by Hardt et al [22]

to implement this technique.

Implementation. In post-processing methods, the base random

forest model is trained exactly as described in Section B. We again

use FairLearn [6] to implement the post-processing technique based

upon Hardt et al. [21]. Post-processing methods as implemented

in FairLearn are not engineered to return a ranking but only a

binary prediction, thus in order to accommodate creating a ranking

from predictions, we multiply the binary predictions of the fair

classifier (which satisfy the desired metric across groups) by the

predicted probabilities from the baseline classifier in order to be

able to meaningfully rank the output.

Results. Figure 19 displays audit rate by income for post-processed

Random Forest classifiers to respect each of the three fairness met-

rics. Again, the constrained model’s audit rates are in blue, the

unconstrained in black, and the oracle in red dashed. The revenue,

no-change rate, and cost of each are also displayed in Table 1.

A key takeway is that post-processing techniques are ill-fit to the

audit allocation problem as they often result in minimal changes

to prediction on the most confidently predicted points, which can

leave aggregate audit allocations unchanged from the unconstrained

model. Figure 19 shows that the audit selection from post-processed
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Figure 13: Audit rate by income for classificationmodels. From left to right: LDA classifier, RandomForest Classifier, and Boost
Classifier. We use the same income deciles as presented throughout the paper for ease of comparison, but with corrected total
positive income (after audit) as opposed to reported. Income decile lower bounds are given in thousands of dollars.

Figure 14: Audit rate by income for regression models. We use the same income deciles as presented throughout the paper for
ease of comparison, but with corrected total positive income (after audit) as opposed to reported. Income decile lower bounds
are given in thousands of dollars.

Figure 15: Audit rate by income from in-process fairness constrained random forest models, graphed over audited corrected
TPI (AA-TPI). We use the same income deciles as presented throughout the paper for ease of comparison, but with corrected
total positive income (after audit) as opposed to reported.
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Figure 16: Audit rate by income for classification models. From left to right: LDA classifier, Random Forest Classifier, and
Boosted Classifier. We plot over 10 AGI-derived deciles (0-127k are the lower-bounds), with an additional column for the
taxpayers with negative corrected AGI. Note that the first column (-inf) is not a true decile, as individuals with true negative
AGI make up less than 0.7% of the population.

Figure 17: Audit rate by income for regressionmodels.We plot over 10 AGI-derived deciles (0-127k are the lower-bounds), with
an additional column for the taxpayers with negative corrected AGI. Note that the first column (-inf) is not a true decile, as
individuals with true negative AGI make up less than 0.7% of the population.

models often lead to no change in aggregate audit rates (demo-

graphic parity, true positive rate parity). This is likely due to the

fact that re-drawing group-specific thresholds to determine a final

prediction which satisfies a fairness constraint is less likely to af-

fect the most confidently predicted points, which we select for the

top 0.644%. This is by design to keep error to a minimum, and to

keep the post-processed model as similar to the original model as

possible [21].

In terms of the equalized odds allocations suggested by the post-

processed random forest model, it is unclear what benefits enforcing

these constraints provides, as they do not satisfy the respective

fairness definitions on the top 0.644% of predictions, as is noticable

from the demographic parity allocation (which does not change

from the baseline model). Additionally, enforcing equalized odds

actually substantially increases audit focus on the lower end of the

income distribution through this method, so we do not reduce audit

focus on lower income individuals.
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Figure 18: Audit rate by income from in-process fairness constrained random forest models, graphed over audited corrected
AGI. We plot over 10 AGI-derived deciles (0-127K are the lower-bounds), with an additional column for the taxpayers with
negative corrected AGI. Note that the first column (-inf) is not a true decile, as individuals with true negative AGI make up
less than 0.7% of the population. Income decile bounds are given in thousands.

Figure 19: Post-process fairness techniques imposed on a random forest model. From left to right: enforcing Equal True Pos-
itive Rates (FP), Demographic Parity (DP), and Equalized Odds (EO). Each blue graph depicts of the results of enforcing a
fairness constraint, the black graph is the original allocation.

Thus, post-processing techniques are technically mismatched

for the budgeted audit selection setting, and we argue, do not lead

to an increase in equity.

Fair Ranking and Pre-Processing. We omit two major alterna-

tive categories of methods: pre-processing and fair ranking. Pre-
processing methods alter the data before model training; this may

be as simple as re-sampling the data or as involved as learning

alternative representations of data that obfuscate any correlation

between outcomes and sensitive features. Such methods tend to

have sharp tradeoffs with accuracy [37], and often sacrifice in-

terpretability, which may limit applicability in this setting. Fair

ranking methods attempt to achieve fairness guarantees in settings

where the ranking of individuals matter.[10], [49] While this may

appear related to the audit problem, an important distinction is that

in the fair ranking problem, the relative placement of items matters

even beyond the decision to include or exclude them from some

selection set. This is a more difficult setting than the audit problem

as defined in Section 1, in which the precise ranking within audited

taxpayers and separately within non-audited taxpayers does not

matter
16

to the IRS (nor does it matter to the taxpayers). Hence,

methods aimed at fair ranking are ‘overkill’ for our setting.

G REVENUE-OPTIMAL PROBLEM AS
FRACTIONAL KNAPSACK

Given audit variables ai , net revenues ri , costs ci and weightswi ,

and a budget A, the revenue-optimal selection of audits is described

by the following LP:

maximize

m∑
j=1

ajr
net
j

subject to

m∑
j=1

ajc j ≤ A

ai ∈ [0,wi ], ∀ai
Note that this is simply an instantiation of the fractional knap-

sack problem, which is often intuitively described as, given an

16
This may be less true if the budget is not known in advance, but we do not consider

such a scenario here.
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In-Process Fairness Method: False Positive Rates

Unweighted Weighted (W)

Income

Bucket Uconstr. SR PAR TPR PAR EO Unconstr. W SR PAR W TRP Par W EO W

0 0.000 0.008 0.002 0.011 0.000 0.006 0.000 0.005

7 0.000 0.008 0.003 0.001 0.000 0.009 0.002 0.004

13 0.000 0.012 0.002 0.006 0.000 0.010 0.001 0.003

18 0.000 0.016 0.000 0.002 0.000 0.010 0.000 0.007

26 0.006 0.009 0.002 0.006 0.004 0.007 0.000 0.006

36 0.000 0.003 0.005 0.015 0.000 0.002 0.001 0.003

47 0.000 0.000 0.000 0.007 0.000 0.000 0.000 0.009

62 0.000 0.000 0.004 0.010 0.000 0.000 0.003 0.012

86 0.000 0.000 0.005 0.008 0.000 0.000 0.004 0.018

126 0.000 0.000 0.000 0.008 0.000 0.000 0.000 0.007

Post-Process Fairness Method: False Positive Rates

Income

Bucket Unconstr. SR PAR TPR PAR EO Unconstr. W SR PAR W TRP Par W EO W

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

18 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

26 0.006 0.006 0.006 0.000 0.004 0.004 0.004 0.000

36 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

47 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

62 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

86 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

126 0.000 0.000 0.000 0.020 0.000 0.000 0.000 0.022

Table 5: We present the false positive rates by income bucket for the audit allocations generated from unconstrained and
fairness-constrained random forest classifier models on the test set, where an audit allocation corresponds to the highest
ranked predictions from each model up to a budget of 0.644% of the taxpayer population, or 1125000 audits. Unconstr. refers
to an unconstrained model, SR PAR to selection rate parity, TPR PAR to true positive rate parity, and EO to equalized odds.
We note that the algorithms implemented in Fairlearn[6] only guarantee satisfying fairness constraints in expectation on the
training set, over the entire set of predictions (i.e. not simply the top 0.64%). Also note that the only column where we would
expect to see equalized false positive rates is the equalized odds (EO) column(s). The top table represents results from in-process
fairness methods, and the lower table from post-process fairness enforcement methods. The numbers in the left side (left
four columns) of the table corresponds to the calculation on the raw data, without sample weights, and the right four columns
display the calculationweighted by the sampleweights, denotedwithW.Wepresent the unweighted calculation as the fairness
methods do not guarantee equalized false positive rates over the weighted data, but rather only on the unweighted—however,
false positive rates are not equalized with either calculation method.

option of several items with different values and weights, choosing

a subset of x items to put into a “knapsack” in order to maximize the

value in the knapsack given the constraint of how much a person

can carry (where, in the fractional approximation, one is allowed

to put a fraction of the item in the knapsack). The analogues here

is the audit allocation is our knapsack, taxpayers are items to put

in the knapsack, total net revenue is the value, and the cost of each

taxpayer audit to the IRS is the weight. The optimal solution to this

problem is a greedy selection of the objects with the best value per

unit weight, i.e., in our setting, taxpayers in order of the ratio of

their net tax liability returned to the IRS over the cost to the IRS to

audit that individual.

H COST CALCULATIONS
We base our estimate of cost off of:

(examiner time spent on an audit)*(cost per time unit of that grade

examiner)
17

averaged over income decile and activity code groups,
which approximately corresponds to groupings of individuals based

upon what tax forms they have filled out. Importantly, we base our

calculation of audit cost off of operational IRS audits, i.e., not audits
completed as a part of the National Research Program (NRP), but

rather those conducted explicitly to enforce the tax code and reclaim

misreported revenue. This is due to the fact that audits used for NRP

17
We note that this data recorded is grade of the lead examiner, but in some cases

multiple people of different grades are involved. This is a shortcoming of the data for

determining cost.
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In-Process Fairness Method: True Positive Rates

Unweighted Weighted (W)

Income

Bucket Uconstr. SR PAR TPR PAR EO Unconstr. W SR PAR W TRP Par W EO W

0 0.000 0.015 0.021 0.014 0.000 0.011 0.034 0.014

7 0.015 0.029 0.010 0.010 0.012 0.032 0.011 0.010

13 0.008 0.015 0.015 0.013 0.007 0.011 0.020 0.013

18 0.018 0.024 0.015 0.022 0.027 0.025 0.015 0.022

26 0.045 0.019 0.016 0.009 0.056 0.022 0.018 0.009

36 0.019 0.015 0.016 0.013 0.025 0.011 0.014 0.013

47 0.027 0.000 0.026 0.006 0.040 0.000 0.030 0.006

62 0.007 0.000 0.018 0.018 0.012 0.000 0.015 0.018

86 0.001 0.000 0.017 0.013 0.002 0.000 0.009 0.013

126 0.000 0.000 0.009 0.010 0.000 0.000 0.016 0.010

Post-Process Fairness Method: True Positive Rates

Unweighted Weighted (W)

Income

Bucket Unconstr. SR PAR TPR PAR EO Unconstr. W SR PAR W TRP Par W EO W

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 0.015 0.015 0.015 0.000 0.012 0.012 0.012 0.000

13 0.008 0.008 0.008 0.000 0.007 0.007 0.007 0.000

18 0.018 0.018 0.018 0.000 0.027 0.027 0.027 0.000

26 0.045 0.045 0.045 0.000 0.056 0.056 0.056 0.000

36 0.019 0.019 0.019 0.000 0.025 0.025 0.025 0.000

47 0.027 0.027 0.027 0.000 0.040 0.040 0.040 0.000

62 0.007 0.007 0.007 0.000 0.012 0.012 0.012 0.000

86 0.001 0.001 0.001 0.000 0.002 0.002 0.002 0.000

126 0.000 0.000 0.000 0.092 0.000 0.000 0.000 0.117

Table 6: We present the true positive rates by income bucket for the audit allocations generated from unconstrained and
fairness-constrained random forest classifier models on the test set, where an audit allocation corresponds to the highest
ranked predictions from each model up to 0.644% of the taxpayer population (i.e. around 1.1M audits). Unconstr. refers to an
unconstrained model, SR PAR to selection rate parity, TPR PAR to true positive rate parity, and EO to equalized odds. Note
that the only column where we would expect to see equalized true positive rates are the true positive rate parity (TPR PAR)
equalized odds (EO) columns. The top table represents results from in-process fairness methods, and the lower table from
post-process fairness enforcement methods. The numbers in the left side (left four columns) of the table corresponds to the
calculation on the raw data, without sample weights, and the right four columns display the calculation weighted by the
sample weights, denoted with W. We present the unweighted calculation as the fairness methods do not guarantee equalized
true positive rates over the weighted data, but rather only on the unweighted—however, true positive rates are not equalized
over income deciles in either calculation scheme. Income buckets are given in thousands.

are conducted differently, using more time-consuming methods,

and thus relying on these cost estimates may provide a skewed

picture of monetary cost to the IRS. We winsorize cost to 1st and

99th percentiles. To calculate a dollar audit budget, we calculate

the yearly cost of audits using our cost metrics from operational

audit data from 2010-2014, and then we average this result by five

to get the average dollar cost per year in amounts proportional to

our conception of cost.
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DP Enforc. TPR Enforc. EO Enforc. EO Enforc.

Income Bucket SRP TPR TPR FPR

0 0.348 0.979 0.981 0.006

7 0.348 0.981 0.980 0.009

0.349 0.983 0.982 0.013

18 0.348 0.985 0.985 0.007

26 0.367 0.986 0.986 0.006

36 0.350 0.982 0.982 0.005

47 0.368 0.993 0.993 0.004

62 0.368 0.996 0.995 0.004

86 0.368 0.996 0.996 0.004

126 0.366 0.990 0.991 0.003

Table 7: We present a verification of the fact that in-process fairness techniques work as billed. From left to right, we have
the selection rate by income bucket in the equalized selection rate model, the true positive rate by income bucket in the true
positive parity constrained model, and the true and false positive rates by income bucket in the equalized odds constrained
model. All results are presented over all predictions in the training set, not over an allocation the size of 0.644% of taxpayer
population (i.e. about 1.1M audits), as in the majority of the paper. This is in order to verify the guarantees the in-processing
method implemented in FairLearn actually provides, which is that the model will satisfy the fairness constraint desired in
expectation on the training set, within error 2(ϵ + best_gap), where best_gap is a determined at run-time and not released to the
model users, and ϵ is a user-set slack parameter. We set the slack parameter to 1% in our implementation. Note that for each
metric presented, all rates across income buckets are within 2% of each other. Thus, the fairness metrics are satisfied within
the expected parameters of 2(ϵ) ≤ 2(ϵ+ best_gap). Income buckets are given in thousands.
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