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Abstract—The vast majority of techniques to train fair models
require access to the protected attribute (e.g., race, gender),
either at train time or in production. However, in many
practically important applications, this protected attribute is
largely unavailable. Still, AI systems used in sensitive business
and government applications — such as housing, ad delivery,
and credit underwriting — are increasingly required by law
to measure and mitigate their bias. In this paper, we develop
methods for measuring and reducing fairness violations in a setting
with limited access to protected attribute labels. Specifically, we
assume access to protected attribute labels on a small subset
of the dataset of interest, but only probabilistic estimates of
protected attribute labels (e.g., via Bayesian Improved Surname
Geocoding) for the rest of the dataset. With this setting in
mind, we propose a method to estimate bounds on common
fairness metrics for an existing model, as well as a method
for training a model to limit fairness violations by solving a
constrained non-convex optimization problem. Unlike existing
approaches, our methods take advantage of contextual information
– specifically the relationships between a model’s predictions and
the probabilistic prediction of protected attributes, given the true
protected attribute, and vice versa – to provide tighter bounds
on the true disparity. We provide an empirical illustration of
our methods using voting data as well as the COMPAS dataset.
First, we show that our measurement method can bound the
true disparity up to 5.5x tighter than previous methods in these
applications. Then, we demonstrate that our training technique
effectively reduces disparity in comparison to an unconstrained
model while often incurring less severe fairness-accuracy trade-
offs than other fair optimization methods with limited access to
protected attributes.

Index Terms—algorithmic fairness, fair machine learning,
anti-discrimination, disparity reduction, probabilistic protected
attribute

I. INTRODUCTION

In both the private and public sectors, organizations are

facing increasing pressure to ensure that they use equitable

machine learning systems, whether through legal obligations or

social norms [1, 2, 3, 4, 5]. For instance, in 2022, Meta Platforms

agreed to build a system for measuring and mitigating racial

disparity in advertising to settle a lawsuit filed by the U.S.

∗Work done while at Stanford University.

Department of Housing and Urban Development under the

Fair Housing Act [6, 7]. Similarly, recent Executive Orders

in the United States [3, 8] direct government agencies to

measure and mitigate disparity resulting from or exacerbated

by their programs, including in the “design, develop[ment],

acqui[sition], and us[e] [of] artificial intelligence and automated

systems” [8].

Yet both companies [9] and government agencies [3] rarely

collect or have access to individual-level data on race and

other protected attributes on a comprehensive basis. Given

that the majority of algorithmic fairness tools that could be

used to monitor and mitigate racial bias require demographic

attributes [10, 11], the limited availability of protected attribute

data represents a significant challenge in assessing algorith-

mic fairness and makes training fairness-constrained systems

difficult.

In this paper, we address this problem by introducing

methods for 1) measuring fairness violations in, and 2) training
fair models on data with limited access to protected attribute

labels. We assume access to protected attribute labels on only a

small subset of the dataset of interest, along with probabilistic

estimates of protected attribute labels for the rest of the dataset.

These probabilistic estimates may be generated using Bayesian

Improved Surname Geocoding (BISG) [12, 13] or any predictive

model which can output probabilistic predictions.

We leverage this limited labeled data to establish (or ensure,

in the case of training) whether a certain condition holds

regarding the relationship between the model’s predictions,

the probabilistic protected attributes, and the ground truth

protected attributes. In particular, this condition is that two

residual correlations – the residual correlation between the

probabilistic proxy and the outcome of interest conditioned

on ground truth race, and the residual correlation between

ground truth race status and the outcome conditional on the

proxy – share the same sign. Given this condition, our first

main result (Theorem 1) shows that we can bound a range

of common fairness metrics, from above and below, over the

full dataset with easily computable (un)fairness estimators
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calculated using the probabilistic estimates of the protected

attribute. We expound on these conditions, define the fairness

estimators, and introduce this result in Section II.

To train fair models, we leverage our results on measuring

fairness violations to bound disparity during learning; we

enforce the upper bound on unfairness calculated with the
probabilistic protected attribute (measured on the full training

set) as a surrogate fairness constraint, while also enforcing

the conditions required to ensure the estimators accurately

bound disparity in the model’s predictions (calculated on

the labeled subset), as constraints during training. We take

advantage of recent work in constrained learning with non-

convex losses [14] to ensure bounded fairness violations with

near-optimal performance at prediction time.

We note that our data access setting is common across a

variety of government and business contexts: first, estimating

race using BISG is established practice in government and in-

dustry [6, 15, 16, 17, 18]. Although legal constraints or practical

barriers often prevent collecting a full set of labels for protected

attributes, companies and agencies can and in fact do obtain

protected attribute labels for subsets of their data. For example,

companies such as Meta have started to conduct surveys asking

for voluntary disclosure of demographic information to assess

disparities [18]. Another method for obtaining a subset of

protected attribute data is to match data to publicly available

administrative datasets containing protected attribute labels for

a subset of records, as in, e.g. [19].

While our approach has stronger data requirements than

recent work in similar domains [20, 21] in that a subset

of it must have protected attribute labels, many important

applications satisfy this requirement. The advantage to using

this additional data is substantially tighter bounds on disparity:

in our empirical applications, we find up to 5.5x tighter bounds

for fairness metrics and up to 5 percentage points less of

an accuracy penalty when enforcing the same fairness bound

during training.

In sum, we present the following contributions:

1) We introduce a new method of bounding ground truth

fairness violations across a wide range of fairness metrics

in datasets with limited access to protected attribute data

(Section II);

2) We introduce a new method of training models with near-

optimal and near-feasible bounded unfairness with limited

protected attribute data (Section III);

3) We show the utility of our method, including comparisons

to a variety of baselines and other approaches, on various

datasets relevant for assessing disparities in regulated

contexts: we focus on voter registration data, commonly

used to estimate racial disparities in voter turnout [22],

and also demonstrate our results on COMPAS data [23],

a common dataset used in related work (Section IV). In

addition, we present some experiments on synthetic data

which outline the conditions under which our technique

is the most effective: relatively complex problems with

little access to labeled data.

The rest of this paper proceeds as follows: in the remainder

of this section (Section I-A), we describe in greater detail two

examples of real-world settings in which our approach may

be applicable. Following this, in Section II, we describe our

method of measuring disparities in data regimes with limited

access to protected attribute labels, then in Section III we lever-

age our measurement results to develop our training techniques

which bound unfairness in the resulting model. We display our

experimental evaluation of our method in Section IV, including

comparisons to related bias measurement [20] and fair training

techniques [21, 24]. Finally, we end our paper with our review

of the related work (Section V) and Conclusion (Section VI).

A. Correspondence to Real-World Settings

We now highlight two real-world examples which correspond

to our setting. First, consider the example of Meta Platforms

(“Meta”). Meta is the parent company of Facebook, a social

media platform with a large advertising business. Meta uses

machine learning to identify users likely to interact with

particular ads [25]. The Department of Housing and Urban

Development brought a lawsuit [26] under the Fair Housing

Act alleging algorithmic discrimination by Meta. As part of a

settlement resolving the suit [7], Meta agreed to build software

called the Variance Reduction System (VRS) [6] which uses a

differentially-private version of BISG to estimate the deviation

of the delivery rates by group relative to an underlying eligible

audience [27]. In accordance with the recommendations of

civil rights groups [28], Meta also began to work with third-

party survey administrator YouGov to prompt users to provide

individual race off-platform (with privacy protection through

secure multiparty computation tools) [18, 29].

Second, consider the example of government agencies

such as the Internal Revenue Service (IRS). IRS, like many

other government agencies, does not collect taxpayer data on

race [30], yet recent executive orders have required equity

(disparity) assessments [3] and consideration of protections

from “algorithmic discrimination” [8]. A paper by academic and

government researchers[19] combines BISG for the taxpayer

population with a publicly available administrative dataset

(voter registration data) that contains ground truth and can

be matched to a subset of taxpayers and uses this combined

dataset to assess audit rate disparity.

In both examples, disparity estimation is an important goal

hindered by a lack of individual-race data, yet probabilistic

estimates of race via BISG are available, and race data can be

obtained for a small subset of individuals. These key features

correspond to the setting we describe formally in Section

II-A. The prominent examples we discussed above are likely

representative of scenarios faced by many other private and

public sector actors. Indeed, while these instances may be

some of the first legally required investigations of disparities

arising from algorithmic systems [31], they are unlikely to

be the last; along with recent executive orders [8, 32] and the

Blueprint for an AI Bill of Rights [4], a recent advanced

notice of proposed rulemaking (ANPR) from the Federal

Trade Commission (FTC) suggests the possibility of stricter
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rules around the deployment of discriminatory systems [33].

Increased regulation of algorithmic decision systems requires

the development of bias measurement and mitigation techniques

which aligns with the realities of data access, and legal scrutiny,

that exist on the ground.

II. METHODOLOGY FOR MEASUREMENT

In this section, we (1) formally introduce our problem

setting and notation, (2) define the types of fairness metrics

we can measure and enforce with our techniques, and (3)
define the probabilistic and linear estimators of disparity for

these metrics. We then introduce our first main result: under
certain conditions, we can upper and lower bound the true
fairness violation for a given metric using the linear and
probabilistic estimators, respectively.

A. Notation and Preliminaries

Setting and Datasets. We wish to learn a model of an

outcome Y based on the characteristics of the individuals X .

Individuals have a special binary protected class characteristic

B ∈ {0, 1} that is usually unobserved, and proxy variables
Z ⊂ X that can be correlated with B. the unlabeled
set, DU , consists of observations {(Xi, Yi, Zi)}nU

i=1 and the

labeled set, DL, additionally includes B and so consists

of {(Xi, Yi, Zi, Bi)}nL
i=1. An auxiliary dataset {(Z,B)}nA

i=1

allows us to learn an estimate of bi := Pr[Bi|Zi]. All three

datasets are assumed to be independent and drawn from

the same underlying population. Except where specified, we

abstract away from the auxiliary dataset and assume access to

b. When considering learning, we assume a hypothesis class
of models H which map X directly to Y or a superset (e.g.,

[0, 1] rather than {0, 1}), and consider models parameterized

by θ, that is, hθ ∈ H. An important random variable that

we will use is the conditional covariance of the random

variables. In particular, for random variables Q,R, S, T , we

write CQ,R|S,T := E[Cov(Q,R|S, T )].
Notation. For a given estimator θ and random variable X ,

we use θ̂ to denote the sample estimator and X̂ to denote a

prediction of X . We use X̄ to indicate the sample average of

a random variable taken over an appropriate dataset. In some

contexts, we use group-specific averages, which we indicate

with a superscript. For example, we use b̄Bi to denote the

sample average of b among individuals who have protected class

feature B equal to Bi. We will indicate a generic conditioning

event using the symbol E , and overloading it, we will write

Ei as an indicator, i.e. 1 when E is true for the individual i
and 0 otherwise. In the learning setting, Ei will depend on

our choice of model h; when we want to emphasize this, we

write Ei(h). We will also use the (·) notation to emphasize

dependence on context more generally, e.g. Cf,b|B(hθ) is the

expected conditional covariance of f and b conditional on B
under hθ.

Fairness Metrics. In this paper, we focus on measuring and

enforcing a group-level fairness metric that can be expressed as

the difference between groups of some function of the outcome

Metric f(h(X),Y) E
Accuracy 1[h �= y] {true}
Demographic Parity 1[h = 1] {true}
True Positive Rate Parity 1[h �= y] {y = 1}
False Positive Rate Parity 1[h �= y] {y = 0}
True Negative Rate Parity 1[h �= y] {y = 0}
False Negative Rate Parity 1[h �= y] {y = 1}

TABLE I: Many fairness metrics can be written in the form

required by our formulation. For concreteness, we provide a

table based on [40, 41] summarizing the choice of f and E
that correspond to the many of the most prominent definitions

that can be written in our formulation.

and the prediction, possibly conditioned on some event. More

formally:

Definition 1. A fairness metric μ is an operator associated

with a function f and an event E such that

μ(D) := ED[f(Ŷ , Y )|E , B = 1]− ED[f(Ŷ , Y )|E , B = 0],

where the distribution D corresponds to the process generating

(X,Y, Ŷ ).

Many common fairness metrics can be expressed in this

form by defining an appropriate event E and a function f .

For example, demographic parity in classification [34, 35, 36]

corresponds to letting E be the generically true event and f
be simply the indicator 1[Ŷ = 1]. False positive rate parity

[37, 38] corresponds to letting E be the event that Y = 0 and

letting f(Ŷ , Y ) = 1[Ŷ �= Y ]. True positive rate parity [39]

(also known as “equality of opportunity”) corresponds to letting

E be the event that Y = 1 and f(Ŷ , Y ) = 1[Ŷ �= Y ].

For simplicity, we have defined a fairness metric as a scalar

and assume that it is conditioned over a single event E . It is

easy to extend this definition to multiple events (e.g. for the

fairness metric known as equalized odds) by considering a set

of events {Ej} and keeping track of ED[fj(Ŷ , Y )|Ej , B] for

each. For clarity, we demonstrate how many familiar notions of

fairness can be written in the form of Definition 1 in Table II-A.

There are other metrics that cannot be written in this form; we

do not consider them here.

B. Fairness Metric Estimators

Our first main result is that we can bound fairness metrics

of the form described above on a data set with linear and

probabilistic fairness estimates, given that certain conditions

hold on the relationships between model predictions, the

predicted protected attribute, and the ground truth protected

attribute. To understand this result, we define the probabilistic
and linear estimators.

Intuitively, the probabilistic estimator is the population esti-

mate of the given disparity metric weighted by the probability
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that each observation is in the relevant demographic group.

Formally:

Definition 2 (Probabilistic Estimator). For fairness metric μ
with function f and event E , the probabilistic estimator of μ
for a dataset D is given by

D̂P
μ :=

∑
i∈E bif(Ŷi, Yi)∑

i∈E bi
−

∑
i∈E(1− bi)f(Ŷi, Yi)∑

i∈E(1− bi)
.

It is assumed that at least one observation in the dataset has

had E occur.

Meanwhile, the linear disparity metric is the coefficient of

the probabilistic estimate b in a linear regression of f(Ŷ , Y )
on b and a constant among individuals in E . For example, in

the case of demographic parity, where f(Ŷ , Y ) = Ŷ , it is

the coefficient on b in the linear regression of Ŷ on b and a

constant over the entire sample. Using the well-known form of

the regression coefficient (see, e.g. [42]), we define the linear

estimator as:

Definition 3 (Linear Estimator). For a fairness metric μ with

function f and associated event E , the linear estimator of μ
for a dataset D is given by:

D̂L
μ :=

∑
i∈E

(
f(Ŷi, Yi)− f(Ŷ , Y )

)
(bi − b)∑

i∈E(bi − b̄)2

where · represents the sample mean among event E .

We define DP
μ and DL

μ as asymptotes of probabilistic

and linear estimators, respectively, as the identically and

independently distributed sample grows large.

C. Bounding Fairness with Disparity Estimates

Our main result proves that when certain covariance con-

ditions between model predictions, predicted demographic

attributes, and true demographic attributes hold, we can

guarantee that the linear and probabilistic estimators of the

disparity calculated with the probabilistic protected attribute

serve as upper and lower bounds on the true disparity. This

result follows from the following proposition:

Proposition 1. Suppose that b is a probabilistic estimate

of a demographic trait (e.g., race) given some observable

characteristics Z and conditional on the event E , so that

b = Pr[B = 1|Z, E ]. Define DP
μ as the asymptotic limit of the

probabilistic disparity estimator, D̂P
μ , and DL

μ as the asymptotic

limit of the linear disparity estimator, D̂L
μ . Then:

DP
μ = Dμ − E[Cov(f(Ŷ , Y ), B|b, E)]

Var(B|E) (1)

and

DL
μ = Dμ +

E[Cov(f(Ŷ , Y ), b|B, E)]
Var(b|E) . (2)

Since variance is always positive, the probabilistic and linear

estimators serve as bounds on disparity when Cf,b|B,E and

Cf,B|b,E are either both positive or both negative, since they

are effectively separated from the true disparity by these values:

If they are both positive, then DL
μ serves as an upper bound

and DP
μ serves as a lower bound; if they are both negative,

then DP
μ serves as an upper bound and DL

μ serves as a lower

bound. Formally,

Theorem 1. Suppose that μ is a fairness measure with function

f and conditioning event E as described above, and that

E[Cov(f(Ŷ , Y ), b|B, E)] > 0 and E[Cov(f(Ŷ , Y ), B|b, E ] >
0. Then,

DP
μ ≤ Dμ ≤ DL

μ .

Proposition 1 and Theorem 1, which we prove in Appendix A,

subsume and generalize a result from [19]. These results define

the conditions under which DL
μ and DP

μ serve as bounds on

ground truth fairness violations; since we can use D̂P
μ and

D̂L
μ to estimate these quantities from data (up to sampling

uncertainty1), Theorem 1 thus provides a path to bound fairness

metrics as long as the assumed conditions hold. We demonstrate

the efficacy of this method for measuring fairness metrics of

existing models in practice in Section IV-B. However, as we

demonstrate in the next section, this also provides us with

a simple method to bound fairness violations when training

machine learning models.

III. METHODOLOGY FOR TRAINING

We now combine our fairness estimators with existing

constrained learning approaches to develop a methodology

for training fair models when only a small subset labeled

with ground truth protected characteristics is available. The

key idea of our approach is to enforce both an upper bound

on the magnitude of fairness violations computed with the

probabilistic protected attributes (D̂L
μ ), while also leveraging

the small labeled subset to enforce the covariance constraints
referenced in Theorem 1. This way, since satisfaction of the

covariance constraints guarantees that D̂L
μ serves as a bound

on unfairness, we ensure bounded fairness violations in models

trained with probabilistic protected characteristic labels. Due

to space constraints, we defer discussion of the mathematical

framework underlying the ideas to Appendix B.

Problem Formulation In an ideal setting, given access

to ground truth labels on the full dataset, we could simply

minimize the expected risk subject to the constraint that,

whichever fairness metric we have adopted, the magnitude

of fairness violations does not exceed a given threshold

α. However, in settings where we only have access to a

small labeled subset of data, training a model by directly

minimizing the expected risk subject to fairness constraints on

the labeled subset may result in poor performance, particularly

for complicated learning problems. Instead, we propose to

enforce an upper bound on the disparity estimator as a surrogate
fairness constraint. Recall that Theorem 1 describes conditions

under which the linear estimator upper or lower bounds the

true disparity; if we can enforce these conditions in our

1We show how to compute these standard errors in Appendix A-C, and
then take the extremes of the confidence intervals as our bounds.
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training process using the smaller labeled dataset, then our

training process provides the fairness guarantees desired while

leveraging the information in the full dataset.

To operationalize this idea, we recall that Theorem 1

characterizes two cases in which the linear estimator could

serve as an upper bound in magnitude: in the first case, both

residual covariance terms are positive, and Dμ ≤ DL
μ ; in the

second, both are negative, and DL
μ ≤ Dμ

2. Minimizing risk

while satisfying these constraints in each case separately gives

the following two problems:

Problem 1.A.

min
h∈H

E[L(h(X), Y )]

s.t. DL
μ ≤ α

E[Cov(f,B|b, E)] ≥ 0

E[Cov(f, b|B, E)] ≥ 0

Problem 1.B.

min
h∈H

E[L(h(X), Y )]

s.t. − α ≤ DL
μ

E[Cov(f,B|b, E)] ≤ 0

E[Cov(f, b|B, E)] ≤ 0

To find the solution that minimizes the the fairness violation

with the highest accuracy, we select:

h∗ ∈ argminh∗
1a,h

∗
1b
E[L(h(X), Y )],

where h∗
1a, h∗

1b are the solutions to Problems 1.A and 1.B.

By construction, h∗ is feasible, and so satisfies |Dμ(h
∗)| ≤ α;

moreover, while h∗ may not be the lowest-loss predictor such

that |Dμ| ≤ α, it is the best predictor which admits the linear

estimator as an upper bound on the magnitude of the disparity.

In other words, it is the best model for which we can
guarantee fairness using our measurement technique.

Remark. Note that the second covariance constraint (associated

with the lower bound, i.e. the probabilistic estimator) in each

problem is necessary to rule out solutions far below the desired

range in the opposite sign; otherwise, the optimal solution

to Problem 1.A could have Dμ < −α and the optimal to

Problem 1.B Dμ > α, and the ultimate h∗ selected could be

infeasible with respect to the desired fairness constraint. (Note

also that as a consequence, the probabilistic estimator will also

serve as a lower bound for the magnitude of disparity under

the selected model.)

Empirical Problem The problems above are over the full

population, but in practice we usually only have samples.

We thus now turn to the question of how we can solve the

optimization problem with probabilistic fairness constraints

empirically. We focus on the one-sided Problem 1.A for brevity

2Note that as a result of Proposition 1, when Cf,b|B,E and Cf,B|b,E are
both positive, the true fairness metric is necessarily is forced to be positive,
and symmetrically for for negative values.

but the other side follows similarly. The empirical analogue of

Problem 1.A, which replaces population quantities with their

respective empirical estimators, is the following:

Problem 2.A.

min
hθ∈H

1

nD

nD∑
i=1

L(hθ(Xi), Yi)

s.t. D̂L
μ (hθ) ≤ α

Ĉf,b|B,E(hθ) ≥ 0

Ĉf,b|B,E(hθ) ≥ 0

Solving the empirical problem. While Problem 2.A is a

constrained optimization problem, it is not, except in special

cases, a convex problem. Despite this, recent results [14, 43]

have shown that under relatively mild conditions, a primal-dual

learning algorithm can be used to obtain approximate solutions

with good performance guarantees.3 In particular, if we define

the empirical Lagrangian as:

L̂(θ, �μ) = 1

nD

nD∑
i=1

L(hθ(Xi), Yi)

+ μL

(
D̂L

μ (hθ)− α)
)

− μb|BĈf,b|B,E − μB|bĈf,B|b,E

(3)

(where Ĉf,b|B,E and Ĉf,B|b,E are as in Problem 2.A), the

optimization problem can be viewed as a min-max game

between a primal (θ) and dual (μ) player where players are

selecting θ and μ to maxμ minθ L̂(θ, μ). Formally, Algorithm

1 in the appendix provides pseudocode for a primal-dual learner

similar to [14], [44], etc. specialized to our setting. Adapting

and applying Theorem 3 in [14] provides the following

guarantee:

Theorem 2. Let H have a VC-dimension d, be decomposable,

and finely cover its convex hull. Assume that y takes on a finite

number of values, the induced distribution x|y is non-atomic

for all y, and Problem 2.A has a feasible solution. Then if Al-

gorithm 1 is run for T iterations, and θ̃ is selected by uniformly

drawing t ∈ {1...T}, the following holds with probability 1−δ:

For each target constraint � ∈ {DL
μ , Cf,b|B,E , Cf,B|b,E},

E[�(hθ̃)] ≤ ci +O
(
d logN√

N

)
+O

(
1

T

)
and

E[L(hθ̃, y)] ≤ P ∗ +O
(
d logN√

N

)
where P ∗ is the optimal value of Problem 2.A.

The theorem provides an average-iterate guarantee of

approximate feasibility and optimality when a solution is

drawn from the empirical distribution. Note that it is not a

3For the special case of linear regression with mean-squared error losses,
we provide a closed-form solution to the primal problem. This can be used
for a heuristic solution with appropriate dual weights.
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priori obvious whether our bounds remain informative over

this empirical distribution, but we show in Appendix A that

the covariance conditions holding on average imply that our

bounds hold on average:

Proposition 2. Suppose θ̃ is drawn from the empirical

distribution produced by Algorithm 1. If:

E

[
E[Cov(f(hθ̃(X), B))|E , b]|θ̃

]
≥ 0

and

E

[
E[Cov(f(hθ̃(X), b))|E , B]|θ̃

]
≥ 0,

then E[Dμ(hθ̃)] ≤ E[DL
μ (hθ̃)].

Remark. Combining Theorem 2 and Proposition 2 guarantees

that a randomized classifier with parameters drawn according to

the empirical distribution from Algorithm 1 will approximately

meet our disparity bound goals on average. Without stronger

assumptions, this is all that can be said; this is a general

limitation of game-based empirical optimization methods,

since they correspond equilibrium discovery, and only mixed-

strategy equilibria are guaranteed to exit. In practice, however,

researchers applying similar methods select the final or best

feasible iterate of their model, and often find feasible good

performance [21, 44]; thus in our results section, we compare

our best-iterate performance to other methods.

IV. EMPIRICAL EVALUATION

We now turn to experiments of our disparity measurement

and fairness enforcing training methods4 on predicting voter

turnout, as well as on the COMPAS dataset [45]. In addition,

we provide experiments on simulated data in order to outline

the conditions under which our method outperforms relying

on training a model with the labeled subset alone, which we

expand upon in Appendix G.

A. Data

We perform experiments on two datasets: the L2 dataset [46]

and the COMPAS dataset [23]. In both of these datasets, the

demographic attribute to which we pay attention is race.

L2 Dataset. The L2 dataset provides demographic, voter,

and consumer data from across the United States collected by

the company L2. Here, we consider the task of predicting voter

turnout for the general election in 2016 and measuring model

fairness violations with respect to Black and non-Black voters.

This application is particularly relevant since race/ethnicity

information is often not fully available [13], and much of the

voting rights law hinges on determining whether there exists

racially polarized voting and/or racial disparities in turnout [47].

We focus on the six states with self-reported race labels (North

Carolina, South Carolina, Florida, Georgia, Louisiana, and

Alabama). We denote Ŷ = 1 if an individual votes in the

2016 election and Ŷ = 0 otherwise; refer to Appendix C-A

for a detailed description of this dataset. We select seven

4An implementation of our method is available at: https://github.com/patri
ckvossler18/probfair

features as predictors in our model based on data completeness

and predictive value: gender, age, estimated household income,

estimated area median household income, estimated home value,

area median education, and estimated area median housing

value. Information on our selection process, pre-processing,

and distribution of these features are presented in Appendix

Section C-A. We denote Ŷ = 1 if a voter shows up to vote

for the 2016 election and Ŷ = 0 otherwise. The baseline rates

of voter turnout range between 52-63% across the six states

(see more information in Section C-A in the Appendix).

L2 Race Probabilities. The L2 dataset provides information

on voters’ first names, last names, and census block group,

allowing the use of Bayesian Improved (Firstname and)

Surname Geocoding Method (BISG/BIFSG) for estimating

race probabilities [12, 13, 48]. We obtain our priors through

the decennial Census in 2010 on the census block group level.

AUC for BISG/BIFSG across the six states we investigate in

the L2 data ranges from 0.85-0.90. Further details on how we

implement BISG/BIFSG for L2 data and its performance can

be found in Appendix C-B.

COMPAS Dataset. We also evaluate our measurement and

training methods on models trained on the COMPAS [45]

dataset. The COMPAS algorithm is used by parole officers

and judges across the United States to determine a criminal’s

risk of recidivism, or recommitting the same crime. In 2016,

ProPublica released a seminal article [45] detailing how the

algorithm is systematically biased against Black defendants.

The dataset used to train the algorithm has since been widely

used as benchmarks in the fair machine learning literature. We

use the eight features used in previous analyses of the dataset

as predictors in our model: the decile of the COMPAS score,

the decile of the predicted COMPAS score, the number of prior

crimes committed, the number of days before screening arrest,

the number of days spent in jail, an indicator for whether the

crime committed was a felony, age split into categories, and

the score in categorical form. Further information about our

preparation of the COMPAS dataset can be found in Section F

of the Appendix.

COMPAS Race Probabilities. In the COMPAS dataset,

we generate estimates of race (Black vs. non-Black) based on

first name and last name using a LSTM model used by Zhu

et al. [49] that was trained on voter rolls from Florida. The

accuracy of these models is 73%, while the AUC is 86%. More

detail can be found in Appendix F.

B. Fairness Measurement

In this section, we present our method for bounding the

true disparity when race is not observed. Given 1) model

predictions on a dataset with probabilistic race labels and 2)
true race labels for a small subset of that data, we obtain

bounds on three disparity measures: demographic disparity

(DD), false positive rate disparity (FPRD), and true positive

rate disparity (TPRD).

1) Experimental Design: To simulate measurement of fair-

ness violations on predictions from a pre-trained model with

limited access to protected attribute, we first train unconstrained
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Fig. 1: (Bounding Disparity in L2 Data) Comparison of our method of bounding true disparity (blue) to the method proposed

in Kallus et al. [20] (gray), using a logistic regression model to predict voter turnout in six states. We compare results across

three disparity measures: demographic disparity (DD), false positive rate disp. (FPRD), and true positive rate disp. (TPRD).

Only a small subset (here, n = 1, 500, that is, 1%) of the data contains information on the true race. The gray dot represents

the true disparity. The dashed lines represent 95% confidence intervals. Both methods successfully bound the true disparity

within its 95% standard errors, but our estimators provide much tighter bounds.

Fig. 2: (Bounding Disparity in COMPAS Data) Comparison of our method of bounding true disparity (blue) to the method

proposed in Kallus et al. [20] (gray), using a logistic regression model to predict two-year recidivism on the COMPAS dataset.

We access the disparity on the same measures as in Figure 1. The gray dot represents the true disparity. The dashed lines

represent 95% confidence intervals. Both methods always bound the true disparity within the 95% standard errors, but our

method provides tighter bounds.

logistic regression models with an 80/20 train/test split on both

datasets: in the case of L2, this is state by state. Then, in

order to simulate realistic data access conditions, we measure

fairness violations on a random subsample of the test set, with

a percentage of this sample including ground truth race labels

to constitute the labeled subset which we use to calculate the

covariance constraints. In the case of the L2 data, the random

subsample over which we measure fairness violations has

n = 150, 000, with 1% (n = 1, 500) of this sample including

ground truth race labels to constitute the labeled subset. In the

case of the COMPAS dataset, which is much smaller, we use

the entire test set to measure fairness violations (n = 1, 226)

and we construct the labeled subset by sampling 50% of the

test set (n = 613).

We first check the covariance constraints on the labeled

subset, and then calculate D̂L and D̂P on the entire set of

examples sampled from the test set. We also compute standard

errors for our estimators as specified by the procedure in

Appendix Section B. To evaluate our method, we measure true

fairness violations on the examples sampled from the test set,

and check to see whether we do in fact bound the true fairness

violations within standard error. Further information about our
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unconstrained models can be found in Appendix Section D-A.

We present our results in Figure 1, which shows the results

over the L2 data, and Figure 2, which shows the results over

the COMPAS data.

2) Comparisons: We compare our method for estimating

fairness violations using probabilistic protected characteristic

labels with the method described by Kallus et al. [20], which is

one of the only comparable methods in the literature. We will

refer to this method as KMZ from here on. Details of KMZ and

our implementation can be found in Appendix Section D-B.

3) Results: We first analyze our results on voter data.

Figure 1 compares our method of estimating disparity (blue)

with KMZ (gray) for the three disparity measures on the six

states we consider. This figure shows estimates when training

a logistic regression model, and Figure 8 in the Appendix

shows similar results for training random forests. Across all

experiments, both KMZ’s and our estimators always bound

true disparity. However, we observe two crucial differences:

1) our bounds are markedly tighter (3.8x smaller on average

and as much as 5.5x smaller) than KMZ, and as a result 2)
our bounds almost always indicate the direction of the true

disparity. When they do not, it is due to the standard error,

which shrinks with more data. By contrast, KMZ’s bounds

consistently span [−0.5, 0.5], providing limited utility even for

directional estimates.

We now turn to the COMPAS data. Similarly to the L2

data, our bounds are consistently tighter than KMZ, albeit

to a lesser extent in this case, since the COMPAS dataset is

significantly smaller (1.69x on average and up to 2.04x smaller).

We emphasize that, unlike KMZ, our estimators are always

within the same sign as the true disparity, barring the standard

errors that shrink as the data grows larger.

C. Fairness-constrained Training

In this section, we demonstrate the efficacy of our approach

for training fairness-constrained machine learning models.

Following our algorithm in Section III, we train models with

both covariance conditions necessary for the fairness bounds

to hold and also constrain the upper bound on absolute value

of disparity, D̂L
μ , to be below some bound α. We find that

our method 1) results in a lower true disparity on the test set

than using the labeled subset alone, or using prior methods

to bound the disparity; 2) more frequently reaches the target

bound than other techniques; and 3) often incurs less of an

accuracy trade-off when enforcing the same bound on disparity

compared to related techniques. We also demonstrate via our

simulation study that there exist regimes in which our approach

meets the goal of keeping disparity below the desired threshold,

whereas training on the small labeled subset alone does not.

1) Experimental Design: We demonstrate our technique by

training logistic regression models to make predictions with

bounded DD, FPRD, and TPRD across a range of bounds, on

both the L2 dataset and the COMPAS dataset. We use logistic

regression as a proof-of-concept, but because our method builds

upon the algorithm proposed in [14], it can be extended to

any gradient-based machine learning method, including e.g.

neural networks. Within the L2 dataset, we train these models

on the data from Florida, as it has the largest unconstrained

disparity among the six states, see Figure 1. We report the

mean and standard deviations of our experimental results for

ten trials. For each trial, we split our data (n = 150, 000 for

L2 data, n = 6, 128 for COMPAS data) into train and test

sets, with an 80/20 split. From the training set, we subsample

the labeled subset so that it is 1% of the total data (n =
1, 500) for the L2 data and 10% of the total data for the

COMPAS dataset, since it is much smaller (around n = 613).

To enforce fairness constraints during training, we solve the

empirical Problem 2.A and its symmetric analogue, which

enforces negative covariance conditions and D̂L
μ as a (negative)

lower bound. We use the labeled subset to enforce adherence to

the covariance conditions during training. We use the remainder

of the training data, as well as the labeled subset, to enforce the

constraint on D̂L
μ during training. As noted in Section III, our

method theoretically guarantees a near-optimal, near-feasible

solution on average over θ(1)...θ(T ). However, following Wang

et al. [21], for each of these sub-problems, we select the best

iterate θ(t) that satisfies the bound on D̂L
μ on the training set, the

covariance constraints on the labeled subset, and that achieves

the lowest loss on the training set. We report our results on

the solution between these two sub-problems that is feasible

and has the lowest loss. We present the accuracy and resulting

disparity of model predictions on the test set after constraining

fairness violations during training for a range of metrics (DD,

FPRD, TPRD), across a range of bounds for our method, as

well as three comparisons, described below, over L2 data and

COMPAS data, in Figure 3 and Figure 4 respectively. We

note that the resulting disparities for the unconstrained model

differ among the three fairness metrics. For DD and TPRD, the

unconstrained model resulted in a 0.28-0.29 disparity, but it

drops to 0.21 for FPRD. We adjusted our target fairness bounds

accordingly. Further details about the experimental setup can

be found in Appendix Section E-A. Our experimental design

for our experiments with synthetic data differ, and we outline

our setup and results in Section IV-D.
2) Comparisons: We compare our results for enforcing

fairness constraints with probabilistic protected attribute labels

to the following methods:

(a) A model trained only on the labeled subset with true race

labels, enforcing a fairness constraint over those labels.

This is to motivate the utility of using a larger dataset with

noisy labels when a smaller dataset exists on the same

distribution with true labels. To implement this method,

we use the non-convex constrained optimization technique

from Chamon et al. [14] to enforce bounds on fairness

violations calculated directly on ground-truth race labels,

as we describe in greater detail in Appendix E-B. From

hereon, we refer to this method as labeled subset.
(b) We compare with a recent method by Wang et al. [21] for

enforcing fairness constraints on data with noisy protected

attributes and a labeled auxiliary set, which is based on

an extension of Kallus et al. [20]’s disparity measurement

method. This method guarantees that the relevant disparity
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Fig. 3: (Satisfying fairness constraints in L2 Data) Mean and standard deviation of resulting disparity (top, y-axis) and

accuracy (bottom, y-axis) on the test set after enforcing the target fairness bounds (x-axis) on our method (blue); only using the

labeled subset with true labels (orange) and Wang et al. [21] (green) over ten trials. On the top row, we fade bars when the

mean does not meet the desired bound, which is indicated by the dotted blue lines. The dashed gray line in all plots indicates

the disparity from the unconstrained model.

metrics will be satisfied within the specified slack, which

we take as a bound. However, their implementation does

not consider DD; further details on this method can be

found in Appendix Section E-C.

(c) We compare with a method for enforcing fairness with

incomplete demographic labels introduced by Mozannar

et al. [24], which essentially modifies the fair training

approach of Agarwal et al. [50] to optimize accuracy on

the entire available data, but to only enforce a fairness

constraint on the available demographically labeled data.

This method also guarantees that the relevant disparity

metrics will be satisfied within the specified slack, which

we modify to be comparable to our bound. Details on this

approach can be found in Appendix E-D.

In Appendix Section E-F, we also compare our method with

two other models: 1) an “oracle” model trained to enforce

a fairness constraint over the ground-truth race labels on the

whole dataset; and 2) a naive model which ignores label noise

and enforces disparity constraints directly on the probabilistic

race labels, thresholded to be in {0, 1}.

3) Results: We first analyze our results on the L2 data. We

display our results in Figure 3. Looking at the top row of

the figure, we find that our method, in all instances, reduces

disparity further than training on the labeled subset alone (blue

vs. orange bars in Figure 3), than using Wang et al. [21] (blue

versus green bars in Figure 3), and than using Mozannar er

al. [24] (blue versus pink bars in Figure 3). Second, our method

satisfies the target fairness bound on the test set more often than

the other methods (12 out of 12 experiments, as opposed to 0,

1, and 0 for labeled subset, Wang, and Mozannar respectively).

In other words, the disparity bounds our method learns on the

train set generalize better to the test set than the comparison

methods. We note that deviations from the enforced bound on

the test set, when they arise, are due to generalization error in

enforcing constraints from the train to the test set, and because

our training method guarantees near-feasible solutions.

The bottom row of the figure shows how our method

performs with respect to accuracy in comparison to other

methods. The results here are more variable; however, we

note that this dataset seems to exhibit a steep fairness-accuracy

tradeoff — and yet despite our method reducing disparity much

more than all other methods (indeed, being the only approach

that reliably bounds the resulting disparity in the test set),

we often perform comparably or slightly better. For example,

when mitigating TPRD, our method mitigates the disparity

much more than Mozannar et al. [24] and Wang et al. [21],

but generally outperforms both with respect to accuracy. In

the case of FPRD our method exhibits accuracy comparable

to that of Wang et al. while consistently satisfying the target

fairness constraint.

Next, we turn to our results on the COMPAS [45] dataset in

Figure 4, which is set up identically to Figure 3, with disparity

results on the top and accuracy results on the bottom. We

see that our method again reliably meets the desired disparity

bound for 34 out of 36 experiments across the different metrics,

even for small target disparity values, while achieving accuracy

comparable to the baseline methods. In the cases where our

method’s accuracy is lower than that of the comparison methods,

it is the only method that consistently satisfies the target

disparity constraint. Although Mozannar et al. (red) has the
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Fig. 4: (Satisfying fairness constraints in COMPAS Data) Mean and standard deviation of resulting disparity (top, y-axis)

and accuracy (bottom, y-axis) on the test set after enforcing the target fairness bounds (x-axis) on our method (blue); Wang et

al.’s method (green); Mozannar et al.’s method (red) and only using the labeled subset with true labels (orange). On the top

row, we fade bars when the mean does not meet the desired bound, which is indicated by the dotted blue lines. The dashed

gray line in all plots indicates the disparity from the unconstrained model.

highest accuracy across different target disparity values for

DD and FPRD, it satisfies the target disparity bound in only

three of the 36 experiments and particularly fails to satisfy the

target disparity constraint for small disparity values. Wang et

al. (green) has the highest accuracy for the TPRD experiments,

but only satisfies the disparity constraint for FPRD and TPRD

for disparity values greater than 0.1. Finally, the labeled subset

baseline (orange) is only able to satisfy the target disparity

constraint for large disparity values and typically has lower

accuracy than the other comparison methods.

D. Simulation Study

We note that the utility of our method is often dependent

upon the size of the subset of the data labeled with the protected

attribute. If this subset is relatively large, then (depending on

the complexity of the learning problem) it may be sufficient to

train a model using the available labeled data. Conversely, if

the labeled subset is exceedingly small, the enforcement of the

covariance constraints during training may not generalize to

the larger dataset. To characterize the regimes under which our

method may be likely to perform well relative to others, we

empirically study simulations that capture the essence of the

situation. We study the utility of our method in comparison

to only relying on the labeled subset to train a model along

two axes: 1) size of the labeled subset and 2) data complexity,

which we simulate by adjusting the number of features. While

stylized, our simulation has the advantage that we can vary key

features of the setting like the dimensionality and distribution

of the data, the size of the labeled and unlabeled datasets,

the complexity of the relationship between the features and

the outcome, and so on. For simplicity, we also would like

the ability to impose positive covariance conditions in the

data-generating process. To ensure this while also allowing

for the tuneability and flexibility we require, we settle on a

hierarchical model specified by parameterized components that

are individually simple but can serve as building blocks. See

Appendix G, including Figure 15, for a visualization via the

language of causal diagrams and further discussion.

At a high level, the model can be described as follows.

Individuals have a set of “primary” features denoted which are

drawn randomly from some distribution. The probability that

the individual is Black is a function of these primary features,

and their status as Black or non-Black is simply a Bernoulli

random variable with mean of said probability. There are then

“secondary” features, each of which are functions of all the

primary features. A score is generated as a function of these

secondary features and the outcome of interest is generated by

thresholding this score and randomly perturbing it with small

probability.

Using this high-level structure, we can generate a family

of data-generating processes by choosing different functions

that represent the links between the features. In particular,

we will use polynomials with randomly selected coefficients.

This allows us to vary the model by increasing the number of

features or degree of the polynomials without directly selecting

all the constants involved. We provide further details, including

specific functional forms and assumed distributions, in Section

G.

Given the family of data-generating processes, we consider

three different levels of complexity – cubic polynomials of
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Fig. 5: (Simulation varying size of labeled subset) We present a three by three figure showing the test disparity of the our

disparity reduction method when compared with relying on only the labeled subset to reduce disparity by directly enforcing a

constraint on the protected attribute labels. The rows correspond to datasets of increasing sizes (number of features from 10 to

50), indicating problems of increasing complexity. The columns correspond to the size of the overall dataset, ranging from

5,000 to 50,000 samples. The x-axis shows the percentage of the total dataset is dedicated to the labeled subset, and the y-axis

denotes the percentage disparity between the two groups calculated on the test set. The blue graphs correspond to our method

and the orange graphs to the labeled subset method. The red dashed line is the desired disparity bound.

10, 20, or 50 features – and draw datasets of 5,000, 10,000,

or 50,000 observations; of these, we vary the percentage

with labels revealed to the learner ranging from 0.5 to 40%,

depending on the size of the dataset. We then compare our

method to simply training on a fair model on the true labels

of the labeled subset. Figure 5 shows the disparity for both

methods in each of the scenarios. Overall, we find that there

exists a regime, even in simple problems, where there is

insufficient data for the labeled subset to effectively bound

the disparity to the desired threshold. We find that the more

complex the data is, the larger this regime is—with the most

complex setting in our simulations (50 features) suggesting that

the labeled subset technique does not converge to the desired

disparity bounds even when the size of the labeled subset is

10,000 samples, or 20% of the overall dataset.

V. RELATED WORK

Kallus et al. [20] propose a method for measuring fairness

violations in data with limited access to protected attribute

labels. Their method involves finding the tightest possible set

of true disparities given probabilistic protected attributes. An

important difference between Kallus et al. and our method

relates to their assumptions around the auxiliary dataset. The

core difference is that Kallus et al. consider settings where

the auxiliary and test sets are independent datasets, while our

method considers the case where the test set subsumes the

auxiliary data. We explain this difference in further detail in

Appendix D-B

Regarding bias mitigation, while there are many methods

available for training models with bounded fairness viola-

tions [11, 39, 50], the vast majority of them require access to the

protected attribute at training or prediction time. Although there

are other works which assume access only to noisy protected

attribute labels [21], and no protected attribute labels [51], or

even a labeled subset of protected attribute labels, but without

an auxiliary set to generate probabilistic protected attribute

estimates [52]; very few works mirror our data access setting.

One exception, from which we draw inspiration, is Elzayn et

al. [19]; that work studies in detail the policy-relevant question

of whether Black U.S. taxpayers are audited at higher rates than

non-Black taxpayers, and uses a special case of our Theorem

1 (for measurement of demographic disparity only). In this

paper, we formalize and extend their technique to bound a

wide array of fairness constraints and introduce methods to

train fair models given this insight.

Another exception, which we compare to in Section IV-C,

171

Authorized licensed use limited to: Stanford University Libraries. Downloaded on August 25,2025 at 16:43:15 UTC from IEEE Xplore.  Restrictions apply. 



is that of Mozannar et al. [24]. While Mozannar et. al largely

focus on the problem of training private fair models, thus

employing very strong conditional independence assumptions

on the protected attribute proxy which are infesible in our

setting, the authors do propose an extension of their method

to handle a the case of limited protected attributes without

considering privacy, which mirrors our data access assumptions.

This extension is essentially a repurposing of the Agarwal et

al. [50] fair training approach, modified such that the model

is trained with all available data, but the fairness bounds are

only enforced during training on the small subset of training

points with protected attribute labels. It is this extension that

we compare to in Section IV-C, and find that our method

often outperforms theirs in reducing disparities and performs

comparably in terms of accuracy.

Within the set of techniques with a different data access

paradigm, we differ from many in that we leverage information

about the relationship between probabilistic protected attribute

labels, ground truth protected attribute, and model predictions

to measure and enforce our fairness bounds. Thus, while we

do require the covariance conditions to hold in order to enforce

our fairness bounds, we note that these are requirements we

can enforce during training, unlike assumptions over noise

models as in other approaches to bound true disparity with

noisy labels [53, 54, 55]. Intuitively, leveraging some labeled

data can allow us to have a less severe accuracy trade-off when

training fair models, as demonstrated with our comparison to

Wang et al. [21]. In this case, using this auxiliary data means

that we do not have to protect against every perturbation within

a given distance to the distribution, as with distributionally

robust optimization (DRO). Instead, we need only to enforce

constraints on optimization, which we observe leads to a lower

fairness-accuracy trade-off in our experiments. a lower fairness-

accuracy trade-off.

VI. DISCUSSION

In this work, we introduce a technique for measuring and

reducing fairness violations in a setting with limited access

to protected attribute data by leveraging probabilistic proxies

(e.g., based on name and geolocation). These techniques may

help private and public actors better measure algorithmic

disparity and fulfill legal and moral obligations to ensure

that algorithmic decision-making does not disparately impact

disadvantaged or protected groups. However, the collection and

use of protected attribute information is inherently sensitive and

raises privacy concerns. Additionally, building a probabilistic

model to estimate protected attributes raises important ethical

and practical questions as well, such as who has access to

these models and what are the protocols for its responsible

deployment. Moreover, the approach requires committing to a

particular notion of groups to measure and mitigate fairness

with respect to, an exercise which in itself can be fraught.

Given the increasing stakes of algorithmic deployment as well

as increasing regulatory and public pressure, we believe that

the benefit of being able to more effectively measure and

reduce unfairness in model predictions outweighs these risks,

but practitioners applying our method must carefully consider

these concerns in the wider context in which they work.

We note several avenues for future work. First, while our

framework can be applied iteratively to handle multiple sensi-

tive groups, generalizing our framework to account for them

directly, and additionally to handle intersectional groups, would

be preferable. Second, while binary classification is perhaps the

most common task in machine learning, handling more general

tasks, such as multi-label classification or regression, would

extend the applicability of results. Finally, in the proposed

method, it is important that the probabilistic predictions are

representative of the population of interest; in practice, this

means either assuming that the dataset from which probabilistic

predictions are learned is drawn from the same population,

or that reweighting techniques can be used to construct a

representative sample. In the future, it would be useful to use

techniques from sensitivity analysis to bound the impact of

selection bias on measurement error and robust learning to

train low-disparity models under worst-case selection bias.
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APPENDIX A

MAIN PROOFS

A. Proof of Theorem 1

First, we demonstrate the following lemma:

Lemma 1. Suppose that 0 < b < 1 almost surely and

E|f(Ŷ , y)|E| is finite. Under the assumption of independent

and identically distributed data with E having strictly positive

probability, the asymptotic limits DP
μ and DL

μ satisfy:

DP
μ =

Cov
[
b, f(Ŷ , Y )|E

]
E[b|E ](1− E[b|E ]) and DL

μ =
Cov

[
b, f(Ŷ , Y )|E

]
Var[b|E ] ,

and thus

DP
μ = DL

μ · Var[b|E ]
E[b|E ](1− E[b|E ]) .

Proof. We note that:

1

nE

∑
i∈E

bi
nE→∞−→ E[b|E ]

and
1

nE

∑
i∈E

bif(Ŷ , Y )
nE→∞−→ E[b · f(Ŷ , Y )|E ]

by the Strong Law of Large Numbers. Similarly,

1

nE

∑
i∈E

(1− bi)f(Ŷ , Y )
nE→∞−→ E[(1− b) · f(Ŷ , Y )|E ]

1

nE

∑
i∈E

(1− bi)
nE→∞−→ E[1− b|E ]

Then dividing numerators and denominators in the definition

of the empirical estimator gives that:

D̂P
μ =

1
nE

∑
i∈E bif(Ŷi, Yi)
1
nE

∑
i∈E bi

−
1
nE

∑
i∈E(1− bi)f(Ŷi, Yi)
1
nE

∑
i∈E(1− bi)

nE→∞−→ E[bf(Ŷ , Y )|E ]
E[b|E ] − E[(1− b)f(Ŷ , Y )|E ]

E[(1− b)|E ]
Combining terms and expanding out the algebra, the last term

is:

E[bf(Ŷ , Y )|E ]− E[b|E ]E[f(Ŷ , Y )|E ]
E[b|E ](1− E[b|E ]) =

Cov
[
b, f(Ŷ , Y )|E

]
E[b|E ](1− E[b|E ]) .

On the other hand, the linear estimator converges asymptotically

to

D̂L
μ

nE→∞−→
Cov

[
b, f(Ŷ , Y )|E

]
Var[b|E ] .

This result can be seen by conditioning on E and then making

the standard arguments for the asymptotic convergence of the

OLS estimator. Comparing forms of the limits gives the final

result.

Our key theorem follows as a corollary from the following

proposition, (Proposition 1 in the main text):

Proposition. Suppose that b is a prediction of an individual’s

protected attribute (e.g. race) given some observable characteris-

tics Z and conditional on event E , so that b = Pr[B = 1|Z, E ].
Define DP

μ as the asymptotic limit of the probabilistic disparity

estimator, D̂p, and Dl as the asymptotic limit of the linear

disparity estimator, D̂l. Then:

1)

DP
μ = Dμ − E[Cov(f(Ŷ , Y ), B|b, E)]

Var(B|E) (1.1)

2)

DL
μ = Dμ +

E[Cov(f(Ŷ , Y ), b|B, E)]
Var(b|E) (1.2)

We will proceed by providing separate proofs for (1.1)

and (1.2). We will also first separately highlight that disparity

is simply the dummy coefficient on race in a(n appropriately

conditioned) regression model. This fact may be known by

some readers in the context of regression analysis (especially

without conditioning on a given event), but we provide proof

of the general case.

Lemma 2. Let Dμ be the disparity with function f and event

E . Then Dμ can be written as:

Dμ =
Cov(f(Ŷ , Y ), B|E)

Var(B|E) .

Proof. Note that by definition:

Dμ = E[f(Ŷ , Y )|E , B = 1]− E[f(Ŷ , Y )|E , B = 0].

If the right hand side of the equation in the statement of the

lemma can be written this way, we are done. But note that:

Cov(f(Ŷ , Y ), B|E)
Var(B|E) =

E[f(Ŷ , Y )B
∣∣E ]− E[f(Ŷ , Y )|E ]E[B∣∣E ]

E[B
∣∣E ](1− E[B|E ]) .

Now using the law of iterated expectations and simplifying:

E[f(Ŷ , Y )B|E ] = E[E[f(Ŷ , Y )B|E , B]

= E[f(Ŷ , Y )B|B = 1, E ] Pr[B = 1|E ]
+ E[f(Ŷ , Y )B|B = 0, E ] Pr[B = 0|E ]
= E[f(Ŷ , Y )|B = 1, E ] Pr[B = 1|E ]
+ E[0] Pr[B = 0|E ]
= E[f(Ŷ , Y )|B = 1, E ] Pr[B = 1|E ]

Moreover, since B is a Bernoulli random variable, Pr[B =
1|E ] = E[B|E ] and

Var(B|E) = E[B|E ](1− E[B|E ])
Combining these, we can write:

E[f(Ŷ , Y )B
∣∣E ]E[B|E ]− E[f(Ŷ , Y )|E ]E[B∣∣E ]
E[B

∣∣E ](1− E[B|E ])

=
E[f(Ŷ , Y )|B = 1, E ]− E[f(Ŷ , Y )|E ]E[B|E ]

(1− E[B|E ])
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This can be expanded as:

E[f(Ŷ , Y )|B = 1, E ]
(1− E[B|E ])

− E[f(Ŷ , Y )|B = 1, E ] Pr[B = 1|E ]
(1− E[B|E ])

− E[f(Ŷ , Y )|B = 0, E ] Pr[B = 0|E ]
(1− E[B|E ])

=
E[f(Ŷ , Y )|B = 1, E ](1− Pr[B = 1|E ])

(1− Pr[B = 1|E ])
−E[f(Ŷ , Y )|B = 0, E ](1− Pr[B = 1|E])

(1− Pr[B = 1|E ])
= E[f(Ŷ , Y )|B = 1, E ]− E[f(Ŷ , Y )|B = 0, E ]

as desired.

Note that the familiar interpretation of demographic disparity

being the dummy coefficient falls out from this lemma by letting

E be the event “always true” and f(Ŷ , Y ) = Y .

Now we can turn to proving (1.1). Recall first that, by

assumption:

b = Pr[B = 1|Z, E ] = E[1[B = 1]|Z, E ]
=⇒ b = E[B|Z, E ] ∀Z
=⇒ E[b|E ] = E[E[B|Z, E ]] = E[B|E ]

by the law of iterated expectations. Moreover, if we define ε
as B − b, then:

E[ε|Z, E ] = E[B|Z, E ]− E[b|Z, E ] = 0

Proof of (1.1). Note that by Lemmas 1 and 2:

Dμ −DP
μ =

Cov
[
f(Ŷ , Y ), B|E

]
Var(B|E) −

Cov
[
f(Ŷ , Y ), b|E

]
E[b|E ](1− E[b|E ]) .

Since E[b|E ] = E[B|E ] and Var[B|E ] = E[B|E ](1−E[B|E ]) =
E[b|E ](1 − E[b|E ]), the denominators are the same and be

collected as Var(B|E). As for the numerators, we note that

Cov
[
f(Ŷ , Y ), B|E

]
− Cov

[
f(Ŷ , Y ), b|E

]
= Cov

[
f(Ŷ , Y ), B − b|E

]
by the distributive property of covariance. Recall that the law

of total covariance allows us to break up the covariance of

random variables into two parts when conditioned on a third.

Applying this to f(Ŷ , Y ) and B − b, with the conditioning

variable being b, we have that:

Cov
[
f(Ŷ , Y ), B − b|E

]
= E

[
Cov

(
f(Ŷ , Y ), B − b

)
|E , b

]
+Cov

(
E[f(Ŷ , Y )|E , b],E[B − b|E , b]

)
= E

[
Cov

(
f(Ŷ , Y ), B − b

)
|E , b

]
= E

[
Cov

(
f(Ŷ , Y ), B

)
|E , b

]
where the second equality follows because b = E[B|Z, E ] =⇒

E[B|b, E ] = b and the third because b is trivially a constant

given b. Combining these together, we have that:

Dμ −DP
μ =

E

[
Cov

(
f(Ŷ , Y ), B

)
|E , b

]
Var[B|E ]

=⇒ DP
μ = Dμ −

E

[
Cov

(
f(Ŷ , Y ), B

)
|E , b

]
Var[B|E ] ,

as desired.

We now prove (1.2).

Proof of (1.2). First, consider the linear projection of f(Ŷ , Y )
onto B given that E occurs. We can write this as:

f(Ŷ , Y ) = α+ γ ·B + ν,

where it is understood that the equation holds given E . Now,

by the definition of linear projection,

γ =
Cov(f(Ŷ , Y ), B|E)

Var(B|E) = Dμ

where the last equality follows by Lemma 2, and by the

definition of linear projection, Cov(B, ν|E) = 0.

Now, consider the linear projection of f(Ŷ , Y ) onto b given

E . Again we can write the equation:

f(Ŷ , Y ) = α′ + βb+ η

and similarly

β =
Cov(f(Ŷ , Y ), b|E)

Var(b|E) = DL
μ

and Cov(b, η|E) = 0.

Now, by applying the Law of Total Covariance to the

equation above, we have:

βVar(b|E) = Cov(f(Ŷ , Y ), b|E)
= E[Cov(f(Ŷ , Y ), b|E , B]

+ Cov(E[f(Ŷ , Y )|E , B],E[b|E , B]).

We will focus for now on the latter term. Note that by

replacing f(Ŷ , Y ) by α+ γB + ν, we can obtain:

Cov(E[f(Ŷ , Y )|B, E ],E[b|B, E ]) = Cov(γB + E[ν|B],

B − E[ε|B]
∣∣E)

where we have moved out the event E and used the fact that α
is a constant and B is a constant conditional on B to remove

them from the inner expectations. We can expand as

Cov
(
γB + E[ν|B, E ], B − E[ε|B]

∣∣E) .
We can further expand this covariance term to be

= γVar(B|E)− γ Cov(B,E(ε|B)
∣∣E)

+ Cov(E(ν|B), B
∣∣E)− Cov(E(ν|B),E(ε|B)

∣∣E)
= γVar(B|E)− γ Cov(B,E(ε|B)

∣∣E),
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where the last equality is due to the fact that B is binary so

the covariance between B and ν equals zero.

Next we show that the term Cov(B,E(ε|B)
∣∣E) can be

written in terms of b and ε,

Cov(B,E(ε|B)
∣∣E) = E[BE[ε|B]]− E[B]E[E[ε|B]]

= E[E[Bε|B]
∣∣E ]− E[B|E ]E[E[ε|B]|E ]

= E[Bε|E ]− E[B|E ]E[ε|E ]
= Cov(B, ε

∣∣E)
= Cov(b+ ε, ε

∣∣E)
= Cov(b, ε

∣∣E) + Var(ε|E).
Plugging these results back into the original equation and

using the fact that B = b+ ε, we have

βVar(b|E) = E[Cov(f(Ŷ , Y ), b|E , B]

+ γVar(B|E)− γVar(ε|E)− γ Cov(b, ε
∣∣E)

= γ[Var(b|E) + Cov(b, ε
∣∣E)]

+ E[Cov(f(Ŷ , Y ), b|E , B]

= γVar(b|E) + E[Cov(f(Ŷ , Y ), b|E , B],

where the last equality is due to the fact that E[ε|Z, E ] =
0.

B. Proof of Proposition 2

Proof. For a fixed θ̃, we can apply Theorem 1 to write that:

Dp
μ(hθ̃) = Dμ(hθ̃)−

E[Cov(f(hθ̃, Y ), B|b, E ]
Var[B|E ] ,

where the expectation in the numerator is over the distribution

of the data. Now, if θ̃ is drawn from a distribution θ (in

particular, θ corresponding to θt with t being drawn from

1...T ) that is independent of the data, we can treat the quantities

as random variables drawn from a two step data-generating

process. In our setting (as in classical, but not all, learning

settings), the distribution of future data is assumed not to

depend on our selected model. Then by the linearity of

expectations, we have that

Eθ̃∼θ

[
Dp

μ(hθ̃)
]− Eθ̃∼θ

[
Dμ(hθ̃)

]
= Eθ̃∼θ

[
E[Cov(f(hθ̃, Y ), B|b, E ]

Var[B|E ]
]
.

A similar statement can be made for the relationship between

Eθ̃∼θT

[
Dp

μ(hθ̃)
]

and Eθ̃∼θT

[
Dμ(hθ̃)

]
.

C. Standard Errors

Here, we discuss the calculation of standard errors; these

arguments are more general, but substantially similar, to those

made in [19]. As shown in the proof of Theorem 1, D̂l
μ

and D̂p
μ converge to their asymptotic limits, Dl

μ and Dp
μ,

respectively; however, given that we observe only a finite

sample, our estimates D̂l
μ and D̂p are subject to uncertainty

whose magnitude depends on the sample size of the data.

Since the D̂l
μ is simply the linear regression coefficient,

its distribution is well-studied and well known. In particular,

under the classical ordinary least squares (OLS) assumptions

of normally distributed error, β̂ ∼ N
(
β, σ2

ns2b

)
where s2b is the

sample variance of b; under mild technical conditions, central

limit theorems can be invoked to show that as the size of

data increases, β̂ follows a distribution that is increasingly

well-approximated by said normal distribution [56]. Note that,

since as shown in Lemma 1

DL
μ =

Cov(f(Ŷ , Y ), b|E)
Var[b|E

and

DP
μ =

Cov(f(Ŷ , Y ), b|E)
E[b|E ](1− E[b|E ]) ,

it follows that

DP
μ = DL

μ · Var[b|E ]
E[b|E ](1− E[b|E])

;

analogously, by expanding the definitions of the sample

estimators, we can easily see that:

D̂P
μ = D̂L

μ =
1
nE

∑
i∈E(bi − b̄E)2

b̄E(1− b̄E)
.

Then by Slutsky’s theorem, we can state that:

D̂P
μ

n→∞−→ D̂L
μ

Var[b|E ]
E[b|E ](1− E[b|E])

.

As a consequence, the distribution of D̂P
μ is a scaled version

of the distribution of D̂L
μ , and in particular

D̂P
μ −DP

μ

VarD̂L
μ

√
Var[b|E]

E[b|E](1−E[b|E])

n→∞−→ N (0, 1) .

Thus, in practice, we can estimate the variance of D̂L
μ as if it

were the usual OLS estimator and then estimate Var[b|E ] and

E[b|E ] to scale it appropriately.

D. Obtaining the probabilistic prediction

1) BIFSG: Recall that conceptually, b functions as a prob-

abilistic confidence score that an individual has B = 1. A

perfectly calibrated b will thus have E[B|b] = b, and our

main theorems assume that we have access to this. In practice,

however, b must be estimated; in this work, we focus on the

commonly used [16, 20, 57, 58] Bayesian Imputations with First

Names, Surnames, and Geography (BIFSG). In BIFSG, we

make the naive conditional independence assumption that the

proxy features are independent conditional on the protected

characteristic. In the case of BIFSG, this amounts to assuming

that:

Pr[F, S,G|B] = Pr[F |B] Pr[S|B] Pr[G|B],

where the random variable F is first name, S is surname, and

G is geography . By applying Bayes’ rules to this assumption,
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we can obtain that:

Pr[B|F, S,G] =
Pr[F, S,G|B]

Pr[F, S,G]

=
Pr[F |B] Pr[S|B] Pr[G|B]

Pr[F, S,G]
.

The right-hand side of this equation is fairly easy to estimate

because it requires knowing only marginals rather than joint

distributions (the denominator can be normalized away by

noting that we must have that Pr[B = 1|F, S,G] and

Pr[B = 0|F, S,G] must sum to 1), and these marginals are

often obtainable in the form of publicly available datasets. Note

that, BIFSG can be written in multiple forms by applying Bayes’

rule again to the individual factors (e.g. replacing Pr[F |B] with

Pr[B|F ] Pr[F ]/Pr[B]), which may be convenient depending

on the form of auxiliary data available.

For our setting, we leverage the census and home mortgage

disclosure act (HMDA) data, as mentioned, to estimate b from

publicly available data. We provide quantitative details on

our estimates in Appendix C. We note also that since b is

continuous, we will discretize into equally sized bins whenever

we need to compute quantities conditional on b.
2) Impact of Miscalibration: Throughout the theoretical

work, we have assumed that we have b = Pr[B = 1|Z] – i.e.,

that b is perfectly calibrated. In reality, this is a quantity that is

estimated, and will thus contain some error and/or uncertainty,

including bias due to the fact that the dataset on which it

is estimated (e.g., the census for the U.S. as a whole) may

not be fully representative of the relevant distribution (i.e.,

the distribution of individuals to whom the model will be

applied, which may be a particular subset). This could result

in miscalibration; when this happens, it could be that applying

our method with our miscalibrated b results in failing to bound

disparity (both in measuring alone, and in training).

Ultimately, miscalibration is primarily a problem for our

setting only insofar as it causes the method to fail. For small

amounts of miscalibration, the method tends to succeed anyway

– e.g. in our setting, we do observe that our estimates are not

perfectly calibrated, but we still achieve good results. For larger,

or unknown, miscalibration, there are two paths that can be

taken. The first is to conduct a “recalibration" exercise, and

obtain a modified b that more closely matches the distribution

of interest; this can be as simple as fitting a linear regression

of B on b in the labeled dataset and replacing b with the

predictions of this regression. Alternatively, given an assumed

bound on the magnitude of the miscalibration, Theorem 1 can

be extended to incorporate its effect. In practice, recalibration

is more straightforward to do empirically, but the theoretical

method can also be used for sensitivity analysis; see [19] for

their discussion of the recalibration approach as well as the

effect on their special-case bounds.

Note also that, in settings where E is affected by the modeling

choice h – i.e., when the fairness metric involves conditioning

on model predictions, as in the case of positive predictive value

(PPV) – it may be the case that a perfect or well-calibrated

b for one model may be poorly-calibrated for another. That

is, it may be that among observations, we find that that our

estimate |b(Z)−Pr[B|Z, E(hθ)]| is small while our estimate of

|b(Z)−Pr[B|Z, E(hθ′)| is large. In this case, we can introduce

a recalibration step in-between iterations, although this deviates

from the theoretical assumptions that ensure convergence. Note

that a sufficiently expressive model over a sufficiently powerful

set of proxy features should be able obtain good calibration

overall events E ; this suggests that another path forward in

such a setting may be in investing in alternative, more powerful

(e.g. machine-learned) models of b.

APPENDIX B

MATHEMATICAL FORMULATION OF FAIR LEARNING

PROBLEM

In this section, we discuss our approach to learning a fair

model using the probabilistic proxies and a small subset of

labeled data. To do so, we leverage recent results in constrained

statistical learning.

A. Theoretical Problem

We begin by discussing the theoretical problems – i.e.,

abstracting away from the sample of data and considering

the problems we are trying to solve.

1) One-sided bound: We first consider the case of imposing

a one-sided bound on disparity, i.e. requiring that Dμ ≤ α
but allowing Dμ < −α; certainly this will not be desirable in

all situations, but we can use it as a building block for the

two-sided bound as well.

We begin by formalizing the ideal problem – that is, the

problem we would solve if we had access to ground truth

protected class. This is simply to minimize the expected

risk subject to the constraint that disparity is not “too high”

according to whichever disparity metric we adopt:

Problem 3 (Ideal Problem). Given individual features X , labels

Y , a loss function L, a model class H, a disparity metric μ,

and a desired bound on disparity α, find an h to:

min
h∈H

E[L(h(X), Y )] s.t. Dμ(h) ≤ α,

where Dμ(h) is the μ-disparity obtained by h.

The ideal problem is not something we can solve because

we cannot directly calculate Dμ over the dataset, since it

requires the ground truth protected class label B. But Theorem

1 suggests an alternative and feasible approach: using the linear

estimate of disparity as a proxy bound. That is, if the linear

estimator is an upper bound on the disparity, and the linear

estimator is below α, then disparity is below α too.

Formally, we would solve following problem:

Problem 4 (Bounded Problem Direct). Given individual

features X , labels Y , a loss function L, a model class H,

a disparity metric μ, a desired on disparity α, and a predicted

protected attribute proxy b, find an h to:

min
h∈H

E[L(h(X), Y )] s.t. DL
μ ≤ α

and Dμ ≤ DL
μ .
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Notice that any feasible solution to Problem 4 must satisfy

the constraints of Problem 3, i.e., we must have that Dμ(h) ≤ α.

The gap between the performance of these two solutions can be

regarded as a “price of uncertainty”; it captures the loss we incur

by being forced to use our proxy to bound disparity implicitly

rather than being able to bound it directly. We explore this price

by comparing to an “oracle” which can observe the ground

truth on the full dataset and perform constrained statistical

learning.

As in Problem 2, we cannot directly observe Dμ, so the

second constraint is not one that we can directly attempt to

satisfy. But we know that it holds exactly in the conditions

under which Theorem 1 applies. Therefore, we can replace

that constraint with the covariance conditions:

Problem 5 (Fair Problem - Indirect). Given individual features

X , labels Y , a loss function L, a model class H, a disparity

metric μ (with associated event E and function f(h(X), Y )),
a desired maximum disparity α, and a predicted proxy b, find

an h to:

min
h∈H

E[L(h(X), Y )] s.t. DL
μ ≤ α

and E[Cov(f(h(X), Y ), b|B, E)] ≥ 0

And indeed, these problems are equivalent:

Proposition 3. Problems 5 and 4 are equivalent.

Proof. Theorem 1 directly says that DL
μ ≥ Dμ ⇐⇒

E[Cov(f(h(X), Y ), b|B, E)] ≥ 0. Hence if h satisfies the

constraints of Problem 5 iff it satisfies those of Problem

4. Since the objectives are also the same, the problems are

equivalent.

As written, Problem 5 is still using the population distribu-

tions; we will discuss its empirical analogue below.

2) Two-sided bound: The two-sided bound requires that

|Dμ| ≤ α; this may be more common in practice. Again, we

begin by considering the ideal problem:

Problem 6 (Ideal Symmetric Problem). Given individual

features X , labels Y , a loss function L, a model class H,

a disparity metric μ, and a desired bound on disparity α, find

an h to:

min
h∈H

E[L(h(X), Y )] s.t. |Dμ(h)| ≤ α,

where Dμ(h) is the μ-disparity obtained by h.

As with Problem 4, we cannot directly bound disparity, since

we do not have it, but we do have the disparity estimator. This

leads to the following problem:

Problem 7 (Symmetric Problem Direct). Given individual

features X , labels Y , a loss function L, a model class H, a

disparity metric μ, a desired on disparity α, and a predicted

protected attribute proxy b, find an h to:

min
h∈H

E[L(h(X), Y )] s.t. |DL
μ | ≤ |α|

and |Dμ| ≤ |DL
μ |

Unfortunately, we do not have any theory about putting an

absolute value bound on disparity, and indeed, because the

weighted and linear disparity estimators are positive scalar

multiples of one another, we cannot hope to use one as a

positive upper bound and the other as a negative lower bound.

But notice that if we were to find the best solution when

DL
μ ∈ [0, α], and the best solution when DL

μ ∈ [−α, 0], then

we would cover the same range as [−α, α].

One attempt to apply this principle would be to solve the

following two subproblems:

Problem 6.A.

min
h∈H

E[L(h(X), Y )] s.t. DL
μ ≤ α

and E[Cov(f(h(X), Y ), b|B, E)] ≥ 0

Problem 6.B.

min
h∈H

E[L(h(X), Y )] s.t. − α ≤ DL
μ

and E[Cov(f(h(X), Y ), b|B, E)] ≥ 0

And take:

h∗
5 = argminh∗

6a,h
∗
6b
E[L(h(X), Y )].

But this does not even guarantee a feasible, let alone optimal,

solution to Problem 7. To see this, note that there is nothing

preventing h∗
6a to be not simply ≤ α, but in fact < −α, and

vice versa. In particular, what went wrong is that we did not

find the two best solutions over [−α, 0] and [0, α], but rather

the two best over [−∞, α] and [−α,∞], which is no constraint

at all.

To get around this issue, we can solve the following two

problems instead:

Problem 7.A.

min
h∈H

E[L(h(X), Y )] s.t. DL
μ ≤ α

and E[Cov(f(h(X), Y ), b|B, E)] ≥ 0

and E[Cov(f(h(X), Y ), B|b, E)] ≥ 0

Problem 7.B.

min
h∈H

E[L(h(X), Y )] s.t. − α ≤ DL
μ

and E[Cov(f(h(X), Y ), b|B, E)] ≤ 0

and E[Cov(f(h(X), Y ), B|b, E)] ≤ 0

Why are these different? Notice that imposing both co-

variance constraints in 7.A enforces that Dp
μ ≤ Dμ ≤ DL

μ ;

since Dp
μ = DL

μ
Varb

E[b](1−E[b]) – i.e. Dp
μ is always an attenuated

version of Dl
μ – this can only be the case if all three terms are

nonnegative. Similarly, 7.B enforces that Dp
μ ≥ Dμ ≥ Dl

μ; this

similarly ensures that all three terms are nonpositive. Since

these terms also include the bound on the linear estimator, they

thus ensure that if we take:

h ∈ argminh∗
7a,h

∗
7b
E[L(h(X), Y )],
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we will indeed obtain a feasible solution to Problem 7. As

in Problem 5, there may again be a suboptimality gap since

we have effectively imposed more constraints to the original

problem.

B. Solving the Empirical Problems

In this section, we use recent results in constrained statistical

learning to formulate and motivate empirical problems that we

can solve which obtain approximately feasible and performant

solutions to the problems above. We summarize here the

conceptual basis at a high level, providing a discussion of

the rationale behind Theorem 2 in the main text, drawing

heavily on [14]. We refer interested readers to said work, as

well as [43] for a fuller and more detailed discussion of the

constrained statistical learning relevant to our setting, and [44]

for more general discussion of non-convex optimization via

primal-dual games.

1) Relating our Formulation: We begin by describing the

relationship between our problem of interest and that considered

in [14]. The (parameterized version of the) problem in [14] is

the following:

Problem 8 (Parameterized Constrained Statistical Learning

(P-CSL) from [14]).

P ∗ =min
θ∈Θ

E(x,y)∼D0
[�0(fθ(x), y)]

s.t. E(x,y)∼Di
[�i(fθ(x, y)] ≤ ci, i = 1...m

That is, they aim to minimize some expected loss subject to

some constraints on other expected losses, with loss functions

that may vary and be over different distributions. Our problem

(Problem 5) can be seen as a special case of this, though

our framing is different. To see the correspondence, consider

applying the following to Problem 8:

1) Take Di to be the restriction of D to E
2) Take �0 to be the loss function of interest, e.g. 1[h �= y]

for accuracy

3) Take �1 = f(h(X), Y ) and c1 as α

4) Take �2 = f(h(X), Y ) ·B− f(h(X), Y )
B
b̄B and c2 = 0

5) Take �3 = f(h(X), Y ) · b− f(h(X), Y )
b
B̄b and c3 = 0

Then we arrive at Problem 5.

2) Moving to the empirical problem: The problems de-

scribed above relate to the population distribution, but we only

have samples from this distribution. This is, of course, the

standard feature of machine learning situations; the natural

strategy in such a setting is to simply solve the empirical

analogue – i.e., to replace expectations over a distribution with

a sample average over the realized data. Instantiating this and

focusing on Problem 7.A (since the other problems can be

solved analogously and/or using it as a subproblem), we could

write the following empirical problem:

Problem 9.

min
h∈H

1

n

∑
i∈nD

L(h(Xi), Yi) s.t. D̂L
μ ≤ α

0 ≤ − 1

nDL

∑
i∈DL

[(
f(h(Xi), Yi)− f(h(Xi)), Yi

Bi
)
(bi − b̄Bi)

]
0 ≤ − 1

nDL

∑
i∈DL

[(
f(h(Xi), Yi)− f(h(Xi)), Yi

bi
)
(Bi − B̄bi)

]
.

Problem 9 is not, in general, a convex optimization problem;

if it were, the standard machinery and solutions of convex

optimization, i.e., formulating the dual problem and recovering

from it a primal solution via strong duality, could be applied.

However, as shown in [14], under some conditions, there exists

a solution to the empirical dual problem that obtains nearly the

same objective value as the primal population problem. In other

words, rather than applying strong duality as a consequence of

problem convexity, [14] directly prove a relationship between

the primal and the dual under some conditions. These conditions

are that:

1) The losses �i(·, y) are Lipschitz continuous for all y
2) There exists of a family of functions ζi(N, δ) ≥ 0 that

decreases monontically in N and bounds the difference

between the sample average and population expectation

for each loss function

3) There is a ν ≥ 0 so that for each Φ in the closed convex

hull of H, there is a θ such that E[|φ(x)− fθ(x)|] ≤ ν
4) The problem is feasible

We now briefly discuss these conditions. For 1), we note

that Lipschitz continuity requires existence of scalar such that

|f(x) − f(x′)| ≤ M |x − y|, which will be true for bounded

features when using sample averages. 2) simply requires that

we are in a situation where more data is better, and is implied

by the stronger condition we assume of H being of finite VC-

dimension. 3) asks that our hypothesis class is rich enough

to cover the space finely enough (how fine will determine the

quality of the solution), which is met for reasonable model

classes. 4) is simply a technical requirement ensuring that there

exists at least some solution, which is analogous to Slater’s

criterion in numerical optimization.

Thus, these conditions are relatively mild, and we can

leverage the described guarantees to assert that solving the

empirical dual would provide a an approximate solution to

our original problem of interest. Yet this initial result, while

positive, is one of existence; to find such a solution, one

can construct an empirical Lagrangian from the constrained

empirical problem, and this can be solved by running a game

between primal player, who selects a model to minimize loss,

and a dual player, who selects dual parameters in an attempt to

maximize it. If we construct this empirical dual in our settings,

it is as in Equation 3; Algorithm 1 provides a primal-dual

learner that instantiates this idea of a game.
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Algorithm 1: Primal-dual algorithm for probabilistic

fairness

Input : Labeled subset DL, unlabeled data DU ,

θ-oracle, number of iterations T ∈ N, step

size η > 0
Define : hθ(t) as the model parameterized by θ(t)

Initialize : μ(1)
L ← 0; μ

(1)
b|B ← 0; μ

(1)
B|b ← 0

1 for t = 1 . . . T do
2 θ(t) ← argminθL̂(θ, μ(t))

3 μ
(t+1)
b|B ← μ

(t)
b|B + ηĈf,b|B(hθ(t));

μ
(t+1)
B|b ← μ

(t)
B|b + ηĈf,B|b(hθ(t))

4 μ
(t+1)
L ← μ

(t)
L + η

(
D̂L(hθ(t) − α

)
5 end
6 return < θ(1), . . . , θ(T ) >

C. Theoretical Guarantees

[14] further show that under some additional assumptions, the

primal-dual Algorithm 1 performs well. The required conditions

are that either all of the losses are convex, or:

5) The outcome of interest Y takes values in a finite set

6) The conditional random variables X|Y is are non-atomic

7) The closed convex hull of H is decomposable

In the classification setting, which we focus on, Item 5) is

trivially true. Item 6) asks that it not be the case that any

of the distribution over which losses are measured induce

an atomic distribution; this mild regularity condition prevents

pathological cases that would be impossible to satisfy. For

7) Decomposability is a technical condition stating that for a

given function space, it is closed in a particular sense: for any

two function Φ,Φ′ and any measurable set χ, the function that

is Φ on χ and Φ′ on its complement is also in the function

space; many machine learning methods can be viewed from a

functional analysis viewpoint as optimizing over decomposable

function space.

As we have shown that our problem can be written as a

case of the CSL problem, and Algorithm 1 is a specialization

of the primal-dual learner analyzed in [14], Theorem 3 in the

same applies, again with appropriate translation. In particular,

the promise is that when an iterate is drawn uniformly at

random, the expected losses (over the distribution of the

data and this draw) for the constraints are bounded by the

constraint limit ci plus the family of functions at the datasize

mentioned in Assumption 2, plus 2C/(ηT ), where T is number

of iterations, η is the learning rate, and C is a constant; at the

same time, the expected loss (again over both the data and

drawing the iterate) is bounded by the value of primal plus

several problem-specific constants that capture the difficult of

the learning problem and meeting the constraints, as well as

said monotonically decreasing function of the data capturing

the rate of convergence. Our Theorem 2 can be obtained by

applying standard convergence results from statistical learning

theory for finite VC-dimensional classes to [14]’s Theorem 3

and collecting/re-arranging/hiding problem-specific constants.

D. Handling Imperfect Calibration

In general, it may be that we do not have access to b =
Pr[B = 1|Z = z], but instead have access to some imperfectly
calibrated b̂. In this case, we can write b̂ = b + ε, where ε
by definition is b̂ − b. We could apply D̂P

μ and D̂L
μ using b̂

instead, but Theorem 1 assumes access to b, and so does not

directly apply. To overcome this, we can obtain a recalibrated
b∗. As a first step, we know that for a general b, the linear and

probabilistic estimators converge to:

DL
μ −→ Dμ(1 +

Cov(b, ε|E)
Var[b|E ] ) +

E[Cov(f(Ŷ , Y ), b|B]

Var[b|E ]
and

DP
μ −→ DμVar[B|E ]−DL

μ Cov(b, ε)|E
E[b|E ](1− E[b|E ]) − E[Cov(Y,B|b, E) + μ

E[b|E ](1− E[b|E ]) ,

respectively; ε := B−b; and μ := Cov(E(η|b, E),E[ε|b, E ]|E).
Now, with this form, we can see the following. First, for

general b, as long as Cov(b, ε|E) = 0 - that is, as long as

miscalibration error ε is not correlated with the predictor itself

- then we will have exactly the same equation as in 1.1. But

we can obtain such a predictor simply by regressing B on b
among E ; that is, if we run the linear regression

B = α+ βb+ ε,

and define b∗ as the α̂+ β̂b, then ε∗ = B− b∗ by construction

satisfies Cov(b∗, ε∗) = 0.

Then, in that case, we define:

DL,∗
μ = Dμ +

E[Cov(f(Ŷ , Y )), b∗|B]

Var[b∗|E ] ,

and we can now solve an empirical version of the one-sided

problem (i.e. Problem 6.A using b∗ instead of b, and all the

math discussed above follows directly. However, to solve 7.A,

we of course must handle the probabilistic estimator as well.

Here, again we can use Cov(b∗, ε∗|E) = 0 and also observe

that by construction:

E[b∗|E] = E[B|E ] =⇒ E[b|E ](1− E[b|E ])
= E[B|E ](1− E[B|E ])

to simplify the first term in DP∗
μ , and so overall write:

DP∗
μ −→ DP

μ − E[Cov(Y,B|b∗, E)] + Cov(E[η∗|b∗],E[ε∗|b∗]E)
Var[B|E ]

So to ensure that the lower bound holds, we must now incor-

porate the second term of the numerator into the optimization

problem. But this can be done in a similar manner as before,

as the residuals η∗ and ε∗ can again be expressed as algebraic

sample averages.

E. Closed-form Solution to Fair Learning Problem for Regres-
sion Setting

In this appendix we provide a closed-form solution to the

primal Problem 9 for the special case of linear regression
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with mean-squared error losses and demographic parity as the

disparity metric. We express the constraints in matrix notation

and show that the constraints are linear in the parameter β.

Thus, we are able to find a unique, closed-form solution for

β by solving the first-order conditions. Given a choice of

dual variables, it can be interpreted as a regularized heuristic

problem with particular weights; while there are no guarantees

that this will produce a performant or even feasible solution,

it may be useful when applying the method in its entirety is

computationally prohibitive.

We define the following notation for our derivation. Let

n denote the number of observations and p the number of

features in our dataset. Then let X ∈ R
n×p, y ∈ R

n×1, β ∈
R

p×1, b ∈ R
n×1, and B ∈ {0, 1}n×1. For j = 0, 1, let Bj =

{i : Bi = j} and nj = |Bj | denote the set of observations for

which the observed protected feature B = j and the size of the

corresponding set, respectively. Since we consider demographic

parity as the disparity metric of interest, we denote the disparity

metric as f(Ŷ , Y ) = Ŷ .

For ease of exposition, we restate the empirical version of

the constrained optimization problem for linear regression and

demographic parity.

Problem 9.A.

min
β

(y −Xβ)�(y −Xβ)

s.t. D̂L
μ ≤ α,

E[Cov(Ŷ , b|B)] ≥ 0,

E[Cov(Ŷ , B|b)] ≥ 0

As discussed in Section II-A, the linear disparity metric D̂L
μ

is the coefficient of the probabilistic attribute b in a linear

regression of Ŷ on b. Thus, D̂L
μ can be expressed as

D̂L
μ = (b�b)−1(b�Xβ).

The covariance of Ŷ and b conditional on B can be written as

Cov(Ŷ , b|B) = E(b�Xβ|B)− E(Xβ|B)E(b|B) (4)

We expand the first term on the right-hand side of Equation 4,

considering the case where B = 1.

E(b�Xβ|B = 1) =
1

n1

∑
i∈B1

biXiβ

=
1

n1

∑
i∈B1

p∑
j=1

biXijβj

=
1

n1

p∑
j=1

∑
i∈B1

biXijβj

=
1

n1

p∑
j=1

βj

∑
i∈B1

biXij .

Collecting the second summation as the vector

v1j = 1
n1

∑
i∈B1

biXij , we can write the expression

for E(b�Xβ|B = 1) as

E(b�Xβ|B = 1) =

p∑
j=1

βjv1j = β�v1,

where v1 = (v1j)
p
j=1.

For the second term on the right-hand side of Equation 4 we

can rewrite the summation in a similar manner. Again focusing

on the case where B = 1,

E(Xβ|B)E(b|B) =

(
1

n1

∑
i∈B1

Xiβ

)(
1

n1

∑
i∈B1

bi

)

=

⎛⎝ 1

n1

∑
i∈B1

p∑
j=1

Xijβj

⎞⎠(
1

n1

∑
i∈B1

bi

)

= b̄1
1

n1

∑
i∈B1

p∑
j=1

Xijβj .

We again collect the second summation and write it as w1j =
1
n1

∑
i∈B1

Xij and then we can write E(Xβ|B)E(b|B) as

E(Xβ|B)E(b|B) = b̄1β
�w1,

where w1 = (w1j)
p
j=1.

Now we can write Equation 4 in matrix notation as

Cov(Ŷ , b|B) = β�v1 − b̄1β
�w1 + β�v0 − b̄0β

�w0, (5)

where v0, w0 and b̄0 are defined equivalently for the set B0.

Finally we take the expectation of this covariance term to get,

E(Cov(Ŷ , b|B)) =
n1

n

(
β�v1 − b̄1β

�w1

)
+

n0

n

(
β�v0 − b̄0β

�w0

) (6)

We now consider the covariance of Ŷ and B conditional on

b which can be written as

Cov(Ŷ , B|b) = E(B�Xβ|B)− E(Xβ|b)E(B|b). (7)

The steps for expressing this conditional covariance in matrix

notation are similar to the first covariance term, however, we

are now summing over the continuous-valued variable b. Let

k ∈ [0, 1] denote the value of b we are conditioning on and let

Gk = {i : bi = k}, nk = |Gk| denote the set of observations

with b = k and the size of the set, respectively.

Once again we expand the first term on the right-hand side

of Equation 7, this time considering the general case where

b = k,

E(B�Xβ|B) =
1

nk

p∑
j=1

βj

∑
i∈Gk

BiXij = β�vk.

Here we define vk = (vkj)
p
j=1 and vkj = 1

nk

∑
i∈Gk

BiXij .

Following a similar process for the second term, we can express

the term as

E(Xβ|b)E(B|b) = B̄kβ
�wk,

where wk = (wkj)
p
j=1 and wkj =

1
nk

∑
i∈Gk

Xij. Combining
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the two terms together we write Equation 7 as

Cov(Ŷ , B|b) =
∑
k

β�vk − B̄kβ
�wk. (8)

For the last step we take the expectation of the conditional

covariance term to get,

E(Cov(Ŷ , B|b)) =
∑
k

nk

n

(
β�vk − B̄kβ

�wk

)
. (9)

Now we can write the empirical Lagrangian of Problem 9.A

as

L̂(β, �μ) = (y −Xβ)�(y −Xβ)− μL

(
(b�b)−1(b�Xβ)

)
+ μb|B

(n1

n

(
β�v1 − b̄1β

�w1

)
+

n0

n

(
β�v0 − b̄0β

�w0

))
+ μB|b

(∑
k

nk

n

(
β�vk − B̄kβ

�wk

))
.

Solving for β we get the solution,

β∗ =
1

2
(X�X)−1

[
2X�y + μL

(
(b�b)−1(b�X)

)
− μb|B

(n1

n

(
v1 − b̄1w1

)
+

n0

n

(
v0 − b̄0w0

))
− μB|b

(∑
k

nk

n

(
vk − B̄kwk

)) ]
.

APPENDIX C

DATA

A. L2 Data Description

We select seven features as predictors in our model based on

data completeness and predictive value: gender, age, estimated

household income, estimated area median household income,

estimated home value, area median education, and estimated

area median housing value. While L2 provides a handful of

other variables that point to political participation (e.g., interest

in current events or number of political contributions), these

features suffer from issues of data quality and completeness.

For instance, only 15% of voters have a non-null value for

interest in current events. We winsorize voters with an estimated

household income of greater than $250,000 (4%) of the dataset.

Table II shows the distribution of these characteristics, as well

as the number of datapoints, for each of the states we consider.

In general, across the six states, a little more than half of

voters are female, and the average age hovers at around 50.

There is high variance across income indicators, though the

mean education level attained in all states is just longer than

12 years (a little past high school). Voting rates range from

53% in Georgia to 62% in North Carolina, while Black voters

comprise a minority of all voters in each state, anywhere from

16% in Florida to 35% in Louisiana and Georgia.

B. Race Probabilities

The decennial Census in 2010 provides the probabilities of

race given common surnames, as well as the probabilities of

geography (at the census block group level) given race. In

order to incorporate BIFSG, we also use the dataset provided

by [57] which has the probabilities of common first names

given race.

We default to using BIFSG for all voters but use BISG when

a voter’s first name is rare since we do not have priors for them.

Similarly, we only use geography instead of BISG when both

one’s first name and surname are rare. Overall, around 70% of

people’s race across the six states were predicted using BIFSG,

10% using BISG, and 18% using just geography; < 2% of

observations were dropped because we could not infer race

probabilities using any of the three options.

Table III shows results for our BI(FS)G procedure with

respect to true race. Accuracy and precision range from 80-90%,

but recall is much lower at around 30-50%. Note, however, that

we evaluate these metrics by binarizing race probabilities; in

our estimators, we use raw probabilities instead, which provide

a decent signal to true race. For instance, AUC hovers at 85-

90%, while Figure 6 shows that our predicted probabilities are

generally well-calibrated to true probability of Black (although

BIFSG tends to overestimate the probability of Black).

APPENDIX D

DETAILS ON MEASUREMENT EXPERIMENTS

A. Voter Turnout Prediction Performance

Table IV shows results for voter turnout prediction on logistic

regression and random forest models. In general, predicting

voter turnout with the features given in L2 is a difficult task.

Accuracy and precision hovers at around 70% throughout all

experiments, while recall for logistic regression ranges from

71-82% and random forests perform slightly better at 80-90%.

This result is in line with previous literature on predicting

turnout, which suggest that “whether or not a person votes is

to a large degree random” [59]. Note again that our predictors

rely solely on demographic factors of voters because those are

the most reliable data L2 provides us.

B. The KMZ Method

In this section we expand on the different assumptions the

KMZ method and our method make related to the auxiliary

data set. While we consider the case where the test set

(with predicted outcomes and race probabilities) subsumes

the auxiliary data (which contains true race), KMZ mainly

considers settings where the marginal distributions P(B,Z)
and P(Y, Ŷ , Z) are learned from two completely independent

datasets – in particular, to estimate P(B|Z) and P(Ŷ , Y |Z).
Therefore, in order to produce a fairer comparison between

the two methods, we instead reconfigure KMZ to incorporate

all the data available by treating the auxiliary data as a subset

of our test set5; doing so only strengthens KMZ because we

5Note that a component in calculating the variance of the KMZ estimators
is r, the proportion of datapoints from the marginal distribution P(Y, Ŷ , Z)
to the entire data. Without considering this independence assumption in our
calculation, r = 1, but this loosely goes against the assumption that r is closer
to 0 in Section 7 of [20]. For simplicity, we attenuate the multiplicative terms
in the variance calculations of Equations 25 and 26 to give KMZ the tightest
bounds possible. However, as will be seen in Figure 1, KMZ’s incredibly large
bounds are mostly attributed to its point estimates rather than their variances,
which are quite small.

183

Authorized licensed use limited to: Stanford University Libraries. Downloaded on August 25,2025 at 16:43:15 UTC from IEEE Xplore.  Restrictions apply. 



Feature NC SC LA GA AL FL
(n=6,305,309) (n=3,191,254) (n=2,678,258) (n=6,686,846) (n=3,197,735) (n=13,703,026)

Gender (F) 0.54 0.54 0.55 0.53 0.54 0.53
(0.5) (0.5) (0.5) (0.5) (0.5) (0.5)

Age 49.62 52.2 50.16 48.24 50.27 52.17
(18.76) (18.69) (18.29) (18.07) (18.44) (18.89)

Est. Household 89,788.54 82,172.22 80,770.79 90,622.61 79,919.66 90,145.4
(HH) Income (56,880.78) (53,886.64) (54,579.77) (57,699.76) (52,237.42) (56,786.94)

Est. Area Me- 76,424.55 69,666.4 68,068.86 78,377.2 69,070.63 74,547.99
dian HH Income (32,239.45) (25,911.0) (29,779.93) (35,941.68) (27,226.34) (29,820.33)

Est. Home 300,802.36 233,354.36 199,286.06 273,424.9 201,901.9 360,533.81
Value (202,634.22) (155,221.32) (123,564.26) (176,273.9) (126,255.0) (243,854.1)

Area Median 12.83 12.64 12.36 12.72 12.51 12.65
Education Year (1.13) (0.98) (0.92) (1.12) (0.99) (0.97)

Area Median 206,312.82 193,172.13 170,521.45 206,253.25 162,925.8 237,245.18
Housing Value (106,274.59) (107,225.93) (81,184.86) (112,142.54) (81,467.58) (118,270.22)

Black 0.22 0.26 0.32 0.33 0.27 0.14
Vote in 2016 0.61 0.57 0.63 0.52 0.55 0.57

TABLE II: Distribution of features used for L2 across all six states: from left to right, North Carolina, South Carolina, Louisiana,

Georgia, Alabama, and Florida. Each cell shows the mean of each feature and the standard deviation in parentheses. The last

two rows show the proportion of observations that are black, and voted in the 2016 General Election.

Fig. 6: Calibration plots showing predicted probability of Black (x-axis) versus actual proportion of Black (y-axis).

State Accuracy Precision Recall AUC

NC 0.83 0.77 0.30 0.85

SC 0.81 0.83 0.35 0.86

LA 0.82 0.87 0.52 0.89

GA 0.80 0.85 0.49 0.88

AL 0.84 0.89 0.45 0.90

FL 0.89 0.80 0.33 0.86

TABLE III: Accuracy, precision, recall (thresholded on 0.5),

and AUC for BI(FS)G for all six states considered in L2.

pass in more information to learn both marginal distributions.

However, their main method does not leverage information on

P(Y, Z|B), as we do, so their bounds are notably wider. We

also implement the KMZ estimators as originally proposed in

Figure 7 but the results do not change substantially6.

C. Random Forest

We also run experiments on bounding disparity when voter

turnout is predicted on random forest models, as seen in

Figure 8. We observe similar results to logistic regression

in that our methods always bound true disparity within 95%

confidence intervals, and with bounds that are markedly tighter

than KMZ’s. While our bounds are always within 5 p.p. and

the same sign as true disparity, KMZ is ranges from -0.5 to

0.5.

6In Appendix A.5, [20] do in fact propose an estimator where the
independence assumption is violated (i.e., precisely the setting we consider
where we have race probabilities in our entire data), but it suffers from two
key limitations: a) we are only provided estimators for DD and none other
disparity measure, and b) we implemented the DD estimator and it failed to
bound true disparity in both applications we consider – see Figure 7.
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Fig. 7: Comparison of different KMZ implementations. In dark grey, we have our implementation that violates the independence

assumption in [20]. In light grey, we have KMZ’s original implementation with the independence assumption – nothing

substantively changed. The top and bottom pairs of each state correspond to the estimators from logistic regression (LR) and

random forest (RF) models, respectively. [20] additionally proposes estimators for estimating DD where the independence

assumption is violated but they rarely bound true disparity (right subfigure), so we omit these results in our main experiments.

Fig. 8: Comparison of our method of bounding true disparity (blue) to the method proposed in [20] (grey), using a random

forest model to predict voter turnout on L2 data in six states. We evaluate three disparity measures: demographic disparity

(DD), false positive rate disp. (FPRD), and true positive rate disp. (TPRD). The grey dot represents true disparity. Both methods

always bound true disparity within their 95% standard errors.

APPENDIX E

DETAILS ON TRAINING EXPERIMENTS

A. Experimental Setup

As noted in the main text, to enforce fairness constraints

during training, we solve the empirical version of Problem 1.A

and its symmetric analogue, which enforces negative covariance

conditions and D̂L
μ as a (negative) lower bound. For both of

these problems we run the primal-dual algorithm described

in Algorithm 1 for T iterations and then select the iteration

from these two problems with the lowest loss on the training

data while satisfying the constraints on the training and labeled

subset.

B. CSL (Chamon et al.)

We implement our constrained problem using the official

Pytorch implementation provided by [14]7 for a logistic

regression model. We run the non-convex optimization problem

for 1,000 iterations with a batch size of 1,024 and use Adam

[60] for the gradient updates of the primal and dual problems

7https://github.com/lfochamon/csl
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State Model Accuracy Precision Recall AUC

NC LR 0.72 0.75 0.81 0.75

RF 0.72 0.72 0.89 0.76

SC LR 0.67 0.69 0.77 0.71

RF 0.67 0.67 0.86 0.71

LA LR 0.70 0.73 0.84 0.72

RF 0.70 0.71 0.91 0.73

GA LR 0.69 0.70 0.71 0.75

RF 0.69 0.68 0.78 0.75

AL LR 0.67 0.69 0.74 0.72

RF 0.67 0.67 0.80 0.72

FL LR 0.67 0.69 0.76 0.71

RF 0.67 0.67 0.85 0.72

TABLE IV: Accuracy, precision, recall, and AUC for voter

turnout prediction for all six states considered in L2. We eval-

uate two different model performances for turnout prediction:

logistic regression (LR) and random forests (RF).

with learning rates 0.001 and 0.005, respectively. We provide

further explanation of the mathematical background to the [14]

method in Appendix B above.

C. The Method of Wang et al.

[21] propose two methods to impose fairness with noisy

labels: 1) a distributionally robust optimization approach and 2)
another optimization approach using robust fairness constraints,

which is based on [20]. We use code provided by [21]8 to

implement only the second method because it directly utilizes

the protected attribute probabilities and yields better results.

We tune the following hyperparameters: ηθ ∈
{0.001, 0.01, 0.1} and ηλ ∈ {0.25, 0.5, 1, 2}, which

correspond to the descent step for θ and the ascent

step for λ in a zero-sum game between the θ-player and

λ-player, see Algorithm 1 and 4 of [21]. Finally, we also tune

ηw ∈ {0.001, 0.01, 0.1}, which is the ascent step for w (a

component in the robust fairness criteria), see Algorithm 3 of

[21]. In order to choose the best hyperparameters, we use the

same data as outlined in Section IV-C1 (80/20 train/test split),

but use a validation set on 30% of the training data (i.e., 24%

of the entire data). Note that as implemented in the codebase,

[21] chooses the hyperparameter that results in the lowest loss

while adhering to the fairness constraint with respect to true
race. Since we assume access to true race on a small subset

(1%) of the data, we only evaluate the fairness constraint on

1% of the validation set.

D. The Method of Mozannar et al.

[24] primarily focus on the setting of training a fair model

with differentially private demographic data, which imposes

infeasible assumptions for our setting—however, the authors

do propose a potential extension of their method to handle a

case that matches ours: training a fair model with incomplete

8https://github.com/wenshuoguo/robust-fairness-code

demographic data. The authors do not discuss this in detail or

provide the code for this extension, so we modify the code [24]

provided for their paper to implement the extension of their

approach, detailed in Section 6 of their paper. This involves

using Fairlearn’s9 exponentiated gradient method changed so

that it will only update for its fairness-related loss on data

points in the labeled subset, but allows classification loss to

be calculated over the entire training set.

We note that Mozannar et al.’s method guarantees fairness

violation 2(epsilon + best gap) [50] on their test set where

epsilon is set by the user, but gives no method of approximating

best_gap. Thus, we set epsilon = α/2 (i.e., assume best gap

= 0) in our experiments in order to come as close as possible

to their method providing similar fairness bounds to ours on

the test set.

E. Pareto-Frontier of Accuracy vs. Disparity

In Figure 9 through 12, we show the fairness-accuracy

Pareto frontiers for the L2 and COMPAS datasets enforcing

demographic parity (DD), false positive rate parity (FPRD),

and true positive rate parity (TPRD). We first note that the full

benefit of using our method is not fully captured by comparison

along Pareto frontiers. This is because the core aim of our

method is to ensure that the disparity does not go over a

particular bound input by the user, so the relationship between

the exact amount of disparity observed on the test data to the

bound set by the user is important beyond the fairness-accuracy

tradeoff itself; even if another method were to appear better

in terms of a fairness accuracy tradeoff, it cannot make the

guarantees to the user about meeting the bound that ours can.

We highlight the difference between the desired bound and the

disparity demonstrated on the test set by noting particular points

in the pareto frontier with symbols indicating the specified

bound (for example, in Figure 9, a circle indicates a a bound or

α value of 0.04). We note the specified bounds as dashed lines

parallel to the y axis. As we can see from all of the graphs,

our method is the only method which consistently meets the

desired fairness bound, and thus fully explores the disparity

regimes targeted.

In terms of dominance on the accuracy-fairness Pareto

frontier, we note that we do not count the oracle (the red

line) against our method as that is a model with complete

knowledge of the protected attributes of the dataset, whereas

we only have protected attributes for a small subset. For the L2

experiments, our method strictly dominates Mozannar et al.’s

and Wang et al.’s methods when available for comparison for

DD, FPRD, and TPRD. As expected, the oracle dominates our

method. For the labeled subset method, our method dominates

this approach nearly everywhere in the FPRD and TPRD plots.

The labeled subset method dominates in the middle fairness

values of the accuracy-fairness frontier for DD on L2 data.

However, again we note that the labeled subset method was

not able to meet the desired fairness bounds on any experiment

across the L2 and COMPAS datasets, so there are other reasons

9https://fairlearn.org/
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Fig. 9: Resulting disparity (x-axis) and accuracy (y-axis) trade-off for L2 Florida data. Each point corresponds to the average

result over 10 seeds on a given target disparity α, which map to different marker styles (e.g., circle points are experiments with

target disparity of 0.04). For ease of interpretation, each of the target disparities are marked in dashed vertical lines; e.g., any

circle point to the left of 0.04 satisfies the desired target disparity.

Fig. 10: Resulting demographic disparity (x-axis) and accuracy (y-axis) trade-off for COMPAS data. Each point corresponds to

the average result over 10 seeds on a given target disparity α, which map to different marker styles (e.g., square points are

experiments with target disparity of 0.14). For ease of interpretation, each of the target disparities are marked in dashed vertical

lines; e.g., any circle point to the left of 0.14 satisfies the desired target disparity.

Fig. 11: Resulting false positive rate disparity (x-axis) and accuracy (y-axis) trade-off for COMPAS data. Each point corresponds

to the average result over 10 seeds on a given target disparity α, which map to different marker styles (e.g., circle points are

experiments with target disparity of 0.08). For ease of interpretation, each of the target disparities are marked in dashed vertical

lines; e.g., any circle point to the left of 0.08 satisfies the desired target disparity.
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Metric State Method Lower Bound (95% CI) True Disparity Upper Bound (95% CI)

DP AL KMZ −0.52± 0.01 -0.14 0.23± 0.01
Ours −0.14± 0.09 -0.14 −0.08± 0.09

FL KMZ −0.55± 0.01 -0.16 0.28± 0.01
Ours −0.27± 0.13 -0.16 −0.12± 0.13

GA KMZ −0.55± 0.01 -0.13 0.32± 0.01
Ours −0.22± 0.08 -0.13 −0.12± 0.08

LA KMZ −0.53± 0.01 -0.14 0.25± 0.01
Ours −0.12± 0.07 -0.14 −0.07± 0.07

NC KMZ −0.62± 0.01 -0.07 0.32± 0.01
Ours −0.13± 0.12 -0.07 −0.05± 0.12

SC KMZ −0.61± 0.01 -0.1 0.28± 0.01
Ours −0.08± 0.1 -0.1 −0.03± 0.1

FPR AL KMZ −0.58± 0.01 -0.14 0.69± 0.01
Ours −0.14± 0.13 -0.14 −0.08± 0.13

FL KMZ −0.57± 0.01 -0.16 0.6± 0.01
Ours −0.31± 0.21 -0.16 −0.13± 0.21

GA KMZ −0.59± 0.01 -0.1 0.77± 0.01
Ours −0.22± 0.11 -0.1 −0.12± 0.11

LA KMZ −0.81± 0.01 -0.13 0.85± 0.02
Ours −0.08± 0.13 -0.13 −0.05± 0.13

NC KMZ −0.65± 0.01 -0.07 0.86± 0.01
Ours −0.07± 0.21 -0.07 −0.03± 0.2

SC KMZ −0.69± 0.01 -0.12 0.77± 0.01
Ours −0.14± 0.15 -0.12 −0.06± 0.15

TPR AL KMZ −0.78± 0.01 -0.12 0.3± 0.01
Ours −0.07± 0.11 -0.12 −0.04± 0.11

FL KMZ −0.8± 0.01 -0.14 0.25± 0.0
Ours −0.21± 0.15 -0.14 −0.1± 0.15

GA KMZ −0.88± 0.01 -0.11 0.4± 0.01
Ours −0.18± 0.11 -0.11 −0.1± 0.11

LA KMZ −0.68± 0.01 -0.1 0.2± 0.0
Ours −0.14± 0.08 -0.1 −0.08± 0.08

NC KMZ −0.86± 0.01 -0.06 0.25± 0.0
Ours −0.12± 0.12 -0.06 −0.05± 0.12

SC KMZ −0.84± 0.01 -0.08 0.31± 0.0
Ours −0.0± 0.12 -0.08 −0.0± 0.12

TABLE V: Companion table to Figure 1.

why this method is undesirable in situations where a reliable

bound is needed. For FPRD on the COMPAS dataset, with

a few exceptions, our method dominates all other methods

(except the oracle, as expected). For TPRD, besides the oracle,

a few points in the middle of the range (0.16, 0.14, 0.12, 0.1,

0.8) are dominated by either Mozannar et al. (0.1, 0.14), Wang

et al. (0.08, 0.12, 0.14) or labeled subset (0.16). However, our

method dominates the most consistently (7 out of 12 points) and

noticeably in the lower unfairness regime. For DD, Mozannar

et al. lead to a comparable but lower fairness-accuracy tradeoff

for much of the space, but again we note that the Mozannar et

al. method cannot meet the desired fairness bounds for 33 out

of 36 experiments, suggesting it is not preferable in situations

where a bound is necessary.

F. Results on Oracle and Naive

In Figure 13, we present the mean and standard deviation of

the resulting disparity and on the test set, as well as classifier

accuracy on the test set, of experiments with our method

compared to an oracle model, that has access to ground truth

race on the whole dataset and uses these to enforce a constraint

directly on ground truth disparity during training, as well as

a naive model which simply enforces a constrained directly

on the observed disparity of the noisy labels, without any

correction. (Namely, in this technique, we simply threshold

the probabilistic predictions of race on 0.5 to make them

binary, and use as race labels.) As a whole, we perform
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Fig. 12: Resulting true positive rate disparity (x-axis) and accuracy (y-axis) trade-off for COMPAS data. Each point corresponds

to the average result over 10 seeds on a given target disparity α, which map to different marker styles (e.g., square points are

experiments with target disparity of 0.14). For ease of interpretation, each of the target disparities are marked in dashed vertical

lines; e.g., any circle point to the left of 0.14 satisfies the desired target disparity.

Fig. 13: Mean and standard deviation of resulting disparity (top, y-axis) and accuracy (bottom, y-axis) on the L2 test set after

enforcing the target fairness bounds (x-axis) on our method (blue); using ground truth race on the entire data, i.e., “oracle”

model (red); and using only the estimated race probabilities, thresholded to be binary (brown) over ten trials. On the top row,

we fade bars when the mean does not meet the desired bound, which is indicated by the dotted blue lines. The dashed grey

line in all plots indicates disparity from the unconstrained model.

relatively comparably to the oracle, except on FPRD. We

always outperform the naive method in terms of reducing

disparity, which is to be expected. We typically perform within

2 percentage points of accuracy from the oracle, (except for the

0.04 and 0.06 bounds on DD and the 0.04 bound on TPRD).

We suggest the accuracy results in this figure show the fairness-

accuracy trade-off in this setting: when we dip below the oracle

in terms of accuracy, it is most often because we are bounding

disparity lower than the oracle is (e.g., on the 0.04 bounds in

DD or TPRD). And, while we do not outperform the naive

method in terms of accuracy, we consistently out-perform it in

terms of disparity.

APPENDIX F

ADDITIONAL EXPERIMENTS: COMPAS

In this section, we present a suite of additional experiments

we run on the COMPAS [45] dataset. The COMPAS algorithm

is used by parole officers and judges across the United States to

determine a criminal’s risk of recidivism, or re-committing the

same crime. In 2016, ProPublica released a seminal article [45]

detailing how the algorithm is systematically biased against

Black defendants. The dataset used to train the algorithm has

since been widely used as benchmarks in the fair machine

learning literature.
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A. Data Description

We use the eight features used in previous analyses of the

dataset as predictors in our model: the decile of the COMPAS

score, the decile of the predicted COMPAS score, the number

of prior crimes committed, the number of days before screening

arrest, the number of days spent in jail, an indicator for whether

the crime committed was a felony, age split into categories, and

the score in categorical form. We process the data following

[45], resulting in n = 6, 128 data points. Table VI outlines the

feature distribution of the dataset.

Feature COMPAS

(n=6,128)

Decile Score 4.41

(2.84)

Predited Decile Score 3.64

(2.49)

# of Priors 3.23

(4.72)

# of Days Before Screening Arrest -1.75

(5.05)

Length of Stay in Jail (Hours) 361.26

(1,118.60)

Crime is a Felony 0.64

(0.48)

Age Category 0.65

(0.82)

Risk Score in 3 Levels 1.08

(0.66)

Black 0.51

Two Year Recidivism 0.45

TABLE VI: Distribution of features used for COMPAS. Each

cell shows the mean of each feature and the standard deviation

in parentheses. The last two rows show the proportion of

observations that are Black and who recidivized within two

years.

B. Race Probabilities

We generate estimates of race (Black vs. non-Black) based

on first name and last name using a LSTM model used in [49]

that was trained on voter rolls from Florida. The predictive

performance and calibration of these estimates are displayed

in Table VII and Figure 14, respectively. In general, the results

are quite reasonable; accuracy is at 73% while the AUC is

86%. The probabilities are somewhat calibrated, although the

LSTM model tends to overestimate the probability of Black.

Accuracy Precision Recall AUC

0.73 0.86 0.56 0.86

TABLE VII: Accuracy, precision, recall (thresholded on 0.5),

and AUC for predicting probability a person is Black in the

COMPAS dataset.

Fig. 14: Calibration plot showing the predicted probability

a person in the dataset is Black (x-axis) versus the actual

proportion of Black people in the dataset (y-axis) for COMPAS.

C. Measurement Experiments

We first compare our method of bounding disparity to that

of KMZ. We train an unconstrained logistic regression model

with a 80/20 split on the data, i.e., n = 1, 226 in the test set.

Then, we construct the labeled subset by sampling 50% of

the test set (n = 613) and use that to check out covariance

constraints. We also compute D̂L and D̂P with standard errors

on the entire test set, as specified by the procedure in Appendix

Section D.

Our main results are displayed in Figure 2. Similar to the

L2 data, our bounds are consistently tighter than KMZ, albeit

to a lesser extent in this case since the COMPAS dataset

is significantly smaller. Despite this fact, we emphasize that,

unlike KMZ, our estimators are always within the same sign

as the true disparity, barring the standard errors which shrink

as the data grows larger.

Accuracy Precision Recall AUC

0.69 0.69 0.57 0.74

TABLE VIII: Accuracy, precision, recall (thresholded on 0.5),

and AUC for predicting two-year recidivism on the COMPAS

dataset using a logistic regression model.

D. Training Experiments Details

We compare our training method to [21], [24] and a baseline

where we directly enforce disparity constraints on only the

labeled subset. We run 10 trials – each corresponding to

different seeds – and report the mean and standard deviation of
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the accuracy and disparity on the test set in Figure 4. For each

trial, we split our data (n = 6, 128) into train and test sets, with

a 80/20 split. From the training set, we subsample the labeled

subset so that it is 10% of the total data (around n = 613).

We chose a higher proportion of the data compared to L2 to

adjust for the smaller dataset. The remaining details are as

described in Section IV-C1. Note that the resulting disparities

for the unconstrained model differ among the three fairness

metrics. On DD and TPRD, the unconstrained model resulted

in a 0.28-0.29 disparity, but it drops to 0.21 for FPRD. We

adjusted our target fairness bounds accordingly.

APPENDIX G

SIMULATIONS

A. Simulation Design

In this section, we describe the design of our simulation

used for additional experiments.

• Primitive features Z1, ..., Zm

• Conditional probability b of being Black a function of

Z1...Zm

• Realized status as Black or not B drawn from Bernoulli(b)
• Downstream features X1, ...Xp, a function of Z1, ..., Zm

and B
• Score for outcome P (Y ), a function of downstream

features X1...Xp

• Outcome Y ,which is an indicator of P (Y ) at threshold τ
with some noise probability of being flipped 0 ↔ 1

The primitive features Z1, ..., Zp intuitively represent the

variables that correspond to proxies in BIFSG, e.g. geographic

locations. They serve a dual role: first, as in BIFSG, they give

rise to the probability that an individual is Black. Second, since

the secondary features X are a function of Z, they affect the

distribution of these features; thus downstream, they affect

P (Y ) and ultimately Y , but do not directly enter into P (Y ) or

Y themselves. This relationship corresponds to how geography

and other variables which are correlated to race may also be

correlated to many learning-relevant features, even when they

do not directly cause the outcome of interest themselves. Note

that in addition to primitives affecting P (Y ) through each

X , we allow for B to affect P (Y ). This relationship models

how there may be associations between group membership

and features which affect the outcome of interest via the

downstream features, even if group status is not directly relevant

to the outcome of interest.

All the relationships are not fully specified by the description

in the text above, and so we provide details of the selected

functional forms in Table IX. Figure 15 also summarizes

the features and their associative relationships visually. This

visualization, along with the language of directed acyclic graphs

(DAGs), allows us to more easily reason about whether the

covariance conditions are likely to be satisfied in our model,

at least for the underlying outcome.

B. Experimental Setup

Following the notation above, we have p to be the number

of features X in our data, and let n be the number of

Z1 Z2
... Zp

b

B

P(Y )

Y

X1 X2
... Xk

Fig. 15: A heuristic depiction of the data generating process for

our simulations. Nodes indicate random variables, and edges

indicate (causal) relationships between nodes. Importantly,

relationships are not necessarily linear.

datapoints. We run experiments for p ∈ {10, 20, 50} and

n ∈ {5000, 10000, 50000}. For each p, we fix the parameters in

the data generation process and realize 50,000 datapoints. Refer

to Table X for a list of parameter values, which differ slightly

for each p to control demographic disparity on the dataset

at around 0.25-0.28. For experiments n ∈ {5000, 10000}, we

simply randomly subsample from the 50,000 dataset.

The last dimension we tune is the size of the labeled subset

(measured by the percentage of n), which from hereon we

refer to as e. For each n, we specified slightly different e
as outlined in Table XI. This is to account for the fact that,

for instance, one might need 40% of 5,000 datapoints with

protected attribute labels to learn a predictor that reaches the

target disparity bound. On the other hand, using 20% of 50,000

datapoints might be more than enough, especially considering

the exponentially higher costs to query thousands of people’s

protected attributes.

We prototype these simulation experiments on demographic

parity. For each experiment, we split the data 80/20 into

train/test data, then repeat 10 times with different seeds. We

run both our method and the labeled subset method, evaluating

disparity and accuracy on the test set.

C. Results

We present our results in Figures 5 and 16. In Figure 5,

we see that while increasing the size of the labeled subset

can sometimes lead to a regime where training on the labeled

subset alone can produce a model which comes close to (or

in one case – n = 50, 000, p = 10 – reaches) the desired
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Feature Interpretation Functional Form

Zj Primitive Feature Zj ∼ U [0, 1], j = 1, ...m

Xi Secondary Feature Xi =
∑hk

k=1 ciX
k
i , i = 1, ...p

hk Degree hk ∼ U{0, 1, 2, 3}
ci Coefficients ci ∼ U [0, 1], i = 1, ...p

b Probability Black b = max{0,min{1, b̃}},

b̃ ∼
{
N (0.1, .04) 1

m

∑m
j=1 Zj ≤ τb

N (0.9, .04) 1
m

∑m
j=1 Zj > τb

τb Threshold on b 1
2 + 1.2

√
1/(12m)

(based Irwin-Hall distribution)

B Indicator for Black B ∼ Bernoulli(b)

P̃ (Y ) Score of Outcome P̃ (Y ) =
∑

i

[
diX

k
i + diBB

]
P (Y ) Normalized Score of Outcome P (Y ) = P̃ (Y )−min(P̃ (Y ))

max(P̃ (Y ))−min(P̃ (Y ))

Y Realized Outcome Y ∼
{

Bernoulli(0.1) P (Y ) ≤ τ

Bernoulli(0.9) P (Y ) > τ

di Coefficients for features X di ∼ U [0, 1]
diB Coefficients for indicator for Black diB ∼ U [0, uB ]

TABLE IX: Description of several variables we use in our simulation study and their functional forms. For ease of notation, we

omit the index denoting individuals in the dataset. Unspecified constants were selected by inspection to match key indicators

across scenario and are specified in Table 8.

Fig. 16: We present a three by three figure showing the test accuracy of the models created using our disparity reduction

method when compared with relying on training models only on the labeled subset and reducing disparity by directly enforcing

a constraint on the protected attribute labels. The rows correspond to datasets of increasing sizes (number of features from

10 to 50), indicating problems of increasing complexity. The columns correspond to the size of the overall dataset, ranging

from 5,000 to 50,000 samples. The x-axis shows the percentage of the total dataset is dedicated to the labeled subset, and the

y-axis denotes the test accuracy of the models. The blue graphs correspond to our method, and the orange to the labeled subset

method.
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p m τ uB

10 4 0.4 0.05

20 5 0.4 0.1

50 10 0.425 0.2

TABLE X: List of parameters in the data generation process

for each p, the number of secondary features X in the data.

m corresponds to the number of primitive features Z, τ is

the threshold for P (Y ), while uB is the upper bound for the

uniform distribution to generate diB , see Table IX.

n e

5,000 {2, 4, 6, 8, 10, 15, 20, 30, 40}
10,000 {1, 2, 3, 4, 5, 7, 10, 20, 30}
50,000 {0.5, 1, 2, 3, 4, 5, 7, 10, 20}

TABLE XI: Suite of experiments varying percentage of the

data taken as labeled subset (e) by the size of the full dataset

(n).

disparity bound, for the most part, even with a large labeled

subset, the mean of the disparity over 10 trials is above the

desired disparity threshold. Meanwhile, our method stays below

the desired disparity threshold across all nine experiments.

As we can see by looking at the rows from top to bottom, the

more complex the problem is (i.e., more features in the data),

the more data is necessary for the labeled subset to get close to

the desired disparity bound. Thus, our simulation experiment

highlights that model applications with small amounts of

labeled data, and more complex data, are particularly well-

suited for our method.
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