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Abstract—The vast majority of techniques to train fair models Department of Housing and Urban Development under the

require access to the protected attribute (e.g., race, gender), Fair Housing Act [6,7]. Similarly, recent Executive Orders
either at train time or in production. However, in many in the United States [3,8] direct government agencies to

practically important applications, this protected attribute is .. . . .
largely unavailable. Still, AI systems used in sensitive business measure and mitigate disparity resulting from or exacerbated

and government applications — such as housing, ad delivery, by their programs, including in the “design, develop[ment],
and credit underwriting — are increasingly required by law acqui[sition], and us[e] [of] artificial intelligence and automated
to measure and mitigate their bias. In this paper, we develop systems™ [8].

methods for measuring and reducing fairness violations in a setting Yet both companies [9] and government agencies [3] rarely
with limited access to protected attribute labels. Specifically, we

assume access to protected attribute labels on a small subset collect or have acc§ss to individual-level d.ata on .race .and
of the dataset of interest, but only probabilistic estimates of other protected attributes on a comprehensive basis. Given
protected attribute labels (e.g., via Bayesian Improved Surname that the majority of algorithmic fairness tools that could be
Geocoding) for the rest of the dataset. With this setting in  used to monitor and mitigate racial bias require demographic
mind, we propose a method to estimate bounds on common ,ihyteq [10, 11], the limited availability of protected attribute

fairness metrics for an existing model, as well as a method . . . .
- C e S . data represents a significant challenge in assessing algorith-
for training a model to limit fairness violations by solving a

constrained non-convex optimization problem. Unlike existing mic fairness and makes training fairness-constrained systems
approaches, our methods take advantage of contextual information difficult.
— specifically the relationships between a model’s predictions and In this paper, we address this problem by introducing

the probabilist'ic prediction. of protected attribl_ltes, .given the true methods for /) measuring fairness violations in, and 2) training
protected attribute, and vice versa — to provide tighter bounds

A . AR . fair models on data with limited access to protected attribute
on the true disparity. We provide an empirical illustration of .
our methods using voting data as well as the COMPAS dataset. labels. We assume access to protected attribute labels on only a
First, we show that our measurement method can bound the small subset of the dataset of interest, along with probabilistic
true disparity up to 5.5x tighter than previous methods in these  estimates of protected attribute labels for the rest of the dataset.
applications. Then, we demonstrate that our training technique These probabilistic estimates may be generated using Bayesian

effectively reduces disparity in comparison to an unconstrained . ..
model while often incurring less severe fairness-accuracy trade- Improved Suname Geocoding (BISG) [12, 13] or any predictive

offs than other fair optimization methods with limited access to model which can output probabilistic predictions.
protected attributes. We leverage this limited labeled data to establish (or ensure,

Index Terms—algorithmic fairness, fair machine learning,  in the case of training) whether a certain condition holds
::‘ttr‘i'l‘)ll‘lizr‘m‘nat“’“’ disparity reduction, probabilistic protected regarding the relationship between the model’s predictions,
the probabilistic protected attributes, and the ground truth

I. INTRODUCTION protected attributes. In particular, this condition is that two

residual correlations — the residual correlation between the
probabilistic proxy and the outcome of interest conditioned
on ground truth race, and the residual correlation between
ground truth race status and the outcome conditional on the
proxy — share the same sign. Given this condition, our first
main result (Theorem 1) shows that we can bound a range
of common fairness metrics, from above and below, over the
*Work done while at Stanford University. full dataset with easily computable (un)fairness estimators

In both the private and public sectors, organizations are
facing increasing pressure to ensure that they use equitable
machine learning systems, whether through legal obligations or
social norms [1,2, 3,4, 5]. For instance, in 2022, Meta Platforms
agreed to build a system for measuring and mitigating racial
disparity in advertising to settle a lawsuit filed by the U.S.
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calculated using the probabilistic estimates of the protected
attribute. We expound on these conditions, define the fairness
estimators, and introduce this result in Section II.

To train fair models, we leverage our results on measuring
fairness violations to bound disparity during learning; we
enforce the upper bound on unfairness calculated with the
probabilistic protected attribute (measured on the full training
set) as a surrogate fairness constraint, while also enforcing
the conditions required to ensure the estimators accurately
bound disparity in the model’s predictions (calculated on
the labeled subset), as constraints during training. We take
advantage of recent work in constrained learning with non-
convex losses [14] to ensure bounded fairness violations with
near-optimal performance at prediction time.

We note that our data access setting is common across a
variety of government and business contexts: first, estimating
race using BISG is established practice in government and in-
dustry [6, 15,16, 17, 18]. Although legal constraints or practical
barriers often prevent collecting a full set of labels for protected
attributes, companies and agencies can and in fact do obtain
protected attribute labels for subsets of their data. For example,
companies such as Meta have started to conduct surveys asking
for voluntary disclosure of demographic information to assess
disparities [18]. Another method for obtaining a subset of
protected attribute data is to match data to publicly available
administrative datasets containing protected attribute labels for
a subset of records, as in, e.g. [19].

While our approach has stronger data requirements than
recent work in similar domains [20,21] in that a subset
of it must have protected attribute labels, many important
applications satisfy this requirement. The advantage to using
this additional data is substantially tighter bounds on disparity:
in our empirical applications, we find up to 5.5x tighter bounds
for fairness metrics and up to 5 percentage points less of
an accuracy penalty when enforcing the same fairness bound
during training.

In sum, we present the following contributions:

1) We introduce a new method of bounding ground truth
fairness violations across a wide range of fairness metrics
in datasets with limited access to protected attribute data
(Section II);

We introduce a new method of training models with near-
optimal and near-feasible bounded unfairness with limited
protected attribute data (Section III);

We show the utility of our method, including comparisons
to a variety of baselines and other approaches, on various
datasets relevant for assessing disparities in regulated
contexts: we focus on voter registration data, commonly
used to estimate racial disparities in voter turnout [22],
and also demonstrate our results on COMPAS data [23],
a common dataset used in related work (Section 1V). In
addition, we present some experiments on synthetic data
which outline the conditions under which our technique
is the most effective: relatively complex problems with
little access to labeled data.

2)

3)
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The rest of this paper proceeds as follows: in the remainder
of this section (Section I-A), we describe in greater detail two
examples of real-world settings in which our approach may
be applicable. Following this, in Section II, we describe our
method of measuring disparities in data regimes with limited
access to protected attribute labels, then in Section III we lever-
age our measurement results to develop our training techniques
which bound unfairness in the resulting model. We display our
experimental evaluation of our method in Section IV, including
comparisons to related bias measurement [20] and fair training
techniques [21,24]. Finally, we end our paper with our review
of the related work (Section V) and Conclusion (Section VI).

A. Correspondence to Real-World Settings

We now highlight two real-world examples which correspond
to our setting. First, consider the example of Meta Platforms
(“Meta”). Meta is the parent company of Facebook, a social
media platform with a large advertising business. Meta uses
machine learning to identify users likely to interact with
particular ads [25]. The Department of Housing and Urban
Development brought a lawsuit [26] under the Fair Housing
Act alleging algorithmic discrimination by Meta. As part of a
settlement resolving the suit [7], Meta agreed to build software
called the Variance Reduction System (VRS) [6] which uses a
differentially-private version of BISG to estimate the deviation
of the delivery rates by group relative to an underlying eligible
audience [27]. In accordance with the recommendations of
civil rights groups [28], Meta also began to work with third-
party survey administrator YouGov to prompt users to provide
individual race off-platform (with privacy protection through
secure multiparty computation tools) [18,29].

Second, consider the example of government agencies
such as the Internal Revenue Service (IRS). IRS, like many
other government agencies, does not collect taxpayer data on
race [30], yet recent executive orders have required equity
(disparity) assessments [3] and consideration of protections
from “algorithmic discrimination” [8]. A paper by academic and
government researchers[19] combines BISG for the taxpayer
population with a publicly available administrative dataset
(voter registration data) that contains ground truth and can
be matched to a subset of taxpayers and uses this combined
dataset to assess audit rate disparity.

In both examples, disparity estimation is an important goal
hindered by a lack of individual-race data, yet probabilistic
estimates of race via BISG are available, and race data can be
obtained for a small subset of individuals. These key features
correspond to the setting we describe formally in Section
II-A. The prominent examples we discussed above are likely
representative of scenarios faced by many other private and
public sector actors. Indeed, while these instances may be
some of the first legally required investigations of disparities
arising from algorithmic systems [31], they are unlikely to
be the last; along with recent executive orders [8,32] and the
Blueprint for an AI Bill of Rights [4], a recent advanced
notice of proposed rulemaking (ANPR) from the Federal
Trade Commission (FTC) suggests the possibility of stricter
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rules around the deployment of discriminatory systems [33].
Increased regulation of algorithmic decision systems requires
the development of bias measurement and mitigation techniques
which aligns with the realities of data access, and legal scrutiny,
that exist on the ground.

II. METHODOLOGY FOR MEASUREMENT

In this section, we (/) formally introduce our problem
setting and notation, (2) define the types of fairness metrics
we can measure and enforce with our techniques, and (3)
define the probabilistic and linear estimators of disparity for
these metrics. We then introduce our first main result: under
certain conditions, we can upper and lower bound the true
fairness violation for a given metric using the linear and
probabilistic estimators, respectively.

A. Notation and Preliminaries

Setting and Datasets. We wish to learn a model of an
outcome Y based on the characteristics of the individuals X.
Individuals have a special binary protected class characteristic
B € {0,1} that is usually unobserved, and proxy variables
Z C X that can be correlated with B. the unlabeled
set, 9y, consists of observations {(X;,Y;, Z;)} Y, and the
labeled set, 71, additionally includes B and so consists
of {(X,.Y;,Z;,B;)}it. An auxiliary dataset {(Z, B)}!*,
allows us to learn an estimate of b; := Pr[B;|Z;]. All three
datasets are assumed to be independent and drawn from
the same underlying population. Except where specified, we
abstract away from the auxiliary dataset and assume access to
b. When considering learning, we assume a hypothesis class
of models H which map X directly to Y or a superset (e.g.,
[0,1] rather than {0, 1}), and consider models parameterized
by 0, that is, hy € H. An important random variable that
we will use is the conditional covariance of the random
variables. In particular, for random variables @, R, S, T, we
write Cg ps,r = E[Cov(Q, R|S,T)].

Notation. For a given estimator # and random variable X,
we use 6 to denote the sample estimator and X to denote a
prediction of X. We use X to indicate the sample average of
a random variable taken over an appropriate dataset. In some
contexts, we use group-specific averages, which we indicate
with a superscript. For example, we use b%i to denote the
sample average of b among individuals who have protected class
feature B equal to B;. We will indicate a generic conditioning
event using the symbol &, and overloading it, we will write
&; as an indicator, i.e. 1 when & is true for the individual i
and 0 otherwise. In the learning setting, & will depend on
our choice of model h; when we want to emphasize this, we
write &;(h). We will also use the (-) notation to emphasize
dependence on context more generally, e.g. Cy s g(hg) is the
expected conditional covariance of f and b conditional on B
under hg.

Fairness Metrics. In this paper, we focus on measuring and
enforcing a group-level fairness metric that can be expressed as
the difference between groups of some function of the outcome
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Metric f(h(X),Y) £
Accuracy 1[h # y] {true}
Demographic Parity 1[h =1] {true}
True Positive Rate Parity 1[h # ) {y=1}
False Positive Rate Parity 1h#y] {y=0}
True Negative Rate Parity 1[h # y) {y =0}
False Negative Rate Parity  1[h#y] {y=1}

TABLE I: Many fairness metrics can be written in the form
required by our formulation. For concreteness, we provide a
table based on [40,41] summarizing the choice of f and &
that correspond to the many of the most prominent definitions
that can be written in our formulation.

and the prediction, possibly conditioned on some event. More
formally:

Definition 1. A fairness metric p is an operator associated
with a function f and an event £ such that

u(D) = Ep[f(V.Y)|€, B=1] ~Ep[f(V.Y)[€, B=0],

where the distribution D corresponds to the process generating

Many common fairness metrics can be expressed in this
form by defining an appropriate event £ and a function f.
For example, demographic parity in classification [34, 35, 36]
corresponds to letting £ be the generically true event and f
be simply the indicator 1[? = 1]. False positive rate parity
[37,38] corresponds to letting £ be the event that Y = 0 and
letting f(V,Y) = 1[Y # Y]. True positive rate parity [39]
(also known as “equality of opportunity”) corresponds to letting
& be the event that Y = 1 and f(V,Y) = 1[Y #Y].

For simplicity, we have defined a fairness metric as a scalar
and assume that it is conditioned over a single event £. It is
easy to extend this definition to multiple events (e.g. for the
fairness metric known as equalized odds) by considering a set
of events {&;} and keeping track of Ep[fj(?, Y)|E;, B) for
each. For clarity, we demonstrate how many familiar notions of
fairness can be written in the form of Definition 1 in Table II-A.
There are other metrics that cannot be written in this form; we
do not consider them here.

B. Fairness Metric Estimators

Our first main result is that we can bound fairness metrics
of the form described above on a data set with linear and
probabilistic fairness estimates, given that certain conditions
hold on the relationships between model predictions, the
predicted protected attribute, and the ground truth protected
attribute. To understand this result, we define the probabilistic
and linear estimators.

Intuitively, the probabilistic estimator is the population esti-
mate of the given disparity metric weighted by the probability
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that each observation is in the relevant demographic group.
Formally:

Definition 2 (Probabilistic Estimator). For fairness metric
with function f and event &, the probabilistic estimator of
for a dataset & is given by

Zies blf(Ylv Yl) _ Zies(l - bz)f(?zy Yz)
Zie£ bi Zieé’(l - bi)

It is assumed that at least one observation in the dataset has
had &€ occur.

NP ._
D, =

Meanwhile, the linear disparity metric is the coefficient of
the probabilistic estimate b in a linear regression of f (Y, Y)
on b and a constant among individuals in €. For example, in
the case of demographic parity, where f (Y’,Y) =Y, itis
the coefficient on b in the linear regression of Y on b and a
constant over the entire sample. Using the well-known form of
the regression coefficient (see, e.g. [42]), we define the linear
estimator as:

Definition 3 (Linear Estimator). For a fairness metric p with
function f and associated event &£, the linear estimator of p
for a dataset & is given by:

Siee (F7,Y3) = 77, )) (b -
Cice(b:i 0P

where - represents the sample mean among event .

b)

nL .
D, =

We define Df and Dﬁ as asymptotes of probabilistic
and linear estimators, respectively, as the identically and
independently distributed sample grows large.

C. Bounding Fairness with Disparity Estimates

Our main result proves that when certain covariance con-
ditions between model predictions, predicted demographic
attributes, and true demographic attributes hold, we can
guarantee that the linear and probabilistic estimators of the
disparity calculated with the probabilistic protected attribute
serve as upper and lower bounds on the frue disparity. This
result follows from the following proposition:

Proposition 1. Suppose that b is a probabilistic estimate
of a demographic trait (e.g., race) given some observable
characteristics Z and conditional on the event £, so that
b= Pr[B = 1|Z,£]. Define D} as the asymptotic limit of the
probabilistic disparity estimator, 135 ,and Dﬁ as the asymptotic
limit of the linear disparity estimator, ﬁﬁ . Then:

_ E[Cov(f(Y,Y),B|b,€)]

P _
Dp, =D, Var(B\S) (D)
and )
DF = p,, 4 HEVU.Y), BB, ) o

Var(b|€)

Since variance is always positive, the probabilistic and linear
estimators serve as bounds on disparity when Cy ;5 ¢ and
Cy B|b,e are either both positive or both negative, since they
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are effectively separated from the true disparity by these values:
If they are both positive, then Df; serves as an upper bound
and ij serves as a lower bound; if they are both negative,
then Df serves as an upper bound and Dﬁ serves as a lower
bound. Formally,

Theorem 1. Suppose that y is a fairness measure with function
J and conditioning event & as described above, and that
E[Cov(f(Y,Y),b|B,&E)] > 0 and E[Cov(f(Y,Y), B[b,&] >
0. Then,

P L
Dl <D, <DL

Proposition 1 and Theorem 1, which we prove in Appendix A,
subsume and generalize a result from [19]. These results define
the conditions under which Dﬁ and Df serve as bounds on

ground truth fairness violations; since we can use DE and

ﬁﬁ to estimate these quantities from data (up to sampling
uncertainty'), Theorem 1 thus provides a path to bound fairness
metrics as long as the assumed conditions hold. We demonstrate
the efficacy of this method for measuring fairness metrics of
existing models in practice in Section IV-B. However, as we
demonstrate in the next section, this also provides us with
a simple method to bound fairness violations when training
machine learning models.

III. METHODOLOGY FOR TRAINING

We now combine our fairness estimators with existing
constrained learning approaches to develop a methodology
for training fair models when only a small subset labeled
with ground truth protected characteristics is available. The
key idea of our approach is to enforce both an upper bound
on the magnitude of fairness violations computed with the
probabilistic protected attributes (Dﬁ), while also leveraging
the small labeled subset to enforce the covariance constraints
referenced in Theorem 1. This way, sirE:e satisfaction of the
covariance constraints guarantees that D[; serves as a bound
on unfairness, we ensure bounded fairness violations in models
trained with probabilistic protected characteristic labels. Due
to space constraints, we defer discussion of the mathematical
framework underlying the ideas to Appendix B.

Problem Formulation In an ideal setting, given access
to ground truth labels on the full dataset, we could simply
minimize the expected risk subject to the constraint that,
whichever fairness metric we have adopted, the magnitude
of fairness violations does not exceed a given threshold
«. However, in settings where we only have access to a
small labeled subset of data, training a model by directly
minimizing the expected risk subject to fairness constraints on
the labeled subset may result in poor performance, particularly
for complicated learning problems. Instead, we propose to
enforce an upper bound on the disparity estimator as a surrogate
fairness constraint. Recall that Theorem 1 describes conditions
under which the linear estimator upper or lower bounds the
true disparity; if we can enforce these conditions in our

'We show how to compute these standard errors in Appendix A-C, and
then take the extremes of the confidence intervals as our bounds.
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training process using the smaller labeled dataset, then our
training process provides the fairness guarantees desired while
leveraging the information in the full dataset.

To operationalize this idea, we recall that Theorem 1
characterizes two cases in which the linear estimator could
serve as an upper bound in magnitude: in the first case, both
residual covariance terms are positive, and D, < DL in the
second, both are negative, and Dﬁ < Duz. Minimizing risk
while satisfying these constraints in each case separately gives
the following two problems:

Problem 1.A.
min E[L(h(X),Y)]

heH
L
S.t. Du <«

E[Cov(f, B|b,&)]

>0
E[Cov(f,b|B,&)] >0

Problem 1.B.
inE[L(h(X),Y
?elin [L(h(X),Y)]

s.t. —a< Dﬁ
E[Cov(f, BJb,€)] < 0
E[Cov(f,b|B, €)] < 0

To find the solution that minimizes the the fairness violation
with the highest accuracy, we select:

h* € argminy,, . E[L(h(X),Y)],

where hi,, h}, are the solutions to Problems 1.A and 1.B.

By construction, h* is feasible, and so satisfies | D, (h*)| < a3
moreover, while h* may not be the lowest-loss predictor such
that |D,,| < a, it is the best predictor which admits the linear

estimator as an upper bound on the magnitude of the disparity.

In other words, it is the best model for which we can
guarantee fairness using our measurement technique.

Remark. Note that the second covariance constraint (associated
with the lower bound, i.e. the probabilistic estimator) in each
problem is necessary to rule out solutions far below the desired
range in the opposite sign; otherwise, the optimal solution
to Problem 1.A could have D, < —a and the optimal to
Problem 1.B D,, > «, and the ultimate h* selected could be
infeasible with respect to the desired fairness constraint. (Note
also that as a consequence, the probabilistic estimator will also
serve as a lower bound for the magnitude of disparity under
the selected model.)

Empirical Problem The problems above are over the full

population, but in practice we usually only have samples.

We thus now turn to the question of how we can solve the
optimization problem with probabilistic fairness constraints
empirically. We focus on the one-sided Problem 1.A for brevity

Note that as a result of Proposition 1, when CypB,e and Cy gy, ¢ are
both positive, the true fairness metric is necessarily is forced to be positive,
and symmetrically for for negative values.
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but the other side follows similarly. The empirical analogue of
Problem 1.A, which replaces population quantities with their
respective empirical estimators, is the following:

Problem 2.A.

.1
min
ho€H Ny

S Lha(X,),Y)

i=1
s.t. Dl (hg) <

éf,b\B,s(he) >
Crue(hg) >

Solving the empirical problem. While Problem 2.A is a
constrained optimization problem, it is not, except in special
cases, a convex problem. Despite this, recent results [14,43]
have shown that under relatively mild conditions, a primal-dual
learning algorithm can be used to obtain approximate solutions
with good performance guarantees.® In particular, if we define
the empirical Lagrangian as:

@
0
0

— 1 &2
=1

+ur (5£(h9) - 04)) ®

— e BCrpB,e — uBpCy, B

(where af,bu&g and 6“3”,,5 are as in Problem 2.A), the
optimization problem can be viewed as a min-max game
between a primal (6) and dual (y) player where players are
selecting 6 and 1 to max,, ming £(6, ;). Formally, Algorithm
1 in the appendix provides pseudocode for a primal-dual learner
similar to [14], [44], etc. specialized to our setting. Adapting
and applying Theorem 3 in [14] provides the following
guarantee:

Theorem 2. Let H have a VC-dimension d, be decomposable,
and finely cover its convex hull. Assume that y takes on a finite
number of values, the induced distribution x|y is non-atomic
for all y, and Problem 2.A has a feasible solution. Then if Al-
gorithm 1 is run for 7 iterations, and 6 is selected by uniformly
drawing ¢ € {1...T'}, the following holds with probability 1—4:
For each target constraint £ € {D,’f7 Crue, Crppets

dlog N 1
)+o(z)
dlog N

JN
)

where P* is the optimal value of Problem 2.A.

E[ﬂ(hé)} <ec; +0O <

and

E[L(hj.y)] < P* + O (

The theorem provides an average-iterate guarantee of
approximate feasibility and optimality when a solution is
drawn from the empirical distribution. Note that it is not a

3For the special case of linear regression with mean-squared error losses,
we provide a closed-form solution to the primal problem. This can be used
for a heuristic solution with appropriate dual weights.
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priori obvious whether our bounds remain informative over
this empirical distribution, but we show in Appendix A that
the covariance conditions holding on average imply that our
bounds hold on average:

Proposition 2. Suppose 0 is drawn from the empirical
distribution produced by Algorithm 1. If:

E [E[Cov(f (hg(X), B))I£,8]/6] = 0

and
E [E[Cov(f(hg(X),b))IE, Bl|A] = 0,

then E[D,,(hg)] < E[Dj; (hg)].

Remark. Combining Theorem 2 and Proposition 2 guarantees
that a randomized classifier with parameters drawn according to
the empirical distribution from Algorithm 1 will approximately
meet our disparity bound goals on average. Without stronger
assumptions, this is all that can be said; this is a general
limitation of game-based empirical optimization methods,
since they correspond equilibrium discovery, and only mixed-
strategy equilibria are guaranteed to exit. In practice, however,
researchers applying similar methods select the final or best
feasible iterate of their model, and often find feasible good
performance [21,44]; thus in our results section, we compare
our best-iterate performance to other methods.

IV. EMPIRICAL EVALUATION

We now turn to experiments of our disparity measurement
and fairness enforcing training methods* on predicting voter
turnout, as well as on the COMPAS dataset [45]. In addition,
we provide experiments on simulated data in order to outline
the conditions under which our method outperforms relying
on training a model with the labeled subset alone, which we
expand upon in Appendix G.

A. Data

We perform experiments on two datasets: the L2 dataset [46]
and the COMPAS dataset [23]. In both of these datasets, the
demographic attribute to which we pay attention is race.

L2 Dataset. The L2 dataset provides demographic, voter,
and consumer data from across the United States collected by
the company L2. Here, we consider the task of predicting voter
turnout for the general election in 2016 and measuring model
fairness violations with respect to Black and non-Black voters.
This application is particularly relevant since race/ethnicity
information is often not fully available [13], and much of the
voting rights law hinges on determining whether there exists
racially polarized voting and/or racial disparities in turnout [47].
We focus on the six states with self-reported race labels (North
Carolina, South Carolina, Florida, Georgia, Louisiana, and
Alabama). We denote Y = 1 if an individual votes in the
2016 election and Y = 0 otherwise; refer to Appendix C-A
for a detailed description of this dataset. We select seven

4An implementation of our method is available at: https:/github.com/patri
ckvossler18/probfair
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features as predictors in our model based on data completeness
and predictive value: gender, age, estimated household income,
estimated area median household income, estimated home value,
area median education, and estimated area median housing
value. Information on our selection process, pre-processing,
and distribution of these features are presented in Appendix
Section C-A. We denote Y = 1 if a voter shows up to vote
for the 2016 election and ¥ = 0 otherwise. The baseline rates
of voter turnout range between 52-63% across the six states
(see more information in Section C-A in the Appendix).

L2 Race Probabilities. The L2 dataset provides information
on voters’ first names, last names, and census block group,
allowing the use of Bayesian Improved (Firstname and)
Surname Geocoding Method (BISG/BIFSG) for estimating
race probabilities [12, 13,48]. We obtain our priors through
the decennial Census in 2010 on the census block group level.
AUC for BISG/BIFSG across the six states we investigate in
the L2 data ranges from 0.85-0.90. Further details on how we
implement BISG/BIFSG for L2 data and its performance can
be found in Appendix C-B.

COMPAS Dataset. We also evaluate our measurement and
training methods on models trained on the COMPAS [45]
dataset. The COMPAS algorithm is used by parole officers
and judges across the United States to determine a criminal’s
risk of recidivism, or recommitting the same crime. In 2016,
ProPublica released a seminal article [45] detailing how the
algorithm is systematically biased against Black defendants.
The dataset used to train the algorithm has since been widely
used as benchmarks in the fair machine learning literature. We
use the eight features used in previous analyses of the dataset
as predictors in our model: the decile of the COMPAS score,
the decile of the predicted COMPAS score, the number of prior
crimes committed, the number of days before screening arrest,
the number of days spent in jail, an indicator for whether the
crime committed was a felony, age split into categories, and
the score in categorical form. Further information about our
preparation of the COMPAS dataset can be found in Section F
of the Appendix.

COMPAS Race Probabilities. In the COMPAS dataset,
we generate estimates of race (Black vs. non-Black) based on
first name and last name using a LSTM model used by Zhu
et al. [49] that was trained on voter rolls from Florida. The
accuracy of these models is 73%, while the AUC is 86%. More
detail can be found in Appendix F.

B. Fairness Measurement

In this section, we present our method for bounding the
true disparity when race is not observed. Given /) model
predictions on a dataset with probabilistic race labels and 2)
true race labels for a small subset of that data, we obtain
bounds on three disparity measures: demographic disparity
(DD), false positive rate disparity (FPRD), and true positive
rate disparity (TPRD).

1) Experimental Design: To simulate measurement of fair-
ness violations on predictions from a pre-trained model with
limited access to protected attribute, we first train unconstrained
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Fig. 1: (Bounding Disparity in L2 Data) Comparison of our method of bounding true disparity (blue) to the method proposed
in Kallus et al. [20] (gray), using a logistic regression model to predict voter turnout in six states. We compare results across
three disparity measures: demographic disparity (DD), false positive rate disp. (FPRD), and true positive rate disp. (TPRD).
Only a small subset (here, n = 1,500, that is, 1%) of the data contains information on the true race. The gray dot represents
the true disparity. The dashed lines represent 95% confidence intervals. Both methods successfully bound the true disparity
within its 95% standard errors, but our estimators provide much tighter bounds.
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Fig. 2: (Bounding Disparity in COMPAS Data) Comparison of our method of bounding true disparity (blue) to the method
proposed in Kallus et al. [20] (gray), using a logistic regression model to predict two-year recidivism on the COMPAS dataset.
We access the disparity on the same measures as in Figure 1. The gray dot represents the true disparity. The dashed lines
represent 95% confidence intervals. Both methods always bound the true disparity within the 95% standard errors, but our
method provides tighter bounds.

logistic regression models with an 80/20 train/test split on both the entire test set to measure fairness violations (n = 1, 226)
datasets: in the case of L2, this is state by state. Then, in and we construct the labeled subset by sampling 50% of the
order to simulate realistic data access conditions, we measure test set (n = 613).

fairness violations on a random subsample of the test set, with
a percentage of this sample including ground truth race labels
to constitute the labeled subset which we use to calculate the
covariance constraints. In the case of the L2 data, the random
subsample over which we measure fairness violations has
n = 150,000, with 1% (n = 1,500) of this sample including
ground truth race labels to constitute the labeled subset. In the
case of the COMPAS dataset, which is much smaller, we use

We first check the covariance constraints on the labeled
subset, and then calculate Dy and Dp on the entire set of
examples sampled from the test set. We also compute standard
errors for our estimators as specified by the procedure in
Appendix Section B. To evaluate our method, we measure true
fairness violations on the examples sampled from the test set,
and check to see whether we do in fact bound the true fairness
violations within standard error. Further information about our
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unconstrained models can be found in Appendix Section D-A.

We present our results in Figure 1, which shows the results
over the L2 data, and Figure 2, which shows the results over
the COMPAS data.

2) Comparisons: We compare our method for estimating
fairness violations using probabilistic protected characteristic
labels with the method described by Kallus et al. [20], which is
one of the only comparable methods in the literature. We will
refer to this method as KMZ from here on. Details of KMZ and
our implementation can be found in Appendix Section D-B.

3) Results: We first analyze our results on voter data.

Figure 1 compares our method of estimating disparity (blue)
with KMZ (gray) for the three disparity measures on the six
states we consider. This figure shows estimates when training
a logistic regression model, and Figure 8 in the Appendix
shows similar results for training random forests. Across all
experiments, both KMZ’s and our estimators always bound
true disparity. However, we observe two crucial differences:
1) our bounds are markedly tighter (3.8x smaller on average
and as much as 5.5x smaller) than KMZ, and as a result 2)
our bounds almost always indicate the direction of the true
disparity. When they do not, it is due to the standard error,
which shrinks with more data. By contrast, KMZ’s bounds
consistently span [—0.5,0.5], providing limited utility even for
directional estimates.

We now turn to the COMPAS data. Similarly to the L2
data, our bounds are consistently tighter than KMZ, albeit
to a lesser extent in this case, since the COMPAS dataset is
significantly smaller (1.69x on average and up to 2.04x smaller).
We emphasize that, unlike KMZ, our estimators are always
within the same sign as the true disparity, barring the standard
errors that shrink as the data grows larger.

C. Fairness-constrained Training

In this section, we demonstrate the efficacy of our approach
for training fairness-constrained machine learning models.
Following our algorithm in Section III, we train models with
both covariance conditions necessary for the fairness bounds
to hold and also constrain the upper bound on absolute value
of disparity, Dﬁ, to be below some bound «. We find that
our method 7) results in a lower true disparity on the test set
than using the labeled subset alone, or using prior methods
to bound the disparity; 2) more frequently reaches the target
bound than other techniques; and 3) often incurs less of an
accuracy trade-off when enforcing the same bound on disparity
compared to related techniques. We also demonstrate via our
simulation study that there exist regimes in which our approach
meets the goal of keeping disparity below the desired threshold,
whereas training on the small labeled subset alone does not.

1) Experimental Design: We demonstrate our technique by
training logistic regression models to make predictions with
bounded DD, FPRD, and TPRD across a range of bounds, on
both the L2 dataset and the COMPAS dataset. We use logistic
regression as a proof-of-concept, but because our method builds
upon the algorithm proposed in [14], it can be extended to
any gradient-based machine learning method, including e.g.
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neural networks. Within the L2 dataset, we train these models
on the data from Florida, as it has the largest unconstrained
disparity among the six states, see Figure 1. We report the
mean and standard deviations of our experimental results for
ten trials. For each trial, we split our data (n = 150,000 for
L2 data, n = 6,128 for COMPAS data) into train and test
sets, with an 80/20 split. From the training set, we subsample
the labeled subset so that it is 1% of the total data (n =
1,500) for the L2 data and 10% of the total data for the
COMPAS dataset, since it is much smaller (around n = 613).
To enforce fairness constraints during training, we solve the
empirical Problem 2.A and its symmetric_analogue, which
enforces negative covariance conditions and Dﬁ as a (negative)
lower bound. We use the labeled subset to enforce adherence to
the covariance conditions during training. We use the remainder
of the training data, as well as the labeled subset, to enforce the
constraint on Dﬁ during training. As noted in Section III, our
method theoretically guarantees a near-optimal, near-feasible
solution on average over 0 ...0(T) . However, following Wang
et al. [21], for each of these sub—prolllems, we select the best
iterate #(*) that satisfies the bound on Dﬁ on the training set, the
covariance constraints on the labeled subset, and that achieves
the lowest loss on the training set. We report our results on
the solution between these two sub-problems that is feasible
and has the lowest loss. We present the accuracy and resulting
disparity of model predictions on the test set after constraining
fairness violations during training for a range of metrics (DD,
FPRD, TPRD), across a range of bounds for our method, as
well as three comparisons, described below, over L2 data and
COMPAS data, in Figure 3 and Figure 4 respectively. We
note that the resulting disparities for the unconstrained model
differ among the three fairness metrics. For DD and TPRD, the
unconstrained model resulted in a 0.28-0.29 disparity, but it
drops to 0.21 for FPRD. We adjusted our target fairness bounds
accordingly. Further details about the experimental setup can
be found in Appendix Section E-A. Our experimental design
for our experiments with synthetic data differ, and we outline
our setup and results in Section I'V-D.

2) Comparisons: We compare our results for enforcing
fairness constraints with probabilistic protected attribute labels
to the following methods:

(a) A model trained only on the labeled subset with true race
labels, enforcing a fairness constraint over those labels.
This is to motivate the utility of using a larger dataset with
noisy labels when a smaller dataset exists on the same
distribution with true labels. To implement this method,
we use the non-convex constrained optimization technique
from Chamon et al. [14] to enforce bounds on fairness
violations calculated directly on ground-truth race labels,
as we describe in greater detail in Appendix E-B. From
hereon, we refer to this method as labeled subset.

We compare with a recent method by Wang et al. [21] for
enforcing fairness constraints on data with noisy protected
attributes and a labeled auxiliary set, which is based on
an extension of Kallus et al. [20]’s disparity measurement
method. This method guarantees that the relevant disparity

(b)
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Fig. 3: (Satisfying fairness constraints in L2 Data) Mean and standard deviation of resulting disparity (top, y-axis) and
accuracy (bottom, y-axis) on the test set after enforcing the target fairness bounds (x-axis) on our method (blue); only using the
labeled subset with true labels (orange) and Wang et al. [21] (green) over ten trials. On the top row, we fade bars when the
mean does not meet the desired bound, which is indicated by the dotted blue lines. The dashed gray line in all plots indicates

the disparity from the unconstrained model.

metrics will be satisfied within the specified slack, which
we take as a bound. However, their implementation does
not consider DD; further details on this method can be
found in Appendix Section E-C.

We compare with a method for enforcing fairness with
incomplete demographic labels introduced by Mozannar
et al. [24], which essentially modifies the fair training
approach of Agarwal et al. [50] to optimize accuracy on
the entire available data, but to only enforce a fairness
constraint on the available demographically labeled data.
This method also guarantees that the relevant disparity
metrics will be satisfied within the specified slack, which
we modify to be comparable to our bound. Details on this
approach can be found in Appendix E-D.

(©)

In Appendix Section E-F, we also compare our method with
two other models: /) an “oracle” model trained to enforce
a fairness constraint over the ground-truth race labels on the
whole dataset; and 2) a naive model which ignores label noise
and enforces disparity constraints directly on the probabilistic
race labels, thresholded to be in {0, 1}.

3) Results: We first analyze our results on the L2 data. We
display our results in Figure 3. Looking at the top row of
the figure, we find that our method, in all instances, reduces
disparity further than training on the labeled subset alone (blue
vs. orange bars in Figure 3), than using Wang et al. [21] (blue
versus green bars in Figure 3), and than using Mozannar er
al. [24] (blue versus pink bars in Figure 3). Second, our method
satisfies the target fairness bound on the test set more often than
the other methods (12 out of 12 experiments, as opposed to 0,
1, and O for labeled subset, Wang, and Mozannar respectively).
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In other words, the disparity bounds our method learns on the
train set generalize better to the test set than the comparison
methods. We note that deviations from the enforced bound on
the test set, when they arise, are due to generalization error in
enforcing constraints from the train to the test set, and because
our training method guarantees near-feasible solutions.

The bottom row of the figure shows how our method
performs with respect to accuracy in comparison to other
methods. The results here are more variable; however, we
note that this dataset seems to exhibit a steep fairness-accuracy
tradeoff — and yet despite our method reducing disparity much
more than all other methods (indeed, being the only approach
that reliably bounds the resulting disparity in the test set),
we often perform comparably or slightly better. For example,
when mitigating TPRD, our method mitigates the disparity
much more than Mozannar et al. [24] and Wang et al. [21],
but generally outperforms both with respect to accuracy. In
the case of FPRD our method exhibits accuracy comparable
to that of Wang et al. while consistently satisfying the target
fairness constraint.

Next, we turn to our results on the COMPAS [45] dataset in
Figure 4, which is set up identically to Figure 3, with disparity
results on the top and accuracy results on the bottom. We
see that our method again reliably meets the desired disparity
bound for 34 out of 36 experiments across the different metrics,
even for small target disparity values, while achieving accuracy
comparable to the baseline methods. In the cases where our
method’s accuracy is lower than that of the comparison methods,
it is the only method that consistently satisfies the target
disparity constraint. Although Mozannar et al. (red) has the
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Fig. 4: (Satisfying fairness constraints in COMPAS Data) Mean and standard deviation of resulting disparity (top, y-axis)
and accuracy (bottom, y-axis) on the test set after enforcing the target fairness bounds (x-axis) on our method (blue); Wang et
al.’s method (green); Mozannar et al.’s method (red) and only using the labeled subset with true labels (orange). On the top
row, we fade bars when the mean does not meet the desired bound, which is indicated by the dotted blue lines. The dashed
gray line in all plots indicates the disparity from the unconstrained model.

highest accuracy across different target disparity values for
DD and FPRD, it satisfies the target disparity bound in only
three of the 36 experiments and particularly fails to satisfy the
target disparity constraint for small disparity values. Wang et
al. (green) has the highest accuracy for the TPRD experiments,
but only satisfies the disparity constraint for FPRD and TPRD
for disparity values greater than 0.1. Finally, the labeled subset
baseline (orange) is only able to satisfy the target disparity
constraint for large disparity values and typically has lower
accuracy than the other comparison methods.

D. Simulation Study

We note that the utility of our method is often dependent
upon the size of the subset of the data labeled with the protected
attribute. If this subset is relatively large, then (depending on
the complexity of the learning problem) it may be sufficient to
train a model using the available labeled data. Conversely, if
the labeled subset is exceedingly small, the enforcement of the
covariance constraints during training may not generalize to
the larger dataset. To characterize the regimes under which our
method may be likely to perform well relative to others, we
empirically study simulations that capture the essence of the
situation. We study the utility of our method in comparison
to only relying on the labeled subset to train a model along
two axes: [) size of the labeled subset and 2) data complexity,
which we simulate by adjusting the number of features. While
stylized, our simulation has the advantage that we can vary key
features of the setting like the dimensionality and distribution
of the data, the size of the labeled and unlabeled datasets,
the complexity of the relationship between the features and
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the outcome, and so on. For simplicity, we also would like
the ability to impose positive covariance conditions in the
data-generating process. To ensure this while also allowing
for the tuneability and flexibility we require, we settle on a
hierarchical model specified by parameterized components that
are individually simple but can serve as building blocks. See
Appendix G, including Figure 15, for a visualization via the
language of causal diagrams and further discussion.

At a high level, the model can be described as follows.
Individuals have a set of “primary” features denoted which are
drawn randomly from some distribution. The probability that
the individual is Black is a function of these primary features,
and their status as Black or non-Black is simply a Bernoulli
random variable with mean of said probability. There are then
“secondary” features, each of which are functions of all the
primary features. A score is generated as a function of these
secondary features and the outcome of interest is generated by
thresholding this score and randomly perturbing it with small
probability.

Using this high-level structure, we can generate a family
of data-generating processes by choosing different functions
that represent the links between the features. In particular,
we will use polynomials with randomly selected coefficients.
This allows us to vary the model by increasing the number of
features or degree of the polynomials without directly selecting
all the constants involved. We provide further details, including
specific functional forms and assumed distributions, in Section
G.

Given the family of data-generating processes, we consider
three different levels of complexity — cubic polynomials of
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Fig. 5: (Simulation varying size of labeled subset) We present a three by three figure showing the test disparity of the our
disparity reduction method when compared with relying on only the labeled subset to reduce disparity by directly enforcing a
constraint on the protected attribute labels. The rows correspond to datasets of increasing sizes (number of features from 10 to
50), indicating problems of increasing complexity. The columns correspond to the size of the overall dataset, ranging from
5,000 to 50,000 samples. The x-axis shows the percentage of the total dataset is dedicated to the labeled subset, and the y-axis
denotes the percentage disparity between the two groups calculated on the test set. The blue graphs correspond to our method
and the orange graphs to the labeled subset method. The red dashed line is the desired disparity bound.

10, 20, or 50 features — and draw datasets of 5,000, 10,000,
or 50,000 observations; of these, we vary the percentage
with labels revealed to the learner ranging from 0.5 to 40%,
depending on the size of the dataset. We then compare our
method to simply training on a fair model on the true labels
of the labeled subset. Figure 5 shows the disparity for both
methods in each of the scenarios. Overall, we find that there
exists a regime, even in simple problems, where there is
insufficient data for the labeled subset to effectively bound
the disparity to the desired threshold. We find that the more
complex the data is, the larger this regime is—with the most
complex setting in our simulations (50 features) suggesting that
the labeled subset technique does not converge to the desired
disparity bounds even when the size of the labeled subset is
10,000 samples, or 20% of the overall dataset.

V. RELATED WORK

Kallus et al. [20] propose a method for measuring fairness
violations in data with limited access to protected attribute
labels. Their method involves finding the tightest possible set
of true disparities given probabilistic protected attributes. An
important difference between Kallus et al. and our method
relates to their assumptions around the auxiliary dataset. The
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core difference is that Kallus et al. consider settings where
the auxiliary and test sets are independent datasets, while our
method considers the case where the test set subsumes the
auxiliary data. We explain this difference in further detail in
Appendix D-B

Regarding bias mitigation, while there are many methods
available for training models with bounded fairness viola-
tions [11, 39, 50], the vast majority of them require access to the
protected attribute at training or prediction time. Although there
are other works which assume access only to noisy protected
attribute labels [21], and no protected attribute labels [51], or
even a labeled subset of protected attribute labels, but without
an auxiliary set to generate probabilistic protected attribute
estimates [52]; very few works mirror our data access setting.
One exception, from which we draw inspiration, is Elzayn et
al. [19]; that work studies in detail the policy-relevant question
of whether Black U.S. taxpayers are audited at higher rates than
non-Black taxpayers, and uses a special case of our Theorem
1 (for measurement of demographic disparity only). In this
paper, we formalize and extend their technique to bound a
wide array of fairness constraints and introduce methods to
train fair models given this insight.

Another exception, which we compare to in Section IV-C,
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is that of Mozannar et al. [24]. While Mozannar et. al largely
focus on the problem of training private fair models, thus
employing very strong conditional independence assumptions
on the protected attribute proxy which are infesible in our
setting, the authors do propose an extension of their method
to handle a the case of limited protected attributes without
considering privacy, which mirrors our data access assumptions.
This extension is essentially a repurposing of the Agarwal et
al. [50] fair training approach, modified such that the model
is trained with all available data, but the fairness bounds are
only enforced during training on the small subset of training
points with protected attribute labels. It is this extension that
we compare to in Section IV-C, and find that our method
often outperforms theirs in reducing disparities and performs
comparably in terms of accuracy.

Within the set of techniques with a different data access
paradigm, we differ from many in that we leverage information
about the relationship between probabilistic protected attribute
labels, ground truth protected attribute, and model predictions
to measure and enforce our fairness bounds. Thus, while we
do require the covariance conditions to hold in order to enforce
our fairness bounds, we note that these are requirements we
can enforce during training, unlike assumptions over noise
models as in other approaches to bound true disparity with
noisy labels [53,54,55]. Intuitively, leveraging some labeled
data can allow us to have a less severe accuracy trade-off when
training fair models, as demonstrated with our comparison to
Wang et al. [21]. In this case, using this auxiliary data means
that we do not have to protect against every perturbation within
a given distance to the distribution, as with distributionally
robust optimization (DRO). Instead, we need only to enforce
constraints on optimization, which we observe leads to a lower
fairness-accuracy trade-off in our experiments. a lower fairness-
accuracy trade-off.

VI. DISCUSSION

In this work, we introduce a technique for measuring and
reducing fairness violations in a setting with limited access
to protected attribute data by leveraging probabilistic proxies
(e.g., based on name and geolocation). These techniques may
help private and public actors better measure algorithmic
disparity and fulfill legal and moral obligations to ensure
that algorithmic decision-making does not disparately impact
disadvantaged or protected groups. However, the collection and
use of protected attribute information is inherently sensitive and
raises privacy concerns. Additionally, building a probabilistic
model to estimate protected attributes raises important ethical
and practical questions as well, such as who has access to
these models and what are the protocols for its responsible
deployment. Moreover, the approach requires committing to a
particular notion of groups to measure and mitigate fairness
with respect to, an exercise which in itself can be fraught.
Given the increasing stakes of algorithmic deployment as well
as increasing regulatory and public pressure, we believe that
the benefit of being able to more effectively measure and
reduce unfairness in model predictions outweighs these risks,
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but practitioners applying our method must carefully consider
these concerns in the wider context in which they work.

We note several avenues for future work. First, while our
framework can be applied iteratively to handle multiple sensi-
tive groups, generalizing our framework to account for them
directly, and additionally to handle intersectional groups, would
be preferable. Second, while binary classification is perhaps the
most common task in machine learning, handling more general
tasks, such as multi-label classification or regression, would
extend the applicability of results. Finally, in the proposed
method, it is important that the probabilistic predictions are
representative of the population of interest; in practice, this
means either assuming that the dataset from which probabilistic
predictions are learned is drawn from the same population,
or that reweighting techniques can be used to construct a
representative sample. In the future, it would be useful to use
techniques from sensitivity analysis to bound the impact of
selection bias on measurement error and robust learning to
train low-disparity models under worst-case selection bias.
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APPENDIX A
MAIN PROOFS

A. Proof of Theorem 1
First, we demonstrate the following lemma:

Lemma 1. Suppose that 0 < b < 1 almost surely and
E|f(Y,y)|€| is finite. Under the assumption of independent
and identically distributed data with £ having strictly positive
probability, the asymptotic limits Df and Dﬁ satisfy:

Cov [b £V, Y)\E] Cov [b7 F(Y, Y)|5]

P L _
Do = gpea—gpe) ™ P T vape
and thus

EpEl1 - EplE]”
Proof. We note that:

— Z b; " E[b|E]

168

and
721) FOVY) "SR - £(Y,Y)|€]
ZES

by the Strong Law of Large Numbers. Similarly,

72 (1= b)) f(V,Y) "S5°E[(1 - b) - £(V,Y)[€]
165'
52(1_@) ST E[ -]

i€€
Then dividing numerators and denominators in the definition
of the empirical estimator gives that:

DP — ne s ice if (Y, Y)) e el bi)f (Y, Yi)
g nlg Zies i % Zz‘es(l - bi)
ne o0 Ebf(Y,Y)E] E[(1-b)f(Y,Y)E]

E[b[€] E[(1-b)[€]

Combining terms and expanding out the algebra, the last term
is:

Eb (V. Y)le] ~ EWEEL (V. vy Cov [ S Y)le]

E[b[E](1 — E[b[E]) -~ EpEN( -

On the other hand, the linear estimator converges asymptotically
to

Cov [b7 f(f/,Y)\é‘}

Var[b|€]
This result can be seen by conditioning on £ and then making
the standard arguments for the asymptotic convergence of the

OLS estimator. Comparing forms of the limits gives the final
result. O

l’jL ne—»00

Our key theorem follows as a corollary from the following
proposition, (Proposition 1 in the main text):

E[plE]) -

Proposition. Suppose that b is a prediction of an individual’s
protected attribute (e.g. race) given some observable characteris-
tics Z and conditional on event &, so that b = Pr[B = 1|Z,£].
Define Dﬁ as the asymptotic limit of the probabilistic disparity
estimator, D,,, and D; as the asymptotic limit of the linear
disparity estimator, D;. Then:
)
E[Cov(f(Y,Y), BJb,£)]

P _ _ 5
DP =D, V(BT (1.1)

2)

E[Cov(f(Y,Y),b|B, &)
Var(b|€)

Dl=D,+ (1.2)

We will proceed by providing separate proofs for (1.1)
and (1.2). We will also first separately highlight that disparity
is simply the dummy coefficient on race in a(n appropriately
conditioned) regression model. This fact may be known by
some readers in the context of regression analysis (especially
without conditioning on a given event), but we provide proof
of the general case.

Lemma 2. Let D,, be the disparity with function f and event
&. Then D,, can be written as:

_ Cov(f(Y,Y), BIE)
e Var(B|€) ’
Proof. Note that by definition:

D

—E[f(Y,Y)|E,B=0].

If the right hand side of the equation in the statement of the
lemma can be written this way, we are done. But note that:

Cov(f(Y,Y), B|E) _ E[f(Y.Y)B|&] - E[f(Y,Y)|E]E[B|E]

Var(B[€) E[B|5](1 “E[B|])

Now using the law of iterated expectations and simplifying:

E[f(Y,Y)BI€] = E[E[f(Y,Y)BI, B]
=E[f(Y,Y)B|B =1, Pr[B = 1[¢]
[f(A Y)B|B = 0,&] Pr[B = 0[]
E[f(Y,Y)|B =1, Pr[B = 1|€]
+EMP[ =0[€]
=E[f(Y,Y)|B =1,&]Pr[B = 1/€]

Moreover, since B is a Bernoulli random variable, Pr[B =
11€] = E[B|€] and

Var(B|€) = E[B|€](1 — E[B|€])

Combining these, we can write:
E[f(Y,Y)B|EE[BIE] - E[f(Y,Y)|E]E[B€]
E[B|€](1 - E[B|£])
_Ef(Y,Y)|B =16 - E[f(Y,Y)[€]E[BIE]
(1 - E[BIE])

Authorized licensed use limited to: Stanford University Libraries. Downloaded on August 25,2025 at 16:43:15 UTC from IEEE Xplore. Restrictions apply.



This can be expanded as:

E[f(Y,Y)|B =1,€]

(1 - E[BIE])

E[f(V,Y)|B = 1, Pr[B = 1/€]
- (-EBE)

E[f(V,Y)|B = 0,&] Pr[B = 0/€]
N (1-E[B[&])

E[f(Y,Y)|B =1,&](1 — Pr[B = 1[&))
(1—Pr[B = 1€])

—E[f(Y,Y)|B =0,£](1 - Pr[B = 1|E])
(1-Pr[B =1[&))
=E[f(V,Y)|B=1,6| —E[f(Y,Y)|B=0,£
as desired. O

Note that the familiar interpretation of demographic disparity
being the dummy coefficient falls out from this lemma by letting
€ be the event “always true” and f(Y,Y) =Y.

Now we can turn to proving (1.1). Recall first that, by
assumption:

b="Pr[B=1|Z,& =E[l[B =1]|Z,€&]
— b=E[B|Z,&]VZ
— E[b|¢] = E[E[B|Z, €]] = E[B|¢]
by the law of iterated expectations. Moreover, if we define €
as B — b, then:

Ele|Z, &) = E[B|Z,&] — Eb|Z,E] =0
Proof of (1.1). Note that by Lemmas 1 and 2:
. Cov [f(Y,Y),B|€} Cov [f(f/,y),bw}
" Var(B|£) E[bIE](1 —E[b]&])

Since E[b|€] = E[B|€] and Var[B|€] = E[B|E](1-E[BI€]) =
E[b|E](1 — E[b|€]), the denominators are the same and be
collected as Var(B|E). As for the numerators, we note that

D, —

Cov [f(Y,Y),B\E] ~ Cov [f(Y,Y),b|€}
= Cov [f(Y,Y),B - b|5]

by the distributive property of covariance. Recall that the law
of total covariance allows us to break up the covariance of

random variables into two parts when conditioned on a third.

Applying this to f(Y, Y) and B — b, with the conditioning
variable being b, we have that:

Cov [f(f/, Y),B - b|5] —E [COV (f(Y, Y),B - b) £, b}
+ Cov (E[f(f/, Y)|E,b),E[B — b€, b})
- [COV (f(f/, Y),B - b) 3 b}
- [COV (f(ff,Y),B) \5,1;]

where the second equality follows because b = E[B|Z,£] —

E[B|b,£] = b and the third because b is trivially a constant
given b. Combining these together, we have that:

. E|Cov f(Y,Y),B)|E,b

Pu= D= | (Var[BE} e

E [cov (f(Y,Y),B) |5,b}
Var[B|&] ’

as desired. O

P
— DM:DH—

We now prove (1.2).

Proof of (1.2). First, consider the linear projection of f (Y, Y)
onto B given that £ occurs. We can write this as:

F7.Y) = a+r-B o,

where it is understood that the equation holds given £. Now,
by the definition of linear projection,

_ Cov(f(¥.Y), BIE)
N Var(B|€)
where the last equality follows by Lemma 2, and by the
definition of linear projection, Cov(B,v|E) = 0.
Now, consider the linear projection of f(Y,Y) onto b given
E. Again we can write the equation:

fY.Y)=d +Bb+n

=D,

and similarly

~ Cov(f(Y,Y),blE)
b= —"Vae)  ~Dr

and Cov(b,n|€) = 0.
Now, by applying the Law of Total Covariance to the
equation above, we have:

BVar(b|€) = Cov(f(Y,Y),bl€)
= E[Cov(f(Y,Y),b|E, B]
+ Cov(E[f(Y,Y)|E, B],E[b|E, B)).
We will focus for now on the latter term. Note that by
replacing f(Y,Y) by a+ vB + v, we can obtain:
Cov(E[f(Y,Y)|B, €], E|B, £]) = Cov(vB + E[v|B],
B —E[¢|B]|€)
where we have moved out the event £ and used the fact that «

is a constant and B is a constant conditional on B to remove
them from the inner expectations. We can expand as

Cov (yB + E[v|B,£], B — E[¢|B]|€) .
We can further expand this covariance term to be
= yVar(B|€) — v Cov(B,E(¢e|B)|€)
+ Cov(E(v|B), B|€) — Cov(E(v|B),E(¢| B)|€)
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where the last equality is due to the fact that B is binary so
the covariance between B and v equals zero.

Next we show that the term Cov(B,IE(e|B)]S) can be
written in terms of b and e,

cov(B,E(e\B)|5 = E[BE[¢|B]] — E[B]E[E[¢| B]]
E[E[Be|B]|€] — E[BIE]E[E[e| B]|€]
7E[Be|5]— [B|E]E[e|€]
:COV(B76}5)

= COV(b+€,€‘5)
= Cov(b, €|€) + Var(e[€).

Plugging these results back into the original equation and
using the fact that B = b + ¢, we have

BVar(b|€) = E[Cov(f(Y,Y),b|E, B
+ yVar(B|E) — yVar(¢|E)
= v[Var(b|€) + Cov(b,
+ E[Cov(f(Y,Y),b|E, B]
= 4 Var(b|€) + E[Cov(f(Y,Y),blE, B,

— v Cov(b, €|€)
)]

where the last equality is due to the fact that Ele|Z,£] =

0. O

B. Proof of Proposition 2
Proof. For a fixed 6, we can apply Theorem 1 to write that:
E[Cov(f(hsY),B|b,&]
Var[B|£] ’
where the expectation in the numerator is over the distribution
of the data. Now, if # is drawn from a distribution 6 (in
particular, @ corresponding to 6; with ¢ being drawn from
1...T') that is independent of the data, we can treat the quantities
as random variables drawn from a two step data-generating
process. In our setting (as in classical, but not all, learning
settings), the distribution of future data is assumed not to
depend on our selected model. Then by the linearity of
expectations, we have that

Ego [D}.(hg)] — Egg [Dulhy)]
E[Cov(f(hg,Y),Bb,E]

Var[B|€]
A similar statement can be made for the relationship between
Ejo, [Dh(hg)] and By, [Dyu(hg)]. =

C. Standard Errors

Here, we discuss the calculation of standard errors; these
arguments are more general, but substantially similar, to those
made in [19]. As shown in the proof of Theorem 1, Dl
and Dp converge to their asymptotic limits, D’ and D”
respectlvely, however, given that we observe only a ﬁmte
sample, our estimates Dl and DP are subject to uncertainty
whose magnitude depends on the sample size of the data.

DE(hg) = Dyu(hg) —

=Ej.0

Since the DL is simply the linear regression coefficient,
its distribution is well-studied and well known. In particular,

177

under the classical ordinary least squares (OLS) assumptions
of normally distributed error, 5 ~ N (8, 2
sample variance of b; under mild technical bconditions, central
limit theorems can be invoked to show that as the size of
data increases, 3 follows a distribution that is increasingly
well-approximated by said normal distribution [56]. Note that,
since as shown in Lemma 1

Cov(f(Y,Y),b[E)

where s? is the

L
D= =" e
and R
o CovUf (YY), 0lE)
ko EPIEN(1 - ED|E])’
it follows that
P L Var[b|£] .
P =D g - mprE)’

analogously, by expanding the definitions of the sample
estimators, we can easily see that:

nis Lice(bi — b5)?
be (1 —b%)
Then by Slutsky’s theorem, we can state that:

nesoo Var[b|€]
DP —® pL
*E[b|E](1 —

AP _ AL _
Du_Du_

E[b|E])’

As a consequence, the distribution of DP is a scaled version
of the distribution of DL and in partlcular

DP _ pP .
p— VPEb\é’] ZEN(0,1).
ar
VarDji\/ el EpreD

Thus, in practice, we can estimate the variance of ﬁf; as if it
were the usual OLS estimator and then estimate Var[b|€] and
E[b|€] to scale it appropriately.

D. Obtaining the probabilistic prediction

1) BIFSG: Recall that conceptually, b functions as a prob-
abilistic confidence score that an individual has B = 1. A
perfectly calibrated b will thus have E[B|b] = b, and our
main theorems assume that we have access to this. In practice,
however, b must be estimated; in this work, we focus on the
commonly used [16,20, 57, 58] Bayesian Imputations with First
Names, Surnames, and Geography (BIFSG). In BIFSG, we
make the naive conditional independence assumption that the
proxy features are independent conditional on the protected
characteristic. In the case of BIFSG, this amounts to assuming

that:
Pr[F, S,G|B] = Pr[F|B] Pr[S|B] Pr|G|B],

where the random variable F' is first name, S is surname, and
G is geography . By applying Bayes’ rules to this assumption,
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we can obtain that:
Pr[F, S, G|B]
Pr[F, S, G|
_ Pr[F|B|Pr[S|B] Pr[G|B]
B Pr[F, S, G

The right-hand side of this equation is fairly easy to estimate
because it requires knowing only marginals rather than joint
distributions (the denominator can be normalized away by
noting that we must have that Pr[B = 1|F,S,G| and
Pr[B = 0|F, S, G] must sum to 1), and these marginals are
often obtainable in the form of publicly available datasets. Note
that, BIFSG can be written in multiple forms by applying Bayes’
rule again to the individual factors (e.g. replacing Pr[F'| B] with
Pr[B|F] Pr[F]/ Pr[B]), which may be convenient depending
on the form of auxiliary data available.

For our setting, we leverage the census and home mortgage
disclosure act (HMDA) data, as mentioned, to estimate b from
publicly available data. We provide quantitative details on
our estimates in Appendix C. We note also that since b is
continuous, we will discretize into equally sized bins whenever
we need to compute quantities conditional on b.

2) Impact of Miscalibration: Throughout the theoretical
work, we have assumed that we have b = Pr[B = 1|Z7] - i.e.,
that b is perfectly calibrated. In reality, this is a quantity that is
estimated, and will thus contain some error and/or uncertainty,
including bias due to the fact that the dataset on which it
is estimated (e.g., the census for the U.S. as a whole) may
not be fully representative of the relevant distribution (i.e.,
the distribution of individuals to whom the model will be
applied, which may be a particular subset). This could result
in miscalibration; when this happens, it could be that applying
our method with our miscalibrated b results in failing to bound
disparity (both in measuring alone, and in training).

Ultimately, miscalibration is primarily a problem for our
setting only insofar as it causes the method to fail. For small
amounts of miscalibration, the method tends to succeed anyway
— e.g. in our setting, we do observe that our estimates are not
perfectly calibrated, but we still achieve good results. For larger,
or unknown, miscalibration, there are two paths that can be
taken. The first is to conduct a “recalibration" exercise, and
obtain a modified b that more closely matches the distribution
of interest; this can be as simple as fitting a linear regression
of B on b in the labeled dataset and replacing b with the
predictions of this regression. Alternatively, given an assumed
bound on the magnitude of the miscalibration, Theorem 1 can
be extended to incorporate its effect. In practice, recalibration
is more straightforward to do empirically, but the theoretical
method can also be used for sensitivity analysis; see [19] for
their discussion of the recalibration approach as well as the
effect on their special-case bounds.

Note also that, in settings where € is affected by the modeling
choice h — i.e., when the fairness metric involves conditioning
on model predictions, as in the case of positive predictive value
(PPV) — it may be the case that a perfect or well-calibrated
b for one model may be poorly-calibrated for another. That

Pr[B|F,S,G] =

178

is, it may be that among observations, we find that that our
estimate |b(Z)—Pr[B|Z, E(hg)]| is small while our estimate of
|b(Z) —Pr[B|Z, E(hg)| is large. In this case, we can introduce
a recalibration step in-between iterations, although this deviates
from the theoretical assumptions that ensure convergence. Note
that a sufficiently expressive model over a sufficiently powerful
set of proxy features should be able obtain good calibration
overall events &; this suggests that another path forward in
such a setting may be in investing in alternative, more powerful
(e.g. machine-learned) models of b.

APPENDIX B
MATHEMATICAL FORMULATION OF FAIR LEARNING
PROBLEM

In this section, we discuss our approach to learning a fair
model using the probabilistic proxies and a small subset of
labeled data. To do so, we leverage recent results in constrained
statistical learning.

A. Theoretical Problem

We begin by discussing the theoretical problems — i.e.,
abstracting away from the sample of data and considering
the problems we are trying to solve.

1) One-sided bound: We first consider the case of imposing
a one-sided bound on disparity, i.e. requiring that D, < «
but allowing D,, < —a; certainly this will not be desirable in
all situations, but we can use it as a building block for the
two-sided bound as well.

We begin by formalizing the ideal problem — that is, the
problem we would solve if we had access to ground truth
protected class. This is simply to minimize the expected
risk subject to the constraint that disparity is not “too high”
according to whichever disparity metric we adopt:

Problem 3 (Ideal Problem). Given individual features X, labels
Y, a loss function L, a model class H, a disparity metric f,
and a desired bound on disparity «, find an h to:

géiﬁE[L(h(XLY)] s.t. Dy(h) < a,

where D,,(h) is the p-disparity obtained by h.

The ideal problem is not something we can solve because
we cannot directly calculate D, over the dataset, since it
requires the ground truth protected class label B. But Theorem
1 suggests an alternative and feasible approach: using the linear
estimate of disparity as a proxy bound. That is, if the linear
estimator is an upper bound on the disparity, and the linear
estimator is below «, then disparity is below « too.

Formally, we would solve following problem:

Problem 4 (Bounded Problem Direct). Given individual
features X, labels Y, a loss function L, a model class H,
a disparity metric u, a desired on disparity «, and a predicted
protected attribute proxy b, find an h to:

i st. DE <
gg%E[L(h(X),Y)] st. Dy <«
and D, < Dﬁ.
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Notice that any feasible solution to Problem 4 must satisfy
the constraints of Problem 3, i.e., we must have that D,,(h) < c.
The gap between the performance of these two solutions can be
regarded as a “price of uncertainty”; it captures the loss we incur
by being forced to use our proxy to bound disparity implicitly
rather than being able to bound it directly. We explore this price
by comparing to an “oracle” which can observe the ground
truth on the full dataset and perform constrained statistical
learning.

As in Problem 2, we cannot directly observe D, so the
second constraint is not one that we can directly attempt to
satisfy. But we know that it holds exactly in the conditions
under which Theorem 1 applies. Therefore, we can replace
that constraint with the covariance conditions:

Problem 5 (Fair Problem - Indirect). Given individual features
X, labels Y, a loss function L, a model class H, a disparity
metric p (with associated event £ and function f(h(X),Y)),
a desired maximum disparity «, and a predicted proxy b, find
an h to:

min E[L(h(X),Y)]

s.t. Dﬁ <«
heH

and E[Cov(f(h(X),Y),b|B,&)] >0
And indeed, these problems are equivalent:
Proposition 3. Problems 5 and 4 are equivalent.

Proof. Theorem 1 directly says that DY > D, <=
E[Cov(f(h(X),Y),b|B,£)] > 0. Hence if h satisfies the
constraints of Problem 5 iff it satisfies those of Problem
4. Since the objectives are also the same, the problems are
equivalent. L

As written, Problem 5 is still using the population distribu-
tions; we will discuss its empirical analogue below.

2) Two-sided bound: The two-sided bound requires that
|Du| < «; this may be more common in practice. Again, we
begin by considering the ideal problem:

Problem 6 (Ideal Symmetric Problem). Given individual
features X, labels Y, a loss function L, a model class H,
a disparity metric p, and a desired bound on disparity «, find
an h to:

min E[L(h(X),Y)] st [ D, (h)| < a,

where D,,(h) is the p-disparity obtained by h.
As with Problem 4, we cannot directly bound disparity, since

we do not have it, but we do have the disparity estimator. This
leads to the following problem:

Problem 7 (Symmetric Problem Direct). Given individual
features X, labels Y, a loss function L, a model class H, a
disparity metric p, a desired on disparity «, and a predicted
protected attribute proxy b, find an h to:

inE[L(h(X),Y)] s.t. DY <
min [L(W(X),Y)] s.t. D] <laf
and | D,,| < |DE|
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Unfortunately, we do not have any theory about putting an
absolute value bound on disparity, and indeed, because the
weighted and linear disparity estimators are positive scalar
multiples of one another, we cannot hope to use one as a
positive upper bound and the other as a negative lower bound.
But notice that if we were to find the best solution when
D/ € 10,0], and the best solution when D} € [—a, 0], then
we would cover the same range as [—a, a.

One attempt to apply this principle would be to solve the
following two subproblems:

Problem 6.A.
. L <
hmelﬁE[L(h(X)’Y)] st. D, <«
and E[Cov(f(h(X),Y),b|B,&E)] >0
Problem 6.B.
. o< DL
?G%E[L(h(X),Y)] st. —a< Dy
and E[Cov(f(h(X),Y),b|B,E)] >0
And take:
hg = argminy,. . E[L(h(X),Y)].

But this does not even guarantee a feasible, let alone optimal,
solution to Problem 7. To see this, note that there is nothing
preventing hg, to be not simply < «, but in fact < —c, and
vice versa. In particular, what went wrong is that we did not
find the two best solutions over [—«, 0] and [0, «], but rather
the two best over [—oc0, ] and [—«, 0o], which is no constraint
at all.

To get around this issue, we can solve the following two
problems instead:

Problem 7.A.

}réi?r{lE[L(h(X),Y)] st. D <«
and E[Cov(f(h(X),Y),b|B,&E)] >0
and E[Cov(f(h(X),Y), B|b,E)] > 0

Problem 7.B.
i t —a< Dl
hmelﬁE[L(h(X),Y)] st. —a< Dy

and E[Cov(f(h(X),Y),b|B, )]
and E[Cov(f(h(X),Y), B|b, €)]

0

<
<0

Why are these different? Notice that imposing both co-

variance constraints in 7.A enforces that Dﬁ <D, < Dﬁ ;
: D L Varb s D

since DI, = D, ERI—Ep) ~ e D7, is always an attenuated
version of DL — this can only be the case if all three terms are
nonnegative. Similarly, 7.B enforces that Dﬂ >D, > DL; this
similarly ensures that all three terms are nonpositive. Since
these terms also include the bound on the linear estimator, they
thus ensure that if we take:

h € argmin
€ argminy, -,
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we will indeed obtain a feasible solution to Problem 7. As
in Problem 5, there may again be a suboptimality gap since
we have effectively imposed more constraints to the original
problem.

B. Solving the Empirical Problems

In this section, we use recent results in constrained statistical
learning to formulate and motivate empirical problems that we
can solve which obtain approximately feasible and performant
solutions to the problems above. We summarize here the
conceptual basis at a high level, providing a discussion of
the rationale behind Theorem 2 in the main text, drawing
heavily on [14]. We refer interested readers to said work, as
well as [43] for a fuller and more detailed discussion of the
constrained statistical learning relevant to our setting, and [44]
for more general discussion of non-convex optimization via
primal-dual games.

1) Relating our Formulation: We begin by describing the
relationship between our problem of interest and that considered
in [14]. The (parameterized version of the) problem in [14] is
the following:

Problem 8 (Parameterized Constrained Statistical Learning
(P-CSL) from [14]).

P :IgggE(Z,y)NDO [60(f9($)7y)]
sit. By, [Gi(fo(z,y)] < ey i=1..m

That is, they aim to minimize some expected loss subject to
some constraints on other expected losses, with loss functions
that may vary and be over different distributions. Our problem
(Problem 5) can be seen as a special case of this, though
our framing is different. To see the correspondence, consider
applying the following to Problem 8:

1) Take D; to be the restriction of D to &

2) Take ¢ to be the loss function of interest, e.g. 1[h # y]
for accuracy

3) Take /1 = f(h(X),Y) and ¢; as «

4) Take £o = f(A(X),Y)- B — F(A(X),Y) b5 and ¢s = 0

5) Take €3 = f(R(X),Y)-b— F(h(X),Y) B’ and ¢5 = 0

Then we arrive at Problem 5.

2) Moving to the empirical problem: The problems de-
scribed above relate to the population distribution, but we only
have samples from this distribution. This is, of course, the
standard feature of machine learning situations; the natural
strategy in such a setting is to simply solve the empirical
analogue — i.e., to replace expectations over a distribution with
a sample average over the realized data. Instantiating this and
focusing on Problem 7.A (since the other problems can be
solved analogously and/or using it as a subproblem), we could
write the following empirical problem:
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Problem 9.
i}?ﬁ% GZ L(h(X;),Y;) st. DE <
0 3 [(F(x0).¥) TR T) (b~ 57
L ey
B 1 B b; _ Ab
0s- Z_;L[(fwxz),m FRX)LY: ) (B, - B")|

Problem 9 is not, in general, a convex optimization problem;
if it were, the standard machinery and solutions of convex
optimization, i.e., formulating the dual problem and recovering
from it a primal solution via strong duality, could be applied.
However, as shown in [14], under some conditions, there exists
a solution to the empirical dual problem that obtains nearly the
same objective value as the primal population problem. In other
words, rather than applying strong duality as a consequence of
problem convexity, [14] directly prove a relationship between
the primal and the dual under some conditions. These conditions
are that:

1) The losses ¢;(-,y) are Lipschitz continuous for all y

2) There exists of a family of functions (;(V,d) > O that
decreases monontically in N and bounds the difference
between the sample average and population expectation
for each loss function

3) There is a v > 0 so that for each ® in the closed convex
hull of H, there is a 6 such that E[|¢(x) — fo(z)|] <v

4) The problem is feasible

We now briefly discuss these conditions. For 1), we note
that Lipschitz continuity requires existence of scalar such that
|f(z) — f(2")| < M|z — y|, which will be true for bounded
features when using sample averages. 2) simply requires that
we are in a situation where more data is better, and is implied
by the stronger condition we assume of H being of finite VC-
dimension. 3) asks that our hypothesis class is rich enough
to cover the space finely enough (how fine will determine the
quality of the solution), which is met for reasonable model
classes. 4) is simply a technical requirement ensuring that there
exists at least some solution, which is analogous to Slater’s
criterion in numerical optimization.

Thus, these conditions are relatively mild, and we can
leverage the described guarantees to assert that solving the
empirical dual would provide a an approximate solution to
our original problem of interest. Yet this initial result, while
positive, is one of existence; to find such a solution, one
can construct an empirical Lagrangian from the constrained
empirical problem, and this can be solved by running a game
between primal player, who selects a model to minimize loss,
and a dual player, who selects dual parameters in an attempt to
maximize it. If we construct this empirical dual in our settings,
it is as in Equation 3; Algorithm 1 provides a primal-dual
learner that instantiates this idea of a game.
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Algorithm 1: Primal-dual algorithm for probabilistic
fairness
Input

: Labeled subset 9y, unlabeled data 9,
f-oracle, number of iterations 7" € N, step
size n > 0

Define :hy) as the model parameterized by 6(*)
Initialize : u( ) 0; ul(]‘ll)g —0; ,ug‘)b 0
1for t=1...T do

0 « argmin, Z(6, n)

1) e

3| o) u£|33 +1Cai5(hgo )
1

(t41) — 'uBlb =+ an B|b(h9(f))

'uB|b
(t) + n (DL(hg(f) — Oz)

2

(t+1
4 Hr,

5 end

6 return < 6V . 9T) >

C. Theoretical Guarantees

[14] further show that under some additional assumptions, the
primal-dual Algorithm 1 performs well. The required conditions
are that either all of the losses are convex, or:

5) The outcome of interest Y takes values in a finite set
6) The conditional random variables X|Y is are non-atomic
7) The closed convex hull of H is decomposable

In the classification setting, which we focus on, Item 5) is
trivially true. Item 6) asks that it not be the case that any
of the distribution over which losses are measured induce
an atomic distribution; this mild regularity condition prevents
pathological cases that would be impossible to satisfy. For
7) Decomposability is a technical condition stating that for a
given function space, it is closed in a particular sense: for any
two function ®, ®’ and any measurable set Y, the function that
is ® on y and ®’ on its complement is also in the function
space; many machine learning methods can be viewed from a
functional analysis viewpoint as optimizing over decomposable
function space.

As we have shown that our problem can be written as a
case of the CSL problem, and Algorithm 1 is a specialization
of the primal-dual learner analyzed in [14], Theorem 3 in the
same applies, again with appropriate translation. In particular,
the promise is that when an iterate is drawn uniformly at
random, the expected losses (over the distribution of the
data and this draw) for the constraints are bounded by the
constraint limit ¢; plus the family of functions at the datasize
mentioned in Assumption 2, plus 2C'/(nT"), where T' is number
of iterations, 7 is the learning rate, and C' is a constant; at the
same time, the expected loss (again over both the data and
drawing the iterate) is bounded by the value of primal plus
several problem-specific constants that capture the difficult of
the learning problem and meeting the constraints, as well as
said monotonically decreasing function of the data capturing
the rate of convergence. Our Theorem 2 can be obtained by
applying standard convergence results from statistical learning
theory for finite VC-dimensional classes to [14]’s Theorem 3
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and collecting/re-arranging/hiding problem-specific constants.

D. Handling Imperfect Calibration

In general, it may be that we do not have access to b =
Pr[B = 1|Z = 2], but instead have access to some imperfectly
calibrated b. In this case, we can write b = b + ¢, where €
by definition is b — b. We could apply DP and DL using b
instead, but Theorem 1 assumes access to b and so does not
directly apply. To overcome this, we can obtain a recalibrated
b*. As a first step, we know that for a general b, the linear and
probabilistic estimators converge to:

Cov(b,e|l€).  E[Cov(f(Y,Y),b|B]
D= Dullk =G ey )+ Varb|g]
and
DP D, Var[B|E] — Dﬁ Cov(b,e)|E  E[Cov(Y,B|b,E) + p
w7 E[b|€](1 — E[b|€]) ~ E[IE](1—EpIE])

respectively; € := B —b; and p := Cov(E(n[b, &), E[e|b, £]|E).

Now, with this form, we can see the following. First, for
general b, as long as Cov(b,e|€) = 0 - that is, as long as
miscalibration error ¢ is not correlated with the predictor itself
- then we will have exactly the same equation as in 1.1. But
we can obtain such a predictor simply by regressing B on b
among &; that is, if we run the linear regression

B=a+pb+e,

and define b* as the & + Bb, then &*
satisfies Cov(b*,e*) = 0.

Then, in that case, we define:
E[Cov(f(Y,Y)),b"| B]

Var[b*|€] '

and we can now solve an empirical version of the one-sided
problem (i.e. Problem 6.A using b* instead of b, and all the
math discussed above follows directly. However, to solve 7.A,
we of course must handle the probabilistic estimator as well.

Here, again we can use Cov(b*,e*|€) = 0 and also observe
that by construction:

E[b*|E] = E[B|€] = E[b|€](1 — E[b|€])
— E[BI€](1 - E[BJE))

= B —b* by construction

Lo« __
DL =D

m

to simplify the first term in Df *, and so overall write:

E[Cov(Y, BJb*, £)] + Cov(E[n*|b*], E[*[b*]€)

— DP —

Px
DM w

Var[B|£]

So to ensure that the lower bound holds, we must now incor-
porate the second term of the numerator into the optimization
problem. But this can be done in a similar manner as before,
as the residuals * and €* can again be expressed as algebraic
sample averages.

E. Closed-form Solution to Fair Learning Problem for Regres-
sion Setting

In this appendix we provide a closed-form solution to the
primal Problem 9 for the special case of linear regression
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with mean-squared error losses and demographic parity as the
disparity metric. We express the constraints in matrix notation
and show that the constraints are linear in the parameter [3.
Thus, we are able to find a unique, closed-form solution for
[ by solving the first-order conditions. Given a choice of
dual variables, it can be interpreted as a regularized heuristic
problem with particular weights; while there are no guarantees
that this will produce a performant or even feasible solution,
it may be useful when applying the method in its entirety is
computationally prohibitive.

We define the following notation for our derivation. Let
n denote the number of observations and p the number of
features in our dataset. Then let X € R"*P y € R"*! 3 ¢
RP*1p e R™¥1 and B € {0,1}"*!. For j = 0,1, let B; =
{i: B; = j} and n; = | B;| denote the set of observations for
which the observed protected feature B = j and the size of the
corresponding set, respectively. Since we consider demographic
parity as the disparity metric of interest, we denote the disparity
metric as f(V,Y) =Y.

For ease of exposition, we restate the empirical version of
the constrained optimization problem for linear regression and
demographic parity.

Problem 9.A.

XB)" (y -
s.t. ﬁﬁ < q,
E[Cov(Y,b|B)] > 0
E[Cov(Y, B|b)] > 0

min (y —
i (y

Xp)

As discussed in Section II-A, the linear disparity metric ﬁﬁ
is the coefficient of the probabilistic attribute b in a linear
regression of Y on b. Thus, Dﬁ can be expressed as

DL =("b)"'(b" XB).
The covariance of ¥ and b conditional on B can be written as
Cov(Y,b|B) =E(b" XB|B) — E(XB|B)E(b|B) (4)
We expand the first term on the right-hand side of Equation 4,
considering the case where B = 1.

1
E(b'XA|B=1)= o > biXip
1€B1

P
= ni Z ZbiXijﬁj

1 ieBl j=1

:*Z ZwaﬂJ

j=1lieBy
=— Z B > biXij.
j=1 i€By

Collecting the second summation as the vector
vy, = n%ZieBl b;X;j, we can write the expression

for E(b" XB|B = 1) as

P
T
E(b Xﬁ|B = 1) = Zﬁjvlj = BTvl,
j=1
where vy = (vi;)}_;.
For the second term on the right-hand side of Equation 4 we
can rewrite the summation in a similar manner. Again focusing

on the case where B =1,

o)z

LY S (L)

1€B1J 1 1€Bl

e3PPI

i€By j=1

E(X5|B)E(b|B)

We again collect the second summation and write it as wy; =

n% iep, Xij and then we can write E(X B|B)E(b|B) as
E(XB|B)E(b|B) = b1 "wi,

where w; = (wi;)}_;.

Now we can write Equation 4 in matrix notation as

Cov(Y,b|B) = 8" v1 — b1 wy + B vg — boB wo, (5)

where v, wy and by are defined equivalently for the set Bj.
Finally we take the expectation of this covariance term to get,

:% (BTvr — b8 wy)
+ % (BT vo — boB " wo)

E(Cov (Y, b|B)) ©

We now consider the covariance of Y and B conditional on
b which can be written as

Cov(Y, B|b) = E(B" X3|B) — E(XB|b)E(B|b).  (7)

The steps for expressing this conditional covariance in matrix
notation are similar to the first covariance term, however, we
are now summing over the continuous-valued variable b. Let
k € [0, 1] denote the value of b we are conditioning on and let
Gy = {i: b; = k}, ny = |Gy denote the set of observations
with b = k and the size of the set, respectively.

Once again we expand the first term on the right-hand side
of Equation 7, this time considering the general case where
b=k,

p
E(BTXB|B) =

1
-
o B; Z BiXij =8 v.
j=1 1€Gy
_ \P N X
Here we deﬁ.ne. vy = (vk])j:1 and vg; = o ZieGk B; X;;.
Following a similar process for the second term, we can express
the term as

E(XB|b)E(B|b) = By.f " wg,

where w;, = (wk]) _, and wy; = i ZieGk X;j. Combining
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the two terms together we write Equation 7 as

Cov(Y,BIb) = > _ BT o — BB wr. ®)
k

For the last step we take the expectation of the conditional
covariance term to get,

E(Cov(Y,BJb) =Y % (B8Top — BeTwi) . (9)

k

Now we can write the empirical Lagrangian of Problem 9.A
as

) (y = XB) — e ((676)"H(07XB))

+ 1B ( 5 v1 — b1 wy) +20 (5TU0 - EoﬁTwo)>

+ 1By (

Solving for 8 we get the solution,

/3*

Top — By wk))

:%(XTX)*I [2X Ty r ((70) (67 X))

— Mp|B (% (Ul - 51101) + % (Uo - Bowo))

APPENDIX C
DATA

A. L2 Data Description

We select seven features as predictors in our model based on
data completeness and predictive value: gender, age, estimated
household income, estimated area median household income,
estimated home value, area median education, and estimated
area median housing value. While L2 provides a handful of
other variables that point to political participation (e.g., interest
in current events or number of political contributions), these
features suffer from issues of data quality and completeness.
For instance, only 15% of voters have a non-null value for
interest in current events. We winsorize voters with an estimated
household income of greater than $250,000 (4%) of the dataset.
Table II shows the distribution of these characteristics, as well
as the number of datapoints, for each of the states we consider.
In general, across the six states, a little more than half of
voters are female, and the average age hovers at around 50.
There is high variance across income indicators, though the
mean education level attained in all states is just longer than
12 years (a little past high school). Voting rates range from
53% in Georgia to 62% in North Carolina, while Black voters
comprise a minority of all voters in each state, anywhere from
16% in Florida to 35% in Louisiana and Georgia.

B. Race Probabilities

The decennial Census in 2010 provides the probabilities of
race given common surnames, as well as the probabilities of
geography (at the census block group level) given race. In
order to incorporate BIFSG, we also use the dataset provided
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by [57] which has the probabilities of common first names
given race.

We default to using BIFSG for all voters but use BISG when
a voter’s first name is rare since we do not have priors for them.
Similarly, we only use geography instead of BISG when both
one’s first name and surname are rare. Overall, around 70% of
people’s race across the six states were predicted using BIFSG,
10% using BISG, and 18% using just geography; < 2% of
observations were dropped because we could not infer race
probabilities using any of the three options.

Table III shows results for our BI(FS)G procedure with
respect to true race. Accuracy and precision range from 80-90%,
but recall is much lower at around 30-50%. Note, however, that
we evaluate these metrics by binarizing race probabilities; in
our estimators, we use raw probabilities instead, which provide
a decent signal to true race. For instance, AUC hovers at 85-
90%, while Figure 6 shows that our predicted probabilities are
generally well-calibrated to true probability of Black (although
BIFSG tends to overestimate the probability of Black).

APPENDIX D
DETAILS ON MEASUREMENT EXPERIMENTS

A. Voter Turnout Prediction Performance

Table IV shows results for voter turnout prediction on logistic
regression and random forest models. In general, predicting
voter turnout with the features given in L2 is a difficult task.
Accuracy and precision hovers at around 70% throughout all
experiments, while recall for logistic regression ranges from
71-82% and random forests perform slightly better at 80-90%.
This result is in line with previous literature on predicting
turnout, which suggest that “whether or not a person votes is
to a large degree random” [59]. Note again that our predictors
rely solely on demographic factors of voters because those are
the most reliable data .2 provides us.

B. The KMZ Method

In this section we expand on the different assumptions the
KMZ method and our method make related to the auxiliary
data set. While we consider the case where the test set
(with predicted outcomes and race probabilities) subsumes
the auxiliary data (which contains true race), KMZ mainly
considers settings where the marginal distributions P(B, Z)
and P(Y, Y, Z) are learned from two completely independent
datasets — in particular, to estimate P(B|Z) and P(Y,Y|Z).
Therefore, in order to produce a fairer comparison between
the two methods, we instead reconfigure KMZ to incorporate
all the data available by treating the auxiliary data as a subset
of our test set’; doing so only strengthens KMZ because we

SNote that a component in calculating the variance of the KMZ estimators
is r, the proportion of datapoints from the marginal distribution P(Y, Y, Z)
to the entire data. Without considering this independence assumption in our
calculation, r = 1, but this loosely goes against the assumption that r is closer
to 0 in Section 7 of [20]. For simplicity, we attenuate the multiplicative terms
in the variance calculations of Equations 25 and 26 to give KMZ the tightest
bounds possible. However, as will be seen in Figure 1, KMZ’s incredibly large
bounds are mostly attributed to its point estimates rather than their variances,
which are quite small.
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Feature NC SC LA GA AL FL
(n=6,305,309) (n=3,191,254) (n=2,678,258) (n=6,686,846) (n=3,197,735) (n=13,703,026)
Gender (F) 0.54 0.54 0.55 0.53 0.54 0.53
0.5) 0.5) 0.5) 0.5) 0.5) 0.5)
Age 49.62 52.2 50.16 48.24 50.27 52.17
(18.76) (18.69) (18.29) (18.07) (18.44) (18.89)
Est. Household 89,788.54 82,172.22 80,770.79 90,622.61 79,919.66 90,145.4
(HH) Income (56,880.78) (53,886.64) (54,579.77) (57,699.76) (52,237.42) (56,786.94)
Est. Area Me- 76,424.55 69,666.4 68,068.86 78,377.2 69,070.63 74,547.99
dian HH Income (32,239.45) (25,911.0) (29,779.93) (35,941.68) (27,226.34) (29,820.33)
Est. Home 300,802.36 233,354.36 199,286.06 273,424.9 201,901.9 360,533.81
Value (202,634.22) (155,221.32) (123,564.26) (176,273.9) (126,255.0) (243,854.1)
Area Median 12.83 12.64 12.36 12.72 12.51 12.65
Education Year (1.13) (0.98) (0.92) (1.12) (0.99) 0.97)
Area Median 206,312.82 193,172.13 170,521.45 206,253.25 162,925.8 237,245.18
Housing Value (106,274.59) (107,225.93) (81,184.86) (112,142.54) (81,467.58) (118,270.22)
Black 0.22 0.26 0.32 0.33 0.27 0.14
Vote in 2016 0.61 0.57 0.63 0.52 0.55 0.57

TABLE II: Distribution of features used for L2 across all six states: from left to right, North Carolina, South Carolina, Louisiana,
Georgia, Alabama, and Florida. Each cell shows the mean of each feature and the standard deviation in parentheses. The last

two rows show the proportion of observations that are black, and voted in the 2016 General Election.
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Fig. 6: Calibration plots showing predicted probability of Black (x-axis) versus actual proportion of Black (y-axis).

State  Accuracy Precision Recall AUC Figure 7 but the results do not change substantially®.

NC 0.83 0.77 0.30 0.85

sC 0.81 083 035 086 C. Random Forest

LA 0.82 0.87 0.52 0.89

GA 0.80 0.85 0.49 0.88 We also run experiments on bounding disparity when voter
AL 0.84 0.89 045 090 turnout is predicted on random forest models, as seen in
FL 0.89 0.80 033 0.86 Figure 8. We observe similar results to logistic regression

TABLE III: Accuracy, precision, recall (thresholded on 0.5),
and AUC for BI(FS)G for all six states considered in L2.

pass in more information to learn both marginal distributions.

However, their main method does not leverage information on
P(Y, Z|B), as we do, so their bounds are notably wider. We
also implement the KMZ estimators as originally proposed in
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in that our methods always bound true disparity within 95%
confidence intervals, and with bounds that are markedly tighter
than KMZ’s. While our bounds are always within 5 p.p. and
the same sign as true disparity, KMZ is ranges from -0.5 to
0.5.

°In Appendix A.5, [20] do in fact propose an estimator where the
independence assumption is violated (i.e., precisely the setting we consider
where we have race probabilities in our entire data), but it suffers from two
key limitations: a) we are only provided estimators for DD and none other
disparity measure, and b) we implemented the DD estimator and it failed to
bound true disparity in both applications we consider — see Figure 7.
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assumption in [20]. In light grey, we have KMZ’s original implementation with the independence assumption — nothing
substantively changed. The top and bottom pairs of each state correspond to the estimators from logistic regression (LR) and
random forest (RF) models, respectively. [20] additionally proposes estimators for estimating DD where the independence
assumption is violated but they rarely bound true disparity (right subfigure), so we omit these results in our main experiments.

DD FPRD
ALy }.H\ H | “ t 'H«f\ “ 1 “
GAl o \ H “ t H.A 1 “

_8 FLy [ )._¢ ..... i..{ H 1 “ [ ¢_.;M I “ I

© 1 1

& P F = i) ‘

@ LA bH-l bt |
€1 b “ i 1 B
Ned ! | . H,{ i b | o ,“ ....... ‘ | 1] | }H.‘ i

-0.5 0.0 -0.5 0.0 0.5 -0.5 0.0
Disparity Disparity Disparity

Fig. 8: Comparison of our method of bounding true disparity (blue) to the method proposed in [20] (grey), using a random
forest model to predict voter turnout on L2 data in six states. We evaluate three disparity measures: demographic disparity
(DD), false positive rate disp. (FPRD), and true positive rate disp. (TPRD). The grey dot represents true disparity. Both methods
always bound true disparity within their 95% standard errors.

APPENDIX E data while satisfying the constraints on the training and labeled
DETAILS ON TRAINING EXPERIMENTS subset.

A. Experimental Setup B. CSL (Chamon et al.)

We implement our constrained problem using the official
Pytorch implementation provided by [14]7 for a logistic
regression model. We run the non-convex optimization problem
for 1,000 iterations with a batch size of 1,024 and use Adam
[60] for the gradient updates of the primal and dual problems

As noted in the main text, to enforce fairness constraints
during training, we solve the empirical version of Problem 1.A
and its symmetric analogue, which enforces negative covariance
conditions and Dﬁ as a (negative) lower bound. For both of
these problems we run the primal-dual algorithm described
in Algorithm 1 for T iterations and then select the iteration
from these two problems with the lowest loss on the training "https://github.com/Ifochamon/csl
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State Model Accuracy Precision Recall AUC
NC LR 0.72 0.75 0.81 0.75
RF 0.72 0.72 0.89 0.76
SC LR 0.67 0.69 0.77  0.71
RF 0.67 0.67 0.86 0.71
LA LR 0.70 0.73 0.84 0.72
RF 0.70 0.71 091 0.73
GA LR 0.69 0.70 0.71  0.75
RF 0.69 0.68 0.78 0.75
AL LR 0.67 0.69 0.74  0.72
RF 0.67 0.67 0.80 0.72
FL LR 0.67 0.69 0.76  0.71
RF 0.67 0.67 085 0.72

TABLE 1IV: Accuracy, precision, recall, and AUC for voter
turnout prediction for all six states considered in L2. We eval-
uate two different model performances for turnout prediction:
logistic regression (LR) and random forests (RF).

with learning rates 0.001 and 0.005, respectively. We provide
further explanation of the mathematical background to the [14]
method in Appendix B above.

C. The Method of Wang et al.

[21] propose two methods to impose fairness with noisy
labels: 1) a distributionally robust optimization approach and 2)
another optimization approach using robust fairness constraints,
which is based on [20]. We use code provided by [21]® to
implement only the second method because it directly utilizes
the protected attribute probabilities and yields better results.

We tune the following hyperparameters: 7 €
{0.001,0.01,0.1} and 7, € {0.25,0.5,1,2}, which
correspond to the descent step for ¢ and the ascent
step for A in a zero-sum game between the #-player and
A-player, see Algorithm 1 and 4 of [21]. Finally, we also tune
Nw € {0.001,0.01,0.1}, which is the ascent step for w (a
component in the robust fairness criteria), see Algorithm 3 of
[21]. In order to choose the best hyperparameters, we use the
same data as outlined in Section IV-C1 (80/20 train/test split),
but use a validation set on 30% of the training data (i.e., 24%
of the entire data). Note that as implemented in the codebase,
[21] chooses the hyperparameter that results in the lowest loss
while adhering to the fairness constraint with respect to true
race. Since we assume access to true race on a small subset
(1%) of the data, we only evaluate the fairness constraint on
1% of the validation set.

D. The Method of Mozannar et al.

[24] primarily focus on the setting of training a fair model
with differentially private demographic data, which imposes
infeasible assumptions for our setting—however, the authors
do propose a potential extension of their method to handle a
case that matches ours: training a fair model with incomplete

Shttps://github.com/wenshuoguo/robust-fairness-code
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demographic data. The authors do not discuss this in detail or
provide the code for this extension, so we modify the code [24]
provided for their paper to implement the extension of their
approach, detailed in Section 6 of their paper. This involves
using Fairlearn’s” exponentiated gradient method changed so
that it will only update for its fairness-related loss on data
points in the labeled subset, but allows classification loss to
be calculated over the entire training set.

We note that Mozannar et al.’s method guarantees fairness
violation 2(epsilon + best gap) [50] on their test set where
epsilon is set by the user, but gives no method of approximating
best_gap. Thus, we set epsilon = «/2 (i.e., assume best gap
= 0) in our experiments in order to come as close as possible
to their method providing similar fairness bounds to ours on
the test set.

E. Pareto-Frontier of Accuracy vs. Disparity

In Figure 9 through 12, we show the fairness-accuracy
Pareto frontiers for the L2 and COMPAS datasets enforcing
demographic parity (DD), false positive rate parity (FPRD),
and true positive rate parity (TPRD). We first note that the full
benefit of using our method is not fully captured by comparison
along Pareto frontiers. This is because the core aim of our
method is to ensure that the disparity does not go over a
particular bound input by the user, so the relationship between
the exact amount of disparity observed on the test data to the
bound set by the user is important beyond the fairness-accuracy
tradeoff itself; even if another method were to appear better
in terms of a fairness accuracy tradeoff, it cannot make the
guarantees to the user about meeting the bound that ours can.
We highlight the difference between the desired bound and the
disparity demonstrated on the test set by noting particular points
in the pareto frontier with symbols indicating the specified
bound (for example, in Figure 9, a circle indicates a a bound or
« value of 0.04). We note the specified bounds as dashed lines
parallel to the y axis. As we can see from all of the graphs,
our method is the only method which consistently meets the
desired fairness bound, and thus fully explores the disparity
regimes targeted.

In terms of dominance on the accuracy-fairness Pareto
frontier, we note that we do not count the oracle (the red
line) against our method as that is a model with complete
knowledge of the protected attributes of the dataset, whereas
we only have protected attributes for a small subset. For the L2
experiments, our method strictly dominates Mozannar et al.’s
and Wang et al.’s methods when available for comparison for
DD, FPRD, and TPRD. As expected, the oracle dominates our
method. For the labeled subset method, our method dominates
this approach nearly everywhere in the FPRD and TPRD plots.
The labeled subset method dominates in the middle fairness
values of the accuracy-fairness frontier for DD on L2 data.
However, again we note that the labeled subset method was
not able to meet the desired fairness bounds on any experiment
across the L2 and COMPAS datasets, so there are other reasons

“https://fairlearn.org/
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Metric State Method Lower Bound (95% CI) True Disparity Upper Bound (95% CI)
DP AL KMZ —0.52 +£0.01 -0.14 0.23 +0.01
Ours —0.14 +0.09 -0.14 —0.08 £0.09
FL KMZ —0.55 +£0.01 -0.16 0.28 £0.01
Ours —0.27+0.13 -0.16 —0.124+0.13
GA KMZ —0.55 +£0.01 -0.13 0.32+0.01
Ours —0.22 £ 0.08 -0.13 —0.12 +£0.08
LA KMZ —0.563 £0.01 -0.14 0.25+0.01
Ours —0.12 +0.07 -0.14 —0.07 £0.07
NC KMZ —0.62+0.01 -0.07 0.32£0.01
Ours —0.13+£0.12 -0.07 —0.05+0.12
SC KMZ —0.61 £0.01 -0.1 0.28 +0.01
Ours —0.08 £ 0.1 -0.1 —0.03 +0.1
FPR AL KMZ —0.58 £0.01 -0.14 0.69 £ 0.01
Ours —0.14+0.13 -0.14 —0.08 £0.13
FL KMZ —0.57£0.01 -0.16 0.6 £0.01
Ours —0.31+0.21 -0.16 —0.13+0.21
GA KMZ —0.59 +£0.01 -0.1 0.77 £0.01
Ours —0.22 +£0.11 -0.1 —0.124+0.11
LA KMZ —0.81 +£0.01 -0.13 0.85 £ 0.02
Ours —0.08 £0.13 -0.13 —0.05+0.13
NC KMZ —0.65+0.01 -0.07 0.86 £+ 0.01
Ours —0.07+0.21 -0.07 —0.03+£0.2
SC KMZ —0.69+£0.01 -0.12 0.77£0.01
Ours —0.14+0.15 -0.12 —0.06 £0.15
TPR AL KMZ —0.78 £0.01 -0.12 0.3£0.01
Ours —0.07+£0.11 -0.12 —0.04 £0.11
FL KMZ —0.8£0.01 -0.14 0.25 £ 0.0
Ours —0.21 +£0.15 -0.14 —0.1£0.15
GA KMZ —0.88 £ 0.01 -0.11 0.4+£0.01
Ours —0.18 £0.11 -0.11 —0.1+0.11
LA KMZ —0.68 £ 0.01 -0.1 0.2£0.0
Ours —0.14 +£0.08 -0.1 —0.08 £0.08
NC KMZ —0.86 £ 0.01 -0.06 0.25 £ 0.0
Ours —0.12 £ 0.12 -0.06 —0.05+0.12
SC KMZ —0.84 £ 0.01 -0.08 0.31 +£0.0
Ours —0.0+0.12 -0.08 —0.0£0.12

TABLE V: Companion table to Figure 1.

why this method is undesirable in situations where a reliable
bound is needed. For FPRD on the COMPAS dataset, with
a few exceptions, our method dominates all other methods
(except the oracle, as expected). For TPRD, besides the oracle,
a few points in the middle of the range (0.16, 0.14, 0.12, 0.1,
0.8) are dominated by either Mozannar et al. (0.1, 0.14), Wang
et al. (0.08, 0.12, 0.14) or labeled subset (0.16). However, our
method dominates the most consistently (7 out of 12 points) and
noticeably in the lower unfairness regime. For DD, Mozannar
et al. lead to a comparable but lower fairness-accuracy tradeoff
for much of the space, but again we note that the Mozannar et
al. method cannot meet the desired fairness bounds for 33 out
of 36 experiments, suggesting it is not preferable in situations
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where a bound is necessary.

F. Results on Oracle and Naive

In Figure 13, we present the mean and standard deviation of
the resulting disparity and on the test set, as well as classifier
accuracy on the test set, of experiments with our method
compared to an oracle model, that has access to ground truth
race on the whole dataset and uses these to enforce a constraint
directly on ground truth disparity during training, as well as
a naive model which simply enforces a constrained directly
on the observed disparity of the noisy labels, without any
correction. (Namely, in this technique, we simply threshold
the probabilistic predictions of race on 0.5 to make them
binary, and use as race labels.) As a whole, we perform
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Fig. 13: Mean and standard deviation of resulting disparity (top, y-axis) and accuracy (bottom, y-axis) on the L2 test set after
enforcing the target fairness bounds (x-axis) on our method (blue); using ground truth race on the entire data, i.e., “oracle”
model (red); and using only the estimated race probabilities, thresholded to be binary (brown) over ten trials. On the top row,
we fade bars when the mean does not meet the desired bound, which is indicated by the dotted blue lines. The dashed grey
line in all plots indicates disparity from the unconstrained model.

relatively comparably to the oracle, except on FPRD. We
always outperform the naive method in terms of reducing
disparity, which is to be expected. We typically perform within
2 percentage points of accuracy from the oracle, (except for the
0.04 and 0.06 bounds on DD and the 0.04 bound on TPRD).
We suggest the accuracy results in this figure show the fairness-
accuracy trade-off in this setting: when we dip below the oracle
in terms of accuracy, it is most often because we are bounding
disparity lower than the oracle is (e.g., on the 0.04 bounds in
DD or TPRD). And, while we do not outperform the naive
method in terms of accuracy, we consistently out-perform it in
terms of disparity.
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APPENDIX F
ADDITIONAL EXPERIMENTS: COMPAS

In this section, we present a suite of additional experiments
we run on the COMPAS [45] dataset. The COMPAS algorithm
is used by parole officers and judges across the United States to
determine a criminal’s risk of recidivism, or re-committing the
same crime. In 2016, ProPublica released a seminal article [45]
detailing how the algorithm is systematically biased against
Black defendants. The dataset used to train the algorithm has
since been widely used as benchmarks in the fair machine
learning literature.
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A. Data Description

We use the eight features used in previous analyses of the
dataset as predictors in our model: the decile of the COMPAS
score, the decile of the predicted COMPAS score, the number
of prior crimes committed, the number of days before screening
arrest, the number of days spent in jail, an indicator for whether
the crime committed was a felony, age split into categories, and
the score in categorical form. We process the data following
[45], resulting in n = 6, 128 data points. Table VI outlines the
feature distribution of the dataset.

Feature COMPAS
(n=6,128)

Decile Score 441
(2.84)

Predited Decile Score 3.64
(2.49)

# of Priors 3.23
4.72)

# of Days Before Screening Arrest -1.75
(5.05)

Length of Stay in Jail (Hours) 361.26
(1,118.60)

Crime is a Felony 0.64
(0.48)

Age Category 0.65
(0.82)

Risk Score in 3 Levels 1.08
(0.66)

Black 0.51

Two Year Recidivism 0.45

TABLE VI: Distribution of features used for COMPAS. Each
cell shows the mean of each feature and the standard deviation
in parentheses. The last two rows show the proportion of
observations that are Black and who recidivized within two
years.

B. Race Probabilities

We generate estimates of race (Black vs. non-Black) based
on first name and last name using a LSTM model used in [49]
that was trained on voter rolls from Florida. The predictive
performance and calibration of these estimates are displayed
in Table VII and Figure 14, respectively. In general, the results
are quite reasonable; accuracy is at 73% while the AUC is
86%. The probabilities are somewhat calibrated, although the
LSTM model tends to overestimate the probability of Black.
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Recall
0.56

AUC
0.86

Accuracy Precision

0.73 0.86

TABLE VII: Accuracy, precision, recall (thresholded on 0.5),
and AUC for predicting probability a person is Black in the
COMPAS dataset.
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Fig. 14: Calibration plot showing the predicted probability
a person in the dataset is Black (x-axis) versus the actual
proportion of Black people in the dataset (y-axis) for COMPAS.

C. Measurement Experiments

We first compare our method of bounding disparity to that
of KMZ. We train an unconstrained logistic regression model
with a 80/20 split on the data, i.e., n = 1,226 in the test set.
Then, we construct the labeled subset by sampling 50% of
the test set (n = 613) and use that to check out covariance
constraints. We also compute D 1, and D p with standard errors
on the entire test set, as specified by the procedure in Appendix
Section D.

Our main results are displayed in Figure 2. Similar to the
L2 data, our bounds are consistently tighter than KMZ, albeit
to a lesser extent in this case since the COMPAS dataset
is significantly smaller. Despite this fact, we emphasize that,
unlike KMZ, our estimators are always within the same sign
as the true disparity, barring the standard errors which shrink
as the data grows larger.

Recall
0.57

AUC
0.74

Accuracy Precision

0.69 0.69

TABLE VIII: Accuracy, precision, recall (thresholded on 0.5),
and AUC for predicting two-year recidivism on the COMPAS
dataset using a logistic regression model.

D. Training Experiments Details

We compare our training method to [21], [24] and a baseline
where we directly enforce disparity constraints on only the
labeled subset. We run 10 trials — each corresponding to
different seeds — and report the mean and standard deviation of
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the accuracy and disparity on the test set in Figure 4. For each
trial, we split our data (n = 6, 128) into train and test sets, with
a 80720 split. From the training set, we subsample the labeled

subset so that it is 10% of the total data (around n = 613).

We chose a higher proportion of the data compared to L2 to
adjust for the smaller dataset. The remaining details are as
described in Section IV-C1. Note that the resulting disparities
for the unconstrained model differ among the three fairness
metrics. On DD and TPRD, the unconstrained model resulted
in a 0.28-0.29 disparity, but it drops to 0.21 for FPRD. We
adjusted our target fairness bounds accordingly.

APPENDIX G
SIMULATIONS

A. Simulation Design

In this section, we describe the design of our simulation
used for additional experiments.

o Primitive features 71, ..., Z,,
Conditional probability b of being Black a function of
AT/
Realized status as Black or not B drawn from Bernoulli(b)
Downstream features X1, ...X,,, a function of Z1, ..., Z,,
and B
Score for outcome P(Y), a function of downstream
features X;...X,,
Outcome Y ,which is an indicator of P(Y") at threshold 7
with some noise probability of being flipped 0 <+ 1

The primitive features 71, ..., Z,, intuitively represent the
variables that correspond to proxies in BIFSG, e.g. geographic
locations. They serve a dual role: first, as in BIFSG, they give
rise to the probability that an individual is Black. Second, since
the secondary features X are a function of Z, they affect the
distribution of these features; thus downstream, they affect
P(Y) and ultimately Y, but do not directly enter into P(Y") or
Y themselves. This relationship corresponds to how geography
and other variables which are correlated to race may also be
correlated to many learning-relevant features, even when they
do not directly cause the outcome of interest themselves. Note
that in addition to primitives affecting P(Y") through each
X, we allow for B to affect P(Y"). This relationship models
how there may be associations between group membership
and features which affect the outcome of interest via the
downstream features, even if group status is not directly relevant
to the outcome of interest.

All the relationships are not fully specified by the description
in the text above, and so we provide details of the selected
functional forms in Table IX. Figure 15 also summarizes
the features and their associative relationships visually. This
visualization, along with the language of directed acyclic graphs
(DAGsS), allows us to more easily reason about whether the
covariance conditions are likely to be satisfied in our model,
at least for the underlying outcome.

B. Experimental Setup

Following the notation above, we have p to be the number
of features X in our data, and let n be the number of
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Fig. 15: A heuristic depiction of the data generating process for
our simulations. Nodes indicate random variables, and edges
indicate (causal) relationships between nodes. Importantly,
relationships are not necessarily linear.

datapoints. We run experiments for p € {10,20,50} and
n € {5000, 10000, 50000}. For each p, we fix the parameters in
the data generation process and realize 50,000 datapoints. Refer
to Table X for a list of parameter values, which differ slightly
for each p to control demographic disparity on the dataset
at around 0.25-0.28. For experiments n € {5000, 10000}, we
simply randomly subsample from the 50,000 dataset.

The last dimension we tune is the size of the labeled subset
(measured by the percentage of n), which from hereon we
refer to as e. For each n, we specified slightly different e
as outlined in Table XI. This is to account for the fact that,
for instance, one might need 40% of 5,000 datapoints with
protected attribute labels to learn a predictor that reaches the
target disparity bound. On the other hand, using 20% of 50,000
datapoints might be more than enough, especially considering
the exponentially higher costs to query thousands of people’s
protected attributes.

We prototype these simulation experiments on demographic
parity. For each experiment, we split the data 80/20 into
train/test data, then repeat 10 times with different seeds. We
run both our method and the labeled subset method, evaluating
disparity and accuracy on the test set.

C. Results

We present our results in Figures 5 and 16. In Figure 5,
we see that while increasing the size of the labeled subset
can sometimes lead to a regime where training on the labeled
subset alone can produce a model which comes close to (or
in one case — n = 50,000, p = 10 — reaches) the desired
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Feature Interpretation Functional Form

Z; Primitive Feature Z; ~U0,1],j=1,..m
X; Secondary Feature X, = szzl ciXi’ﬂi =1,...p
Iy Degree hy ~U{0,1,2,3}

Ci Coefficients ¢ ~U0,1],i=1,..p

b Probability Black b = max{0, min{1,b}},

1 m
N(©09,.04) L™ 7>,
Th Threshold on b 3 +1.2¢/1/(12m)

(based Irwin-Hall distribution)

B Indicator for Black B ~ Bernoulli(b)
P(Y) Score of Outcome P(Y)=Y, [d:XF + d;pB]
. _ P(Y)—min(P(Y))
PY Normalized Score of Outcome P(Y) = (BT —mm(B ()
i(0. <
Y Realized Outcome Y ~ Bernoull?(O L PY)<r
Bernoulli(0.9) P(Y) > 7
d; Coefficients for features X d; ~U[0,1]
d;p Coefficients for indicator for Black dig ~ U[0,ug]

TABLE IX: Description of several variables we use in our simulation study and their functional forms. For ease of notation, we
omit the index denoting individuals in the dataset. Unspecified constants were selected by inspection to match key indicators
across scenario and are specified in Table 8.
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Fig. 16: We present a three by three figure showing the test accuracy of the models created using our disparity reduction
method when compared with relying on training models only on the labeled subset and reducing disparity by directly enforcing
a constraint on the protected attribute labels. The rows correspond to datasets of increasing sizes (number of features from
10 to 50), indicating problems of increasing complexity. The columns correspond to the size of the overall dataset, ranging
from 5,000 to 50,000 samples. The x-axis shows the percentage of the total dataset is dedicated to the labeled subset, and the
y-axis denotes the test accuracy of the models. The blue graphs correspond to our method, and the orange to the labeled subset
method.
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P m T up

10 4 04 0.05
20 5 04 0.1
50 10 0425 0.2

TABLE X: List of parameters in the data generation process
for each p, the number of secondary features X in the data.
m corresponds to the number of primitive features Z, 7 is
the threshold for P(Y), while up is the upper bound for the
uniform distribution to generate d;p, see Table IX.

n e
5,000 {2,4,6,8,10,15,20,30,40}
10,000 {1,2,3,4,5,7,10,20,30}
50,000 {0.5,1,2,3,4,5,7,10,20}

TABLE XI: Suite of experiments varying percentage of the
data taken as labeled subset (e) by the size of the full dataset
(n).

disparity bound, for the most part, even with a large labeled
subset, the mean of the disparity over 10 trials is above the
desired disparity threshold. Meanwhile, our method stays below
the desired disparity threshold across all nine experiments.

As we can see by looking at the rows from top to bottom, the
more complex the problem is (i.e., more features in the data),
the more data is necessary for the labeled subset to get close to
the desired disparity bound. Thus, our simulation experiment
highlights that model applications with small amounts of
labeled data, and more complex data, are particularly well-
suited for our method.
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