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A B S T R A C T   

Much environmental enforcement in the United States has historically relied on either self-reported data or 
physical, resource-intensive, infrequent inspections. Advances in remote sensing and computer vision, however, 
have the potential to augment compliance monitoring by detecting early warning signs of noncompliance. We 
demonstrate a process for rapid identification of significant structural expansion using Planet’s 3 m/pixel sat
ellite imagery products and focusing on Concentrated Animal Feeding Operations (CAFOs) in the US as a test 
case. Unpermitted building expansion has been a particular challenge with CAFOs, which pose significant health 
and environmental risks. Using new hand-labeled dataset of 145,053 images of 1,513 CAFOs, we combine state- 
of-the-art building segmentation with a likelihood-based change-point detection model to provide a robust signal 
of building expansion (AUC = 0.86). A major advantage of this approach is that it can work with higher cadence 
(daily to weekly), but lower resolution (3 m/pixel), satellite imagery than previously used in similar environ
mental settings. It is also highly generalizable and thus provides a near real-time monitoring tool to prioritize 
enforcement resources in other settings where unpermitted construction poses environmental risk, e.g. zoning, 
habitat modification, or wetland protection.   

1. Introduction 

The protection of land, air, and water depends critically on the 
enforcement of environmental laws (Gray and Shimshack, 2011). There 
is, however, mounting evidence of serious challenges facing environ
mental regulators (Evans and Malcom, 2019; GAO, 2008; Purdy, 2010). 
Conventionally, the mainstay of enforcement has consisted of low- 
frequency visits to permitted facilities (e.g., once every 2–5 years 
under the U.S. Clean Water Act, the federal law governing water 
pollution) and self-reported information, placing a heavy burden on 
state and federal agencies in light of growing environmental challenges 
and budgetary threats. This has lead to increasing interest in leveraging 
machine learning to augment regulatory capacity (Glicksman et al., 
2017; Hino et al., 2018). 

Academic interest has focused on satellite imagery given rapid 
progress in the field of computer vision (Gauthier et al., 2007; Wein
stein, 2018) and the dramatic increase in the availability of satellite 
imagery (Handan-Nader et al., 2020). In contrast to aerial imagery, 
which can be hard to obtain and limited to a specific region, optical 
satellite imagery has become available for many locations at a moderate 
to low cost. The application of deep learning, particularly of convolu
tional neural networks (CNNs), to such imagery has led to recent 
breakthroughs in a wide range of regulatory areas including animal 
tracking (Laradji et al., 2020; Xue et al., 2017), industrial farm detection 
(Handan-Nader et al., 2020; Handan-Nader and Ho, 2019), monitoring 
habitat change (Evans and Malcom, 2019), tracking oil spills (Krestenitis 
et al., 2019; Nieto-Hidalgo et al., 2018; Bianchi et al., 2020), and 
deforestation mapping (Maretto et al., 2020; de Bem et al., 2020). 
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Despite these successes and the availability of imagery, a practical 
barrier in its broader use for regulation stems from the trade-off between 
temporal and spatial resolution. To date, imagery that is both available 
to policymakers and at high resolution rarely revisits the same location 
in the time required for regulatory monitoring. The United States, for 
instance, has regularly acquired 1 m/pixel resolution in the National 
Agriculture Imagery Program, but this data is only refreshed every few 
years. Methods that rely on such high spatial resolution imagery are thus 
ill-suited for augmenting regulatory capacity. Coarser resolution imag
ery, however, is increasingly available at weekly, if not daily, revisit 
times (see, e.g., Sentinel-2 Imagery). Such data could aid, for instance, in 
detecting zoning violations, building construction, and wetlands 
destruction, but requires a method for detecting changes in time series 
that align with the spatial and temporal resolution of what is more 
broadly available today. 

In this work, we present a technique intended to address this 
important gap by statistically leveraging repeated observations of 
medium-resolution (3 m/pixel), but high-cadence (weekly), imagery to 
augment environmental enforcement.2 The method builds on any given 
segmentation approach and requires only simple (and generalizable) 
assumptions about object permanency. 

To demonstrate the technique, we focus on the task of monitoring the 
capacity of Concentrated Animal Feeding Operations (CAFOs), which 
can generate serious environmental and health consequences (see Sec
tion 2). We first train an image segmentation model to differentiate fa
cilities from background, and then test for change points within a time 
series of satellite images. 

Our contributions are:  

1. A new time series dataset of 145,053 hand-validated segmented 
satellite images (GeoTiffs) for 1,513 CAFO facilities from January 1 
to December 31, 20193;  

2. A maximum likelihood model that takes as inputs a time series of 
segmented images and provides a test statistic that captures the 
likelihood that a facility expanded;  

3. A demonstration that this model can detect the expansion of CAFO 
facilities in Indiana with high-cadence satellite imagery;  

4. A comparison to show that this model provides substantial 
improvement relative to changepoint detection baselines. 

Replication code and data are available at: https://github. 
com/reglab/building_expansion. 

The remainder of the paper is structured as follows. Section 2 pro
vides background on CAFOs, the substantial environmental impact of 

intensive livestock farming, and the significant gap in environmental 
monitoring. Section 3 discusses related work in detecting structural 
change in satellite imagery. Sections 4 and 5 provide background on the 
data and the details of our proposed algorithm. Section 6 presents the 
performance we use to analyze the results, and Section 7 provides re
sults. Section 8 discusses implications, interprets the differences in re
sults, and offers future directions for research. 

2. Background on CAFOs 

Large-scale industrial farming is increasingly responsible for live
stock production in the United States (MacDonald and McBride, 2009; 
MacDonald et al., 2018; Hribar, 2010). CAFOs, responsible for raising 
large numbers of animals at high densities, represent a prominent 
feature of this transformation. They have been estimated to produce 
anywhere from 40% to 99% of all livestock in the United States 
(Copeland, 2010; Gurian-Sherman, 2008; Anthis, 2019), with uncer
tainty stemming from lack of regulatory monitoring. Fig. 1 provides an 
example of a large CAFO, with distinctive large sheds that confine ani
mals. Under federal law, a large CAFO, for instance, contains 125,000 or 
more heads of poultry or 2,500 or more heads of hog or 1000 beef cows.4 

CAFOs pose a variety of social and environmental risks with limited 
and infrequent oversight. For example, a large CAFO can produce some 
1.6 M tons of waste a year – which is equivalent to a large (1 M resident) 
city – but is not subject to the same regulation as human wastewater 
(GAO, 2008). Such large levels of animal waste are thought to be serious 
contributors to water contamination, due to potentially poorly- 
constructed manure storage pits or run-off from the application of 
waste to fields (Burkholder et al., 2007; Gurian-Sherman, 2008), as well 
as air pollution (Burkholder et al., 2007; Hribar, 2010). Consequences of 
this contamination include the degradation of aquatic systems, harmful 
algal blooms, and nitrate contamination of drinking water (Copeland, 
2010; Hribar, 2010). These health and environmental risks can are 
frequently borne by poorer and minority communities, where such fa
cilities are disproportionately sited (Nicole, 2013; Son et al., 2021). 

The regulation of CAFOs has proven challenging. As noted by the 
Government Accountability Office (GAO), the “EPA does not have 
comprehensive, accurate information on the number of permitted 
CAFOs nationwide. As a result, EPA does not have the information it 
needs to effectively regulate these CAFOs” (GAO, 2008). There is sub
stantial evidence that many CAFOs often undergo unpermitted con
struction and expansion, in the process evading environmental review 
(Howard, 2019; Marshall, 2015; Guay, 2012; Merced County, 2012). 
While we draw upon building expansion in CAFOs as a focused case 
where evasion is acute, this type of regulatory avoidance also exists in 
other areas of environmental law, where limited monitoring systems and 
the reliance on self-reporting can impede regulatory efforts (OIG, 2005; 

Fig. 1. CAFO in Unionville, Missouri housing large volumes of livestock. Each of the four buildings in the foreground are CAFO sheds. Source: Socially Responsible 
Agriculture Project. 

2 We acknowledge that describing 3 m/pixel data as “medium” resolution is 
relative. We describe it as such because existing work in similar environmental 
settings (e.g., detecting CAFOs) has relied on imagery with at least 1 m/pixel 
resolution.  

3 Our underlying imagery comes from Planet Labs’s PlanetScope Daily 
Imagery. 

4 See EPA, Regulatory Definitions of Large CAFOs, Medium CAFO, and Small 
CAFOs, https://www.epa.gov/sites/production/files/2015-08/documents/ 
sector_table.pdf. 
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Purdy, 2010). Given the potential social and environmental impact, it is 
critical to develop methods for closer to real-time monitoring. 

3. Related work 

For general change detection techniques on lower-cadence imagery, 
we refer the reader to the surveys of Zhu (2017) and Namoano et al. 
(2019). Previous work focusing on longer time series is typically con
cerned with larger scale changes than the addition of buildings, e.g., 
urban expansion (Wan et al., 2019), changing land cover (Zhu and 
Woodcock, 2014), forest disturbance (Kennedy et al., 2010; Huang et al., 
2010), or vegetation (Verbesselt et al., 2010; Browning et al., 2017). A 
common approach for longer sequences of imagery is to reduce each 
image to a metric — a vegetation or drought index for instance — and 
apply more traditional changepoint detection techniques to the resulting 
time series. The Normalized Difference Vegetation index (NDVI) is one 
popular metric, used for example by both Wan et al. (2019) to detect 
urban change in Landsat imagery and by the Breaks for Additive Season 
Trend (BFAST) algorithm (Verbesselt et al., 2010).5 Setiawan et al. (2016) 
proposes a median moving window and linear interpolation to reduce 
noise in the NDVI time series. Ye et al. (2021) propose a state space 
model with a Kalman filter and take a time series approach to detect 
forest disturbance. 

Another strand of research uses regression methods for anomaly 
detection. The influential approach by Zhu and Woodcock (2014) de
velops a Continuous Change Detection and Classification algorithm, 
using ordinary least squares time series to classify changes at the pixel 
level. Koltunov et al. (2009) describes the Dynamic Detection Model 
(DDM), which combines a series of basis images into a prediction image. 
This prediction image is then compared with the true test image for 
anomaly detection. The DDM and related anomaly detection approaches 
have inspired a wide range of applications (e.g., Tang et al., 2020; 
Koltunov et al., 2020). Another approach is by Fytsilis et al. (2016), 
which expands anomalous pixels into homogeneous regions and calcu
lates a difference metric between two images based on the maximum 
spatial correlation of the shape with each image as a whole. 

When sufficient data are available, deep learning based detection 
methods have also proven useful. Varghese et al. (2018) develop 
ChangeNet, a CNN to detect changes between pairs of images. Peng et al. 
(2019) develop an end-to-end (as opposed to image-by-image or pixel- 
by-pixel) change detection method using UNet++, and Sefrin et al. 
(2021) conjoin two deep learning architectures to detect land cover 
change. While promising, such deep learning approaches cannot easily 
be applied in our setting due to the large number of free parameters and 
scarce positive examples. 

The most closely related work is that of Robinson et al. (2021), who 
proposed a semi-supervised algorithm for retroactively determining 
construction dates using high-resolution satellite imagery. While the 
approach is complementary, it presupposes a set of final structure 
footprints, within which it looks backwards in time for localized spectral 
shifts that represent construction events. Having these footprints, how
ever, would imply that the expanded or new structures were already 
detected at a reasonable significance. Instead, the premise of our work 
here is that this is a challenging task at lower resolutions. Instead of 
focusing on the detection of individual buildings, our method tests the 
broader hypothesis that the distribution of pixels classified as a structure 
undergoes a discrete change over time. This allows us to draw more 
reliable inferences using a statistical framework for building expansion 
in high-cadence, lower-resolution imagery. 

In sum, while much of the above work has demonstrated that 
detecting changes in local building footprints is possible, we are 

unaware of work that has attempted to provide near real-time (weekly), 
actionable insights for regulatory enforcement. Below, we compare 
existing approaches, showing substantial gains to our likelihood 
approach tuned to this setting. 

4. Data 

4.1. Imagery 

Our dataset consists of 1,516 ground truth Indiana CAFO coordinates 
validated by the Environmental Working Group (EWG). At each loca
tion, we queried the Planet Labs API for 4-band (red, green, blue, and 
near-infrared) imagery between January 1, 2019 and December 31, 
2019, requiring that each be at least 95% clear (e.g., of cloud cover and 
cloud shadows). This yielded roughly 80 to 130 images per location, 
with 175,736 images total. Due to the cloud cover filter, images were 
less frequent in January, February, and December, and most frequent in 
the summer (see Fig. 2). We clipped each resulting scene to a centered 
600 m × 600 m (200 × 200 pixel) area, and discarded those with over 
15% missing pixel values (missing pixels occur if the image was on the 
edge of the area being considered). Overall, post-processing removed 
just over 30,000 images, leaving 145,053 corresponding to 1,513 final 
locations. 

Fig. 3 illustrates both the resolution of the imagery and gives two 
examples of CAFO expansion. We note that these images are of lower 
spatial resolution (3 m/pixel) than previously used for CAFOs and other 
similar settings, which poses the main inferential challenge for real-time 
monitoring. To the human eye, the construction of barns is visible (i.e., a 
third rectangular roof to the south of facilities in the left panel and a 
second rectangular roof to the east of the single barn in the right panel). 
The images, however, also illustrate some of the complications for 
computer-based object segmentation, such as the cloud cover in panel 
(2) and the snow in panel (3). 

4.2. Building footprints 

Many applications may be able to take advantage of pre-existing 
segmentation models. Conventional building segmentation models, 
however, have focused in large part on urban areas, which may result in 
performance degradation in rural areas. To provide building footprints 
that are tailored to CAFOs — and not other types of structures — we 
train our own segmentation model (see Section 5.1). This approach 
required ground truth building footprints corresponding to known CAFO 
locations. We procured such information from (1) the Microsoft Building 
Footprint dataset Microsoft (2018), and (2) a United States Geological 
Survey of poultry barns in the DelMarVa (Delaware - Maryland - Vir
ginia) peninsula (Soroka and Duren, 2020). Because the Microsoft 
dataset includes all building types, we removed those footprints with 
area less than 450 m2 that are below the threshold of a reasonable size 
for large CAFO operations. When combined with the proximity to a 
known CAFO location, this filter left us with a fairly pure training set. 
The most significant remaining source of noise stemmed from date 
mismatch between the Microsoft and EWG labels. For instance, a CAFO 
may have been constructed and tagged after the building footprints were 

Fig. 2. Total number of images in each month across all locations.  

5 NDVI gives a pixel-wise value (between − 1 and 1) corresponding to the 
amount of greenery in the pixel, and can be reduced to a single value for the 
image by averaging. 
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generated. Similarly, the DelMarVa data was collected in 2016–2017 – 
these barns may have been demolished or moved between the time of 
data collection and the acquisition dates of our Planet imagery datasets 
(2019). As far as we are aware, such changes are rare, but they would 
reduce the accuracy of our image segmentation and hence attenuate 
results of subsequent changepoint detection. 

4.3. Expansion labels 

Each image time series corresponding to our CAFO locations was 
hand-labeled by our research team to indicate whether a facility 
expanded during the observation window (1/2019–12/2019). This was 
done by comparing the first and last available images in the time series, 
with the review of intermediate images if any structural changes were 
observed. In total, we found 22 sites that had constructed at least one 
new CAFO building, 1,414 with no evidence of new construction, and 77 
with either a no-longer-existent CAFO or indeterminate expansion. It is 
worth noting that despite the strong class imbalance, the sheer number 
of farm operations in the US — just shy of one million according to the 
National Agricultural Census (USDA, 2017), excluding aquaculture — 
implies that there are potentially on the order of 10,000 such expansion 
events every year. 

5. Methods 

Our procedure for detecting structural expansion can be broken 
down into three steps. In the first, we apply a segmentation model 
(Ronneberger et al., 2015a) to each image in order to obtain pixel-level 
probabilities of class membership, with higher values indicating that the 
pixel is more likely to belong to a CAFO shed. We emphasize that our 
approach is independent from the choice of segmentation model as long 

as it yields such probabilities.6 In the second step, we fit a time- 
dependent building footprint model using maximum likelihood esti
mation (MLE) to best match the class probabilities. Finally, we compare 
this time-dependent model to a restricted model fit under the hypothesis 
of no building expansion. A test statistic is then computed comparing the 
two fits. Intuitively, the more dissimilar the two fits, the more likely 
there was expansion. 

5.1. Segmentation 

In order to take advantage of both the spectral and spatial signatures 
of a CAFO structure, we employ a U-Net architecture (Ronneberger 
et al., 2015b). We trained the model on about 2,611 labeled images, 
composed of 1,176 EWG location images with post-processed Microsoft 
building footprint labels and 1,435 images of DelMarVa peninsula 
poultry houses with labels from their shapefile. DelMarVa data, in 
particular, appeared to boost the performance of the segmentation 
model. We trained on one image per location, with an even split 
throughout each month of the year to regularize the model against 
seasonality. 

The model was trained with a batch size of 8, using the Adam opti
mizer with learning rate 5e-4, and weight decay 1e-7. The training data 
was split into 70% train, 15% validation, and 15% test sets. We 

Fig. 3. Two examples of expanded CAFO facilities. Both examples exhibit environmental factors which can complicate the segmentation—cloud cover in panel (2) 
and snow in the panel (3). 

Fig. 4. Pixel-level class probabilities determined by the segmentation model of the example in the right of Fig. 3. Higher values indicate a higher likelihood of being 
part of a CAFO. 

6 A notable alternative for an image segmentation approach would be 
DeepLabv3+ (Chen et al., 2018), which has shown small performance gains of 
roughly 1% in accuracy relative to U-Net (Ahmed et al., 2020; Cai et al., 2021; 
Jiwani et al., 2021). In A, we conduct an ablation study showing that perfor
mance of MLE is comparable across reasonable ranges of segmentation 
accuracy. 
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performed random flips and rotations on the training set for data 
augmentation. The loss function converged after 20 epochs. Our loss 
function was binary cross-entropy with logits, and we weighted CAFO to 
background loss 30:1 to compensate for the class imbalance. The final 
results on the validation set had a recall of 0.864, a precision of 0.482, 
and an Intersection over Union (IoU) of 0.448. 

Our change detection algorithm (explained below) does not take as 
input the final segmentation, but rather pixel-level class probabilities for 
each image (CAFO vs. no-CAFO). Instead of passing along the proba
bilities directly from the U-Net, however,7 a final post-processing step 
was applied: A k × k smoothing kernel (k = 3) was applied to each 
image, whereby the probability of each pixel was average over the k2 

nearest pixels. Smoothing was applied in order to remove small artifacts 
generated by the segmentation model. For each location, the corre
sponding series of probability maps was then converted into a tensor in 
order to apply MLE as described next. Fig. 4 illustrates the probabilities 
generated by the segmentation model. 

5.2. Footprint modeling and change detection 

Once the imagery has been segmented, we can test each CAFO 
location for significant changes in building footprint over a series of 
time-sequenced snapshots. For clarity of demonstration in our test case 
we make the following simplifying assumptions:  

1. CAFO sheds are constructed and not removed.  
2. The time required to construct a CAFO shed is short compared to the 

length of the period considered.  
3. Only one expansion event can take place during the period 

considered. 

These assumptions may be relaxed, affecting the parameterization of 
the likelihood approach. Formally, let {X1,…,XT} with Xt ∈ Zw×h×3

⩾0 be 
the series of (3-band) images for some fixed location at each timestep t ∈
{1,…,T}. Here, w = 200 is the width of the image and h = 200 its height 
in pixels. For each image Xt the U-Net produces a matrix of class- 
membership probabilities Pt ∈ [0, 1]w×h, where pt

ij = Pt
ij is the probabil

ity that pixel (i, j) belongs to a CAFO shed. 
Let F0 ∈ {0,1}w×h be the footprint of the CAFO shed prior to any 

expansion. That is, F0
i,j = 1 if pixel (i, j) belongs to a CAFO shed, and 

0 otherwise. Let F+ ∈ {0,1}w×h define the pixels which belong to a 
CAFO shed after expansion, but did not before. Thus, F0 +F+ defines 
which pixels belong to the expanded shed. If there was no expansion 
then F+ is the all-zeroes matrix. Fig. 5 illustrates how F0 and F+

correspond to an expanded shed. 
Using 

{
P1,…,PT}, the goal of the expansion model is to determine 

F0,F+ and at what timestep (if any) the transition occurs. To this end, we 
define a function which, given the building footprints and transition 
time t*, captures the transition: 

ZF0 ,F+ ,t* ,α
(
t
)
= F0( 1 − Sα

(
t − t*

))
+F+Sα

(
t − t*

)
, (1)  

where Sα(x) = α/(1+e− x) is the sigmoid function and t* is the timestep 
at which the CAFO shed expands. Here, α controls the transition speed: 
bigger values of α imply a longer building period. For notational con
venience, ZF0 ,F+ ,t* ,α(t) will be written as Z(t) or simply Zt . Note that for 
t < t*, Z(t) ≈ F0 (the original CAFO shed), and for t > t*, Z(t) ≈ F0 +F+

(the expanded shed). 
In what follows, we use maximum likelihood estimation (MLE) to 

estimate the parameters of Z which are best described by the class 
probabilities P1,…,PT. This is performed twice: once with no restrictions 
on the parameters, and once with the restriction F0 = 0 (enforcing no 
expansion). 

We judge the fitness of a given set of parameters by forming a like
lihood comparing Z to the pixel-level class probabilities yielded by the 
segmentation model. In other words, for each image frame the model 
will predict a class membership vector for each pixel. We take the cor
responding class probability vector from the segmentation model pt

ij and 
form a likelihood with their product. Functionally, this takes the form: 

L t =
∏

i,j
pt

ij⋅Z
t
ij. (2)  

Taking the product over all frames in the time sequence to get the 
likelihood L =

∏
tLt, the log-likelihood becomes: 

logL =
∑

i,j,t
log

(

pt
ij⋅Z

t
ij

)

. (3)  

Observing that Zt is differentiable due to the sigmoid function, we adjust 
its parameters to maximize Eq. (3). For the unrestricted model, we solve: 

F̃0, F̃+, t̃* = arg max
F0 ,F+ ,t*

logL
(
F0,F+, t*

⃒
⃒P1,…,PT).

Fig. 5. Idealized CAFO footprints before and after expansion (top left and right, respectively). Yellow (light) squares represent the CAFO shed. The entries with a 1 in 
F0 (rows 1–5, columns 1–3 assuming a zero-index) represent yellow pixels in the footprint prior to expansion. The entries with 1 in F+ represent the pixels of the 
added building (rows 1–2, columns 4–8). 

7 Our U-Net implementation did not provide class probabilities directly, but 
rather class confidences in the range [-7,7]. We applied the sigmoid function to 
these values in order to obtain class probabilities. 
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For the static model, we enforce no expansion and solve: 

F0, t* = arg max
F0 ,t*

logL
(
F0, 0, t*

⃒
⃒P1,…,PT).

From here, we form a test statistic—the delta log-likelihood—comparing 
the two fits: 

TS = logL

(
F̃0, F̃+, t̃*

⃒
⃒
⃒P1,…,PT

)
− logL 0

(
F0,F+ = 0, t*

⃒
⃒
⃒P1,…,PT

)
. (4)  

This statistic enables us to assess whether there is a difference in dis
tributions between the images with and without expansion. Intuitively, 
we expect that the locations exhibiting expansion will larger test statistic 
(in absolute value) than those that do not, because those without 
expansion should be well modeled with F+ = 0. In practice, plotting the 
values of the test statistic for facilities known not to have expanded gives 
us a null distribution against we can compare the values of other facil
ities. The further a facility deviates from this null distribution, the more 
likely it is (according to the model) to have expanded. 

5.3. Baselines 

We compare our method against several baseline methods. Two use 
Bayesian changepoint detection (BCP), a recommended method when 
analyzing univariate timeseries (van den Burg and Williams, 2020). We 
apply BCP to both the sequence of NDVI values obtained from the images 
over time (see Section 3), and to the number of pixels identified as 
belonging to CAFOs by the segmentation model in each image. We refer 
to these as BCP-NDVI and BCP-PC, respectively. Another baseline is the 
Breaks For Additive Seasonal and Trend (BFAST) algorithm by Verbesselt 
et al. (2010). As BFAST was originally designed to examine vegetation 
response, we apply it to the timeseries of NDVI values obtained from the 
images. 

Our final baseline is based on the Dynamic Detection Model (DDM). 
DDM is a localized anomaly detection method, contrasting each pixel/ 
band value at time t with a predicted value generated by an optimized 
combination of m prior observations. Specifically, let Γt

ijk be a pixel value 
within a spectral band k of image Xt . A linear DDM fits coefficients γ(t) ≡
{γ0(t),…, γm(t)} to form an estimator 

Γ̂
t
ijk = γ0

(

t

)

+
∑m

τ=1
γτ

(

t

)

Γt− τ
ijk (5)  

that minimizes the RMSE σk(t) relative to the true value Γt
ijk. Note the 

explicit dependence on t, which indicates that each set of γ is tied to an 
absolute time and can therefore be used to describe dynamics such as 
seasonality.8 The localized anomaly score Zt

ijk is then generated by 

Zt
ijk =

Γt
ijk − Γ̂

t
ijk

σk(t)
. (6)  

To provide an image-level anomaly score Zt comparable to our other 
methods, we simply sum Zt

ijk over pixels and the three visible bands k ∈

{R,G,B}, leveraging the fact that true expansion events should involve 
multiple simultaneous pixel changes. From here, we employ two tech
niques to determine the probability of an expansion event taking place 
during a given period at this location. The first is to check if any score Zt 

is above a predefined threshold. We call this DDM-MAX VALUE, or DDM-MV. 
The second is to apply BCP to the time-series {Zt}, and similarly classify 
the series as exhibiting an expansion event whenever BCP returns a 
probability over a given threshold. We call this DDM-BCP. When reporting 

the accuracies for both methods, we scan over the set of all thresholds 
and report the maximum value. 

It is worth noting that none of the baseline methods were tailored 
specifically for the purpose of detecting discrete image-level changes in 
an ongoing series. Limitations of these approaches reflect the lack of 
research in this setting, not a general drawback to the methods. BFAST, for 
instance, was designed for timeseries over recurring seasons and large 
scale changes. And while sensitive to the initial appearance, DDM does 
not inherently make use of subsequent observations that reinforce the 
hypothesis of a new structure. 

6. Performance metrics 

We evaluate our proposed method in addition to three baseline 
methods. The evaluation uses a combination of metrics, several tradi
tional in machine learning, and several designed to capture resource 
efficiency. All four methods assign a “confidence” of expansion to each 
location: a posterior probability for BCP, a magnitude for BFAST, and the 
test statistic (Eq. 4) for MLE. This is important from a resource allocation 
perspective, as we would like to know not only which facilities the 
model think expanded, but which are most likely to have done so. It 
allows enables us to examine the performance of the various methods as 
a function of their confidence. 

Balanced Accuracy & F1-score. Accuracy and F1-score are traditional 
performance metrics in machine learning. Due to the severe class 
imbalance, we report balanced accuracy as opposed to overall accuracy. 
Balanced accuracy is the mean of sensitivity and specificity, and the F1- 
score is the harmonic mean of precision and sensitivity. Accuracy and 
F1-score can be calculated using any given confidence as a threshold: 
Locations with an assigned confidence above the threshold are predicted 
as expansions. For each algorithm, we report the maximum balanced 
accuracy and F1-score achieved over all confidence values. 

ROC & AUC. Receiver Operating Characteristic (ROC) Curves and the 
corresponding area underneath the curve (AUC) are another common 
metric in machine learning. The ROC Curve plots the false positive rate 
against the true positive rate as the threshold (in this case, the confi
dence) of the classifier is varied. The larger the area under the curve the 
better the overall performance, with an area of one being optimal. In 
addition to the area underneath the ROC curve, we also report the area 
under the precision-recall curve (PR-AUC). 

Confidence-Size Correlation. Ideally, higher model confidence in an 
expansion is correlated with a larger expansion. If so, sorting by confi
dence would allow enforcement agencies to focus on the largest ex
pansions first. Moreover, a high correlation suggests that the model is 
picking up on the features indicative of an expansion. We thus examine 
the Pearson correlation between the size of the expansion and each 
model’s confidence. 

Resource Expenditure. Finally, we examine to what extent the four 
methods save costs compared to a random search — a reasonable 
baseline given extensive reliance on random field visits — for building 
expansions. Suppose that examining a facility which did not expand has 
a cost of 1, while correctly identifying an expanded facility costs 0. A 
random search is inefficient due to the severe class imbalance. Let Tn be 
the number of trials until n expanded facilities are found. Then Tn =

Table 1 
Balanced Accuracy, macro F1-scores, and Pearson correlation between confi
dence and size of expansion. Proposed method is in bold. In the correlation 
column, a star (*) indicates a p-value of less than 0.001.  

Model Accuracy F1-score Size Correlation 

BCP-NDVI 56.9% 0.45 0.21 
BCP-PC 52.1% 0.25 − 0.20 
BFAST 55.2% 0.55 0.00 

DDM-MV 62.9% 0.53 − 0.02 
DDM-BCP 58.9% 0.50 0.17 

MLE 78.6% 0.60 0.67*  
8 To account for finite cadence and gaps in observation, we fit γ on aggre

gated imagery at a 1-week resolution. 
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∑n
i=1Ti− 1,i where Ti− 1,i is the time taken to find the i-th expansion after 

the (i − 1)-st expansion has been found. For random search, Ti− 1,i is a 
geometric random variable with success probability M− i

N− i where M is total 
number of expansions, and N the total number of images. Hence, 

E

[

Tn

]

=
∑n

i=1
E

[

Ti− 1,i

]

=
∑n

i=1

N − i
M − i

.

For us, N = 1, 414 and M = 22. We examine how much the four models 
improve over this baseline cost. 

7. Results 

We first report on the distribution of confidence values. For MLE, 
expansion events have a substantially higher average test statistic than 
non-expansions — 23,205 versus 5,427, a difference of over 300% (p- 
value < 0.001 using a t-test). Meanwhile, none of the other three 
methods had statistically significant differences between the likelihoods 
of expansions versus no-expansions. 

Next we move onto the performance metrics. Table 1 gives the 
maximum balanced accuracy, F1-score, and likelihood-size correlation 
of each method. MLE achieves a balanced accuracy of 78.6%. BCP on 
NDVI is the runner-up at 56.9%. Due to the strong class imbalance, 
macro F1-scores are relatively low for all models, but at 0.60, MLE again 
represents a significant improvement over the other methods. MLE 
achieves its maximum accuracy using a threshold of t = 5,308, at which 
point it correctly classifies 86.4% of the expansions, and 70.1% of the 
non-expansions. However, many thresholds give significantly worse 
ratios, resulting in a low area under the PR Curve (0.1). There is hence 
still significant room for improvement. We emphasize though that the 
goal of this approach is to help prioritize and augment enforcement re
sources, which is why the cost metric is particularly salient. With respect 
to the size correlation, at 0.67 (p-value < 0.001) MLE is the only method 
which exhibits significant correlation between the likelihood and the 
size of the expansion. All other methods have a correlation below 0.22, 
none of which are statistically significant. 

Fig. 6a illustrates the ROC Curves for all methods. MLE has the 
highest AUC at 0.86, followed by DDM-MV at 0.59, BCP-NDVI at 0.55, DDM-BCP 

at 0.54, BCP-PC at 0.51 and BFAST at 0.50. Regarding cost reduction, Fig. 6b 
demonstrates that all methods improve over random search. For each 
method, we rank the locations by confidence of expansion and examine 
the images in that order. We assume that examining a facility which did 
not expand has a cost of 1, and examining an expansion has a cost of 0. A 
random search involves examining 3,836 false positives (facilities which 
did not expand) in expectation in order to find all 22 expansions. MLE 
examines 654 false positives, a decrease of over 80%. The three base
lines perform approximately equally, decreasing the cost by between 
62% and 64%. Overall, sorting by test statistic is a substantial 

improvement over random search. While MLE outperforms the other 
three methods, the savings exhibited by any of the four algorithmic 
approaches over an ad-hoc scan demonstrates the potential of such 
automated methods. 

8. Discussion 

In this work, we have demonstrated the possibility of enhancing 
traditional enforcement techniques with dynamic monitoring of satellite 
imagery. Most promising is that the methods developed herein demon
strate the possibility of near real-time environmental monitoring, using 
3 m/pixel resolution imagery—available at high cadence and increas
ingly low-cost. 

Our MLE approach appears to outperform the main available base
lines (BCP, BFAST, and DDM) by a substantial margin. One way to think 
about the difference between our approach and these baselines is that 
our algorithm is specifically tailored to building expansion. First, DDM 

(and similar algorithms, such as CCDM) can detect anomalies with a 
single image. Our MLE approach, in contrast, leverages the full time 
series before and after a posited changepoint. Second, our algorithm 
works particularly effectively in conjunction with available building 
segmentation techniques. Other approaches using NDVI and DDM use 
distinct methods (e.g., denoising, image basis) to reduce dimensionality, 
but, as a result, do not perform changepoint detection in a way that is as 
tailored to building changes. 

Because it is a lightweight approach that can be used in conjunction 
with segmented images, another strength is that it is not demanding 
computationally. On NVIDIA’s Tesla v100 GPU, our method required 
approximately 30 s per location (after segmentation). Running sequen
tially thus yields a time of approximately twelve hours for 1,500 CAFOs. 
This could, of course, be sped up by running multiple GPUs in parallel. 

These results are important substantively, as the gains of employing 
this approach would be a major improvement over the status quo of 
random, physical inspections. As illustrated by Fig. 6b, ordering loca
tions by their test statistic and proceeding down the list would constitute 
a large gain over random inspections. The U.S. Department of Agricul
ture estimates that there are approximately 1 million farm operations 
and if our base rate of expanded facilities holds, then approximately 
10,000 of these facilities may be expanding each year.9 Augmenting 
conventional inspections with remote sensing can help address limita
tions in the resourcing of environmental protection agencies (Gray and 
Shimshack, 2011). 

Fig. 6. (a) The ROC Curve using confidence values as the prediction threshold. Locations above a given value of the test statistic are labelled as expansion. (b) 
Reduction in cost achieved by sorting images based on their test statistic compared to random search. The y axis is the cost of finding n expansion events. Examining 
an image not exhibiting expansion is a cost of 1. 

9 This is based on a simple estimate multiplying the rate of expansion 
observed in our dataset ( 22

1436) with the number of facilities. We recognize that 
this simple estimate does not account for many other factors that are associated 
with expansion. 
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To illustrate, we manually searched in local records (e.g., county 
assessor’s office, permits offices) for a sample of expanded facilities. 
While these records are highly decentralized and hence not easily 
searchable for many localities, we quickly found several facilities that 
were classified as “vacant land,” both before and after significant 
expansion events. The comparison is stark: comparable permitted fa
cilities can pay over 50 times the property tax. With access to permit 
records, our method could hence easily scale the approach pioneered by 
Massachusetts, which manually compared satellite imagery against 
permit records to identify illegal wetland modification (Clayton, 2004). 

We close with several thoughts on directions for future research. 
First, the likelihood-based expansion technique relies heavily on the 
quality of the segmentation model. Developing better CAFO-specific 
segmentation models would thus help improve the results. Second, 
with a larger labeled set of images, it would be worthwhile comparing 
the performance of end-to-end deep learning approaches to changepoint 
detection. Third, it would be worth investigating generalizations of the 
likelihood approach. Eq. (1) can be modified and researchers may wish 
to incorporate other information about CAFOs, such as proximity of the 
added building, conformity with direction of existing sheds, and closures 
of facilities. Fourth, it could prove beneficial to combine the Dynamic 
Detection Model (DDM) with the segmenter, as opposed to running it on 
the image bands. Doing so might reduce the number of false positives 
arising from abrupt changes in the surrounding landscape (see Appendix 
B). 

Last, as emphasized in the introduction, nothing about this approach 
is specific to CAFOs besides the initial segmentation model. By adapting 
this model, the likelihood based approach could be used to detect any 
structural changes occurring over time. It would be fruitful to apply this 

method to the range of other environmental challenges, such as zoning 
violations, habitat modification, and deforestation. 

We hope to have provided a useful approach that leverages rapid 
increases in the availability of satellite imagery to enable remote sensing 
to provide actionable insights for real-time environmental enforcement. 
Doing so could dramatically improve the allocation of scarce regulatory 
resources to where most needed. 
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Appendix A. Sensitivity to segmentation 

One of the contributions of our approach is a lightweight changepoint detection method that does not rely on the specific implementation of a 
segmentation algorithm. We believe this to be a strength of this contribution, as researchers can choose any preferred segmentation approach. We 
nonetheless examine the effect of segmentation accuracy on the results of the MLE approach. 

We artificially degrade the quality (pixel accuracy) of the segmenter by 1%, 2% and 5%, and study effects on the MLE approach based on such 
degraded segmentation. These segmentation differences are representative of differences between state-of-the-art approaches (Ahmed et al., 2020; Cai 
et al., 2021; Jiwani et al., 2021). 

Our findings from this ablation study are twofold. First, as expected, reduction in segmentation accuracy is associated with performance degra
dation in the MLE approach. Second, this performance degradation is relatively small. For instance, MLE accuracy with the U-Net segmented images 
yields 78.6% accuracy, which drops to 78.3% with 1% noise, 78.2% with 2% and 78.1% with 5%. We conclude that the MLE approach is likely to 
remain valuable for change detection of buildings across a range of current segmentation approaches. 

Appendix B. Illustration of MLE and DDM 

In this Appendix, we illustrate how MLE and DDM perform in our setting. Fig. B.7 displays a setting in which both methods perform well at detecting 
an added barn. The top panel plots raw images before and after an expansion event. The middle panels plot the pre- and post-expansion models (i.e., F0 

and F+) generated by our MLE approach, showing that the MLE approach focuses on the added building. 
The bottom panel illustrates the DDM model: the left image plots the predicted band immediately prior to an expansion event, based on a weighted 

sum of the previous 10 weekly images; the middle panel plots the actual band, including the expansion event; and the right panel plots the pixel-wise z- 
score between the true and predicted images. This DDM result also shows that the approach reasonably focuses on expanded barn location, confirming 
that this is a reasonable implementation of the DDM baseline. 

Fig. B.8 illustrates a non-expansion event in which the MLE model is relatively stable, but the DDM approach yields a false positive due to abrupt 
changes in the surrounding landscape. This shows a drawback of DDM: drastic changes of any kind can be interpreted to be examples of building 
expansion. As noted in the Discussion, this kind of anomaly detection may underperform relative to the MLE approach because (a) it does not take 
advantage of the full time series before and after an expansion event and/or (b) does not focus the change point detection on buildings using seg
mentation. A potential direction for future work may be to combine DDM with the segmentation approach. 
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Fig. B.7. (a) and (b) Images of an expanded CAFO at the beginning and end of the year. The expansion occurred during week 28. (c) and (d) The pre and post 
expansion model generated by MLE. (e), (f) and (g) The predicted green (G) image band at week 28 (based on a weighted average of the previous ten weekly images), 
the true band at week 28, and the resulting anomaly score Z28

ij,G between the two. 
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