


 

Race, Ethnicity, and Economic 
Statistics for the 21st Century



 

Studies in Income and Wealth 

Volume 84



 

Race, Ethnicity, and 
Economic Statistics  
for the 21st Century

Edited by Randall Akee, Lawrence F. Katz,  
and Mark A. Loewenstein

The University of Chicago Press

Chicago and London



 

The University of Chicago Press, Chicago 60637
The University of Chicago Press, Ltd., London
© 2026 by National Bureau of Economic Research
All rights reserved. No part of this book may be used or reproduced 
in any manner whatsoever without written permission, except in the 
case of brief  quotations in critical articles and reviews. For more 
information, contact the University of Chicago Press, 1427 E. 60th St., 
Chicago, IL 60637.
Published 2026
Printed in the United States of America

35 34 33 32 31 30 29 28 27 26  1 2 3 4 5

ISBN- 13: 978- 0- 226- 84378- 0 (cloth)
ISBN- 13: 978- 0- 226- 84379- 7 (ebook)
DOI: https:// doi .org /10 .7208 /chicago /9780226843797 .001 .0001

Library of Congress Cataloging- in- Publication Data

Names: Conference on Research in Income and Wealth (2024 : 
Alexandria, Va.) creator | Akee, Randall K. Q. (Randall Kekoa 
Quinones) editor | Katz, Lawrence F. editor | Loewenstein, Mark A. 
editor

Title: Race, ethnicity, and economic statistics for the 21st century /  
edited by Randall Akee, Lawrence F. Katz, and Mark A. 
Loewenstein.

Other titles: Studies in income and wealth v. 84.
Description: Chicago : The University of Chicago Press, 2026. | 

Series: Studies in income and wealth ; volume 84 | “this volume 
contains revised versions of the papers presented at the Conference 
on Research in Income and Wealth titled “Race, Ethnicity, and 
Economic Statistics for the 21st Century,” held in Alexandria, VA, 
on March 14– 15, 2024.”— Prefatory note. | Includes bibliographical 
references and index.

Identifiers: LCCN 2025025155 | ISBN 9780226843780 cloth |  
ISBN 9780226843797 ebook

Subjects: LCSH: Ethnicity— United States— Statistics— Congresses |  
Race— Demographic aspects— United States— Statistics— 
Congresses | Economics— Statistical methods— Congresses | United 
States— Economic conditions— Statistics— Congresses | United 
States— Population— Statistics— Congresses | LCGFT: Conference 
papers and proceedings

Classification: LCC HC103 .C737 2026 | DDC 330.973/00112— dc23/
eng/20250820

LC record available at https://lccn.loc.gov/2025025155

♾ This paper meets the requirements of ANSI/NISO Z39.48- 1992 
(Permanence of Paper).

Authorized Representative for EU General Product Safety Regulation 
(GPSR) queries: Easy Access System Europe— Mustamäe tee 50, 10621 
Tallinn, Estonia, gpsr .requests @easproject .com
Any other queries: https:// press .uchicago .edu /press /contact .html



 

National Bureau of Economic Research

Officers

Peter Blair Henry, Chair
Karen G. Mills, Vice Chair
James M. Poterba, President and Chief 

Executive Officer
Barry Melancon, Treasurer and 

Representative of the American Institute of 
Certified Public Accountants

Kelly Horak, Controller
Alterra Milone, Corporate Secretary
Abbie Murrell, Assistant Corporate 

Secretary

Directors at Large

Kathleen B. Cooper
Charles H. Dallara
Mohamed El- Erian
Diana Farrell
Helena Foulkes
Esther George
Peter Hancock

Karen N. Horn
Lisa Jordan
Karin Kimbrough
William M. Lewis Jr.
John Lipsky
Laurence C. Morse
Michael H. Moskow

Alicia H. Munnell
Douglas Peterson
Andrew Racine
John S. Reed
Hal Varian
Mark Weinberger
Martin B. Zimmerman

Directors by University Appointment

Timothy Bresnahan, Stanford
Alan V. Deardorff, Michigan
Benjamin Hermalin, California, Berkeley
R. Glenn Hubbard, Columbia
Samuel Kortum, Yale
George J. Mailath, Pennsylvania
Angelo Melino, Toronto
Joel Mokyr, Northwestern

John Pepper, Virginia
Richard Schmalensee, Massachusetts 

Institute of Technology
Christopher Sims, Princeton
Richard Steckel, Ohio State
Lars Stole, Chicago
Ingo Walter, New York
David B. Yoffie, Harvard

Directors by Appointment of Other Organizations

Timothy Beatty, Agricultural and Applied 
Economics Association

Darrick Hamilton, American Federation 
of Labor and Congress of Industrial 
Organizations

Constance Hunter, National Association for 
Business Economics

Arthur Kennickell, American Statistical 
Association

Anne McCants, Economic History 
Association

Maureen O’Hara, American Finance 
Association

Dana M. Peterson, The Conference Board
Peter L. Rousseau, American Economic 

Association
Gregor W. Smith, Canadian Economics 

Association

Directors Emeriti

George A. Akerlof
Peter C. Aldrich
Jagdish Bhagwati
Don R. Conlan
George C. Eads
Jessica P. Einhorn 

Ray C. Fair
Jacob Frenkel
Martin Gruber
Robert S. Hamada
Saul H. Hymans
Marjorie B. McElroy

Robert Mednick 
Laurence H. Meyer
Robert T. Parry
Andrew Postlewaite
John J. Siegfried
Craig Swan



 

Relation of the Directors to the Work and Publications of the NBER

1. The object of the NBER is to ascertain and present to the economics profession, and to the 
public more generally, important economic facts and their interpretation in a scientific manner 
without policy recommendations. The Board of Directors is charged with the responsibility of 
ensuring that the work of the NBER is carried on in strict conformity with this object.
2. The President shall establish an internal review process to ensure that book manuscripts pro-

posed for publication DO NOT contain policy recommendations. This shall apply both to the 
proceedings of conferences and to manuscripts by a single author or by one or more coauthors 
but shall not apply to authors of comments at NBER conferences who are not NBER affiliates.
3. No book manuscript reporting research shall be published by the NBER until the President 

has sent to each member of the Board a notice that a manuscript is recommended for publica-
tion and that in the President’s opinion it is suitable for publication in accordance with the above 
principles of the NBER. Such notification will include a table of contents and an abstract or 
summary of the manuscript’s content, a list of contributors if  applicable, and a response form 
for use by Directors who desire a copy of the manuscript for review. Each manuscript shall 
contain a summary drawing attention to the nature and treatment of the problem studied and 
the main conclusions reached.
4. No volume shall be published until forty- five days have elapsed from the above notification 

of intention to publish it. During this period a copy shall be sent to any Director requesting 
it, and if  any Director objects to publication on the grounds that the manuscript contains 
policy recommendations, the objection will be presented to the author(s) or editor(s). In case 
of dispute, all members of the Board shall be notified, and the President shall appoint an ad 
hoc committee of the Board to decide the matter; thirty days additional shall be granted for 
this purpose.
5. The President shall present annually to the Board a report describing the internal manu-

script review process, any objections made by Directors before publication or by anyone after 
publication, any disputes about such matters, and how they were handled.
6. Publications of the NBER issued for informational purposes concerning the work of the 

Bureau, or issued to inform the public of the activities at the Bureau, including but not limited 
to the NBER Digest and Reporter, shall be consistent with the object stated in paragraph 1. 
They shall contain a specific disclaimer noting that they have not passed through the review 
procedures required in this resolution. The Executive Committee of the Board is charged with 
the review of all such publications from time to time.
7. NBER working papers and manuscripts distributed on the Bureau’s web site are not deemed 

to be publications for the purpose of this resolution, but they shall be consistent with the object 
stated in paragraph 1. Working papers shall contain a specific disclaimer noting that they have 
not passed through the review procedures required in this resolution. The NBER’s web site 
shall contain a similar disclaimer. The President shall establish an internal review process to 
ensure that the working papers and the web site do not contain policy recommendations, and 
shall report annually to the Board on this process and any concerns raised in connection with it.
8. Unless otherwise determined by the Board or exempted by the terms of  paragraphs 6 

and 7, a copy of this resolution shall be printed in each NBER publication as described in 
paragraph 2 above.



vii

 Prefatory Note xi

 Introduction 1 
Randall Akee, Lawrence F. Katz,  
and Mark A. Loewenstein

I. Measuring Race and Ethnicity in the Federal Statistical System

1. Measuring the Racial and Ethnic Composition  
and Diversity of the US Population: Historical 
Challenges and Contemporary Opportunities 19 
Nicholas Jones, Eric Jensen, Karen Battle,  
and Rachel Marks

2. Data Collection Without Definitions 57 
William A. Darity Jr. and Stephan Lefebvre

3. Measuring Potential Effects of Introducing the  
2024 Race and Ethnicity Standards into the  
Current Population Survey 89 
Mark A. Loewenstein, David S. Piccone Jr.,  
and Anne E. Polivka

4. Estimating the Potential Impact of Combined  
Race and Ethnicity Reporting on Long- Term  
Earnings Statistics 119 
Kevin L. McKinney and John M. Abowd

Contents



viii    Contents

II. Implications of Mismeasured and Imputed Race and Ethnicity

 5. Race and Ethnicity (Mis)measurement in the  
US Criminal Justice System 165 
Keith Finlay, Elizabeth Luh,  
and Michael Mueller- Smith

 6. Unwarranted Disparity in High- Stakes  
Decisions: Race Measurement and  
Policy Responses 207 
E. Jason Baron, Joseph J. Doyle Jr.,  
Natalia Emanuel, Peter Hull, and Joseph Ryan

 7. Quantifying the Uncertainty of Imputed 
Demographic Disparity Estimates:  
The Dual- Bootstrap 239 
Benjamin Lu, Jia Wan, Derek Ouyang,  
Jacob Goldin, and Daniel E. Ho

 8. The Missing Link? Using LinkedIn Data  
to Measure Race, Ethnic, and Gender  
Differences in Employment Outcomes at  
Individual Companies 273 
Alexander Berry, Molly Maloney, and David 
Neumark

III. Applications

 9. Race, Ethnicity, and Measurement Error 327 
Bruce D. Meyer, Nikolas Mittag,  
and Derek Wu

10. Ethnic Identity and Anti- Immigrant Sentiment: 
Evidence from Proposition 187 383 
Francisca M. Antman and Brian Duncan

11. Granular Income Inequality and Mobility  
Using IDDA: Exploring Patterns Across Race  
and Ethnicity 405 
Illenin Kondo, Kevin Rinz, Natalie Gubbay, 
Brandon Hawkins, John Voorheis,  
and Abigail Wozniak



Contents    ix

12. Earnings Inequality and Immobility for  
Hispanics and Asians: An Examination of  
Variation Across Subgroups 461 
Randall Akee, Sonya R. Porter,  
and Emilia Simeonova

Author Index 489
Subject Index 495



xi

This volume contains revised versions of the papers presented at the Confer-
ence on Research in Income and Wealth titled “Race, Ethnicity, and Economic 
Statistics for the 21st Century,” held in Alexandria, VA, on March 14– 15,  
2024.

We are grateful for support for this project from the U.S. Census Bureau 
through an award to Reveal Global Consulting. Support for the general 
activities of  the Conference on Research in Income and Wealth is pro-
vided by the following agencies: Bureau of Economic Analysis, Bureau of 
Labor Statistics, the Census Bureau, the Board of Governors of the Federal 
Reserve System, the Statistics of Income/Internal Revenue Service, and Sta-
tistics Canada.

We thank Randall Akee, Lawrence F. Katz, and Mark Loewenstein, who 
served as conference organizers and as editors of the volume.

Executive Committee, February 2023

Katharine G. Abraham (chair) Ron S. Jarmin
John M. Abowd J. Bradford Jensen
Vipin Arora Barry Johnson
Susanto Basu Andre Loranger
Ernst R. Berndt Ayşegül Şahin
Alberto Cavallo Peter K. Schott
Carol A. Corrado Daniel E. Sichel
Lucy P. Eldridge William Wascher
John C. Haltiwanger

Prefatory Note



239

7.1  Introduction

Racial and ethnic disparities are a common focus of academic study, policy-
making, and advocacy efforts across many domains, including criminal jus-
tice (Gelman et al. 2007; Berdejó 2018), health care (Azin et al. 2020; Mackey 
et al. 2021), technology (Buolamwini and Gebru 2018; Koenecke et al. 2020), 
and taxation (Brown 2022; Avenancio- León and Howard, 2022).1

Such disparities are straightforward to compute— if  individual- level 
demographic and outcome data are available. In many settings where the 
measurement of racial disparities is of interest, however, race data are miss-
ing or otherwise inaccessible. For example, Regulation B of the Equal Credit 
Opportunity Act prohibits creditors from discriminating against an appli-
cant on the basis of race. But monitoring and enforcing this prohibition is 
complicated by the fact that the very same laws also prohibit creditors from 
inquiring about an applicant’s race at all.

Some researchers work around this problem by imputing individuals’ 

1. For brevity, we use race to refer to both race and ethnicity throughout the remainder of 
this paper.
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races based on observable proxy features, then using those imputations to 
estimate the racial disparity. One of the most common imputation methods 
is Bayesian Improved Surname Geocoding (BISG), which imputes an indi-
vidual’s race based on their surname and geolocation (Elliott et al. 2009). 
Recent work has also investigated the potential power of machine learning 
for this task (Cheng et al. 2023; Xue et al. 2019; Kim et al. 2018).

But imputations are estimates, not oracles. Like any other statistic, each 
imputation is the output of an estimator fit on data, with its own bias and 
variance. This statistical uncertainty could affect the quality of the down-
stream racial disparity estimate. Many studies that use imputations ignore 
this potential error propagation, instead treating the imputation model as 
known with certainty (e.g., Brown et al. 2016; Zhang 2018; Yee et al. 2022). 
Doing so can imperil the reliability of the final estimate in different ways 
(e.g., Labgold et al. 2021, adjusting for imputation bias).

This paper examines one aspect of the problem: the effect of measure-
ment uncertainty on statistical inference. It is standard practice in academic 
research to report the confidence interval or standard error associated with 
a racial disparity estimate. But typical confidence intervals and standard 
errors reflect only classical sampling uncertainty— i.e., uncertainty arising 
from the fact that the disparity estimate is based on only a sample of the 
broader population of interest. They do not reflect the measurement uncer-
tainty that arises from estimating the race probability model and thus risk 
mischaracterizing the degree of confidence in the disparity estimate.

We make three contributions to the study of  this issue. First, we offer 
a “dual- bootstrap” procedure that incorporates both sampling and mea-
surement uncertainty and thus offers more accurate statistical inference. 
We prove that our procedure is consistent for some race probability models 
under standard regularity conditions.

Second, we adapt our procedure to the special case of BISG, where Cen-
sus Bureau– imposed constraints on data availability raise particular chal-
lenges. The Census Bureau does not disclose the individual- level survey 
responses on which its popularly used American Community Survey race- 
by- geolocation estimates are based. This prevents researchers from directly 
applying the general dual- bootstrap algorithm. We propose one way to 
nonetheless approximate the measurement uncertainty of BISG race prob-
ability estimates using other information provided by the Census Bureau.

Third, we apply our approach to simulated and real data to investigate how 
much measurement uncertainty contributes to the final disparity estimate’s 
standard error. Our findings suggest that, in many cases, the uncertainty of 
BISG imputations only negligibly increases standard errors because BISG is 
a relatively inflexible model based on large- scale data (i.e., full- scale census 
records); bias, not variance, is likely the predominant type of error in BISG. 
But we do find some exceptions: BISG measurement uncertainty, and the 
way it is estimated, can substantially affect the final inference when study-
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ing particular demographic or geographic groups. We also show that when 
race probability models more flexible than BISG are employed, properly 
accounting for measurement uncertainty can substantially affect the widths 
of  resulting confidence intervals. We illustrate these findings through an 
analysis of racial disparities in common health outcomes in the American 
Family Cohort, a dataset containing the electronic health records of pri-
mary care visits by patients in the United States. Our method has also been 
applied in a recent working paper studying racial disparities in tax audit 
rates (Elzayn et al. 2025).

7.2  Related Work

To our knowledge, the role of measurement uncertainty in the specific 
context of race imputation has not been thoroughly studied. As mentioned 
in section 7.1, many studies where race is imputed simply ignore it. One 
exception is a concurrent working paper by Derby et al. (2024), who propose 
a fully Bayesian approach where a prior distribution for the conditional race 
probabilities is assumed, then updated based on reported Census Bureau 
estimates to obtain a posterior distribution from which conditional race 
probabilities are sampled.2 Our proposal for BISG is similar in spirit. It 
can be viewed as the frequentist analog— but with the distinct advantage 
of constructing a sampling distribution of the conditional race probability 
estimates based on the uncertainty that the Census Bureau actually reports 
for those estimates, instead of a purely assumed prior model. This fidelity 
comes at some cost to flexibility; see section 7.5 for discussion.

This paper draws from a rich body of research on missing data, survey 
design, data combination, and causal inference. Especially relevant are two 
strands of work, on inverse propensity weighting (IPW) and Z- estimation. 
The disparity estimator we consider, analyzed by Chen et al. (2019) and 
described in section 7.3 below, weights individuals by their estimated prob-
ability of  being of  a given race. It is thus very similar in form to Hájek 
IPW estimators, which have been extensively studied by, for example, Mira-
trix et al. (2018) and Matsouaka et al. (2024). And, following some prior 
work on the properties of IPW estimators in the context of causal inference 
(Reifeis and Hudgens 2022; Shu et al. 2021), we rely on Z- estimator theory 
to establish the asymptotic properties of our proposed method (Kosorok 
2008; Stefanski and Boos 2002).

We distinguish our subject of investigation from several other important 
but distinct areas of study. First, we focus solely on the variability of the 
imputed disparity estimator, as typically reflected in metrics like the standard 

2. Imai et al. (2022) similarly impose a prior, but they focus on how doing so improves the 
accuracy of race predictions, not on how it can more accurately quantify the uncertainty of 
downstream estimates.
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error or confidence intervals. Prior work has examined identification, bias, 
and consistency properties of the specific imputed disparity estimator on 
which we focus (Chen et al. 2019; Kallus et al. 2022; Elzayn et al. 2025). Oth-
ers have examined the accuracy and bias of specific race imputation models 
that often underlie imputed disparity estimators. For example, Imai et al. 
(2022) propose ways of improving the accuracy of BISG by accounting for 
the possible migration of racial minorities to geographic areas where none 
resided prior to the latest census count. These issues are largely orthogonal 
to the challenge of accurately characterizing an imputation- based estima-
tor’s variability. In our theory and simulations, we assume that these issues 
have been favorably resolved.

Second, our work is distinct from multiple imputation, at least in its clas-
sical formulation. In the typical setting amenable to multiple imputation, 
race is observed as a categorical variable for a subset of the data to be ana-
lyzed, and the researcher seeks to impute the categorical race variable for 
the remaining subset of the data where it is missing; Fong and Tyler (2021) 
discuss some challenges of proper statistical inference in that setting that are 
similar to the ones we address here. But the setting we consider (described 
in section 7.3) is one where race is completely unobserved for the data to 
be analyzed, and the researcher seeks to estimate each unit’s real- valued 
probability of being a given race, not the unit’s actually realized race. Our 
problem setting is thus more closely related to that of measurement error 
models (e.g., Fuller 2009) and two-  or split- sample instrumental variables 
(e.g., Angrist and Krueger 1992, 1995), with particular focus on uncertainty 
quantification for general, nonlinear measurement models. Nonetheless, 
some conceptual similarities to multiple imputation can be drawn. Perhaps 
the most salient connection is to the concept of “proper” multiple imputa-
tion, defined by Rubin (1987). As Murray (2018) summarizes it, multiple 
imputation generally yields valid inference only if, among other conditions, 
the uncertainty of the imputation model itself  is accounted for. This same 
concept underpins our work.

7.3  Setup and Notation

Consider two datasets: a training dataset T {Zi,Ai}i=1
nT  and a primary 

dataset P {Zj,Yj}j =1
nP , where Y denotes the outcome, A is a binary indicator 

of race, Z denotes observable proxies of race, and nT  and nP are the num-
ber of units in the training and primary datasets, respectively. The training 
dataset is drawn i.i.d. from some population T, and the primary dataset is 
drawn i.i.d. from a potentially different population P. Our estimand is the 
racial disparity in outcomes in the primary population P:

EP[Y | A = 1] EP[Y | A = 0].

If  A were observed in the primary dataset, estimation and inference of δ 
would be straightforward. But it is not— so we impute A using Z based on 
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some model class FA instead. Specifically, we fit a model f FA of  A on Z 
using the training dataset, where (Z, A) is jointly observed. We then use that 
model to estimate the race probability of each unit in the primary dataset: 
PrP(A = 1| Z = Zj) f (Zj). Finally, we estimate the racial disparity by the 
probabilistic weighting estimator that Chen et al. (2019) propose:

ˆ j =1
nP  PrP(A = 1| Z = Zj)Yj

j =1
nP  PrP(A = 1| Z = Zj)

j =1
nP  PrP(A = 0 | Z = Zj)Yj

j =1
nP  PrP(A = 0 | Z = Zj)

.

Other imputation- based disparity estimators have been used or analyzed 
in past work. For example, Chen et al. (2019) discuss a thresholding estima-
tor that estimates the mean outcome in each race by classifying individuals’ 
races instead of using soft probabilities. And Elzayn et al. (2025) consider 
the slope coefficient in a linear regression of the outcomes on the estimated 
race probabilities, which they show can in conjunction with ̂  bound the true 
disparity. But we focus on ˆ because it is a commonly used estimator with 
favorable statistical properties (Chen et al. 2019; McCaffrey and Elliott 
2008). We briefly outline how our framework might extend to the linear 
disparity estimator of Elzayn et al. (2025) in section C.2 of appendix C, but 
we defer a detailed examination of this and other extensions to future work.

We invoke standard assumptions so that the estimator ˆ is consistent for 
δ. First, we assume that the probability model PrP(A = 1| Z) is correctly 
specified. Since the model is fit on the training dataset T  but used to char-
acterize the primary population P, this assumption typically also implies 
that the conditional distribution of A given Z is the same in T and P every-
where Z has positive density in P. Second, we assume that EP[CovP(A,Y | Z )] = 0. 
Chen et al. (2019) show that this condition is sufficient for ˆ to be consistent 
when the true probabilities are given. Informally, this assumption can be 
analogized to requiring that the “unexplained” portion of  a Kitagawa- 
Oaxaca- Blinder decomposition be zero (Kitagawa 1955; Oaxaca 1973; 
Blinder 1973): The difference in average outcomes between the two races can 
be entirely decomposed into (1) differences in the distribution of the observed 
proxies between the two races and (2) the association between the observed 
proxies and the outcome, with no need to account for the possibility that the 
latter might interact with or otherwise vary by race.3 Since our focus is infer-
ence, not estimation, we take these assumptions for granted and refer inter-
ested readers to past work on the consistency of ˆ (Chen et al. 2019; Kallus 
et al. 2022; Elzayn et al. 2025).

7.4  The Dual- Bootstrap

We propose a “dual- bootstrap” procedure to enable proper inference of ˆ 
that accounts for both sampling and measurement uncertainty, as figure 7.1 
illustrates. We first state the procedure in general terms, then investigate via 

3. Thanks to Jonathan Roth for suggesting this analogy.
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simulation the effects of measurement uncertainty and the dual- bootstrap’s 
ability to account for it.

7.4.1  General Procedure

Algorithm 1 states the dual- bootstrap procedure. It frames the desired 
output as a confidence interval estimated via the percentile bootstrap, but 
other uncertainty metrics can be estimated too. As Algorithm 1 shows, the 
dual- bootstrap is straightforward: We simply resample with replacement 
both the training and the primary datasets, then refit the race probability 
model on the resampled training dataset and apply it to estimate the racial 
disparity in the resampled primary dataset. The algorithm here calls for 
simple resampling with replacement, but other, more complex forms of resa-
mpling may be appropriate— for example, if  the data are clustered (Owen 
2007; Derby et al. 2024).

The key contribution of the dual- bootstrap stems from its resampling of 
the training dataset and refitting of the race probability model. Doing so 
accounts for the uncertainty of the race probability estimates themselves. 
This uncertainty is then propagated downstream to the bootstrap statistic 
ˆ*b. As discussed above, some prior work has ignored this measurement 
uncertainty entirely, instead treating PrP(A = 1| Z = Zj) as true. This cor-
responds to skipping the first two lines of the for- loop in Algorithm 1.

Extreme cases can conceptually illuminate when measurement uncer-
tainty likely is or is not substantial. When nT  is fixed and nP , sampling 
uncertainty becomes negligible; only measurement uncertainty remains, 
so the dual- bootstrap is crucial for proper statistical inference. Conversely, 
when nP is fixed and nT , measurement uncertainty becomes negligible; 
only sampling uncertainty remains, so the single- bootstrap suffices. Taken 
together, these two extremes suggest that, in general, the greater measure-
ment uncertainty is relative to sampling uncertainty, the more important 
the dual- bootstrap is for proper statistical inference. The concept of uncer-

Fig. 7.1 Illustration of the uncertainties captured by the dual- bootstrap, compared 
to those captured by the single- bootstrap
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tainty amplification offers another lens through which to view this same 
principle: The larger the primary dataset, the more measurement uncer-
tainty is amplified, so the more important the dual- bootstrap is for proper 
statistical inference. Our simulations in section 7.4.2 offer empirical evidence 
of this phenomenon.

We prove in section C.1 of  appendix C that ˆ  and its dual- bootstrap 
analogs ˆ*b are asymptotically normal when the race probabilities are esti-
mated via logistic regression and general regularity conditions hold. We 
limit the proof to logistic regression because doing so allows us to frame 
ˆ as a Z- estimator— broadly, any estimator that can be expressed as the 
approximate zero of a data- dependent function— to which standard theo-
retical results can apply. The proof strategy likely applies readily to other 
race probability models that fall within the Z- estimation framework, albeit 
possibly with slight modifications to the regularity conditions. We leave such 
extensions to future work. It is less clear what theoretical properties the dual- 
bootstrap of ˆ has when the race probability model does not fall within the 
Z- estimation framework. A closer examination of this issue might prove 
fruitful.

The Z- estimation theory that we apply to prove asymptotic normality also 
provides a closed- form expression for the variance of the limiting distribu-
tion, but this is mostly of theoretical interest. In practice, deriving the closed- 
form expression usually has little utility. Statistical software like the geex 
package in R can compute the empirical variance estimator using numerical 
routines, without requiring analytic derivations (Saul and Hudgens 2020). 
When the race probability model falls within the Z- estimation framework, 
using such numerical solvers can often require much less computational 
power than the dual- bootstrap.

7.4.2  Simulations

We demonstrate empirically that the dual- bootstrap more accurately 
accounts for the overall uncertainty of imputed disparity estimates. We do 
so through a simple simulation in which both the training and primary popu-
lations follow the same data- generating process:

• A single proxy is drawn i.i.d. from a standard normal: Z N (0,1).
• Race is drawn i.i.d. from a Bernoulli distribution with probability logis-

tic in Z: A | Z Bern[exp Z( ) /{exp Z( ) + 1}].
• The outcome Y is i.i.d. normal and linear in Z: Y | Z N (5Z,9).

In each simulation repetition, we draw (Z, A) tuples as the training dataset 
T and (Z, Y) tuples as the primary dataset P. We fit a logistic regression of A 
on Z with T, then apply it to P to obtain our point estimate ˆ. We then apply 
the dual- bootstrap with 2,000 bootstrap iterations to estimate a 95 percent 
confidence interval for δ. For comparison, we also estimate what we call the 
“single- bootstrap” standard 95 percent confidence interval, in which the race 
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probability estimates are treated as given and only P is resampled. We also 
estimate a 95 percent confidence interval based on the empirical variance 
estimator implied by Z- estimation theory using the geex package.

Table 7.1 reports the resulting coverage rates of the three types of confi-
dence intervals over 500 simulation repetitions for various sample sizes of T 
and P. We note four trends. First, the coverage rate of the single- bootstrap 
is worst when T is small and best, though still inadequate, when it is large. 
This reflects the effect of measurement uncertainty on the variance of the 
ultimate disparity estimator in this specific simulation setup; as T increases, 
the variability of the imputations decreases and becomes less influential. 
Second, for any size of T, the single- bootstrap’s coverage rate decreases as 
P increases. This suggests that the importance of measurement uncertainty 
can amplify with the number of imputations required. One interesting con-
sequence of this phenomenon, discussed earlier in section 7.4.1, is that the 
coverage rate of the single- bootstrap is lower when nT = 1000 and nP = 5000 
than when they are both 100, even though the absolute sample sizes of 
both the training and the primary datasets are larger in the former than 
in the latter. Third, the dual- bootstrap provides better coverage than the 

Box 7.1

Algorithm 1: Dual- Bootstrap

Data:  Training Dataset T = {Zi,Ai}i=1
nT , Primary Dataset P = {Zj,Yj}j =1

nP , 
Model Class FA, Number of Bootstrap Draws B ∈ N, Level α ∈ 
[0,1}

Result: Confidence interval for the demographic disparity estimate ˆ

for b in range B do
Resample T *b by sample with replacemenet from T
Fit PrP*b(A = 1| Z ) FA on T *b

Resample P*b by sampling with replacement from P
Compute

ˆ*b j =1
nP  PrP*

b
(A = 1| Z = Zj*b)Yj*b

j =1
nP  PrP*

b
(A = 1| Z = Zj*b)

j =1
nP  PrP*

b
(A = 0 | Z = Zj*b)Yj*b

j =1
nP  PrP*

b
(A = 0 | Z = Zj*b)

Output (1 –  α)- level percentile bootstrap confidence interval

ˆ
B
( /2), ˆ

B
(1 /2)( )

where ˆ B
( ) is the empirical α- percentile of the ˆ*b
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single- bootstrap, but it requires sufficiently large sample sizes to achieve 
the desired 95 percent rate. This reflects the fact that the theoretical prop-
erties of the bootstrap take effect asymptotically, as we discuss in section 
C.1 of appendix C. Finally, the empirical variance estimator and the dual- 
bootstrap behave nearly identically; this is consistent with the theoretical 
results of section C.1 of appendix C.

7.5  Special Case: BISG

In this section, we adapt the dual- bootstrap to the BISG algorithm, which 
is commonly used in empirical applications as the race probability model. 
The key challenge to applying our dual- bootstrap approach in this setting is 
that the Census Bureau does not generally make publicly available the train-
ing dataset T on which the BISG prior probabilities are based. We suggest 
one way to overcome this constraint while still upholding the fundamental 
principle animating the generic dual- bootstrap procedure of section 7.4.1. 
We then apply our method to assess how prominent the uncertainty of BISG 
imputations are in practice. We conclude that, with some notable exceptions, 
the variability of BISG imputations is generally negligible in practice; bias, 
not variance, is likely the primary source of error in BISG.

7.5.1  BISG- Specific Procedure

BISG imputes race by naively applying Bayes’ Theorem to Census Bureau 
estimates of the racial composition of people by surname and geolocation. 
In this context, A is typically categorical instead of binary, containing all 
race categories defined by the Census Bureau; Z = (S, G), where S is a 

Table 7.1 Coverage rates and widths of 95 percent confidence intervals estimated 

using the dual- bootstrap, the single- bootstrap, and the empirical variance 

estimator for varying sample sizes of T  and P

Coverage Rate Interval Width

nT nP

Dual- 
Bootstrap

Single- 
Bootstrap Empirical

Dual- 
Bootstrap

Single- 
Bootstrap Empirical

100 100 0.91 0.81 0.92 3.8 2.2 3.7
100 1,000 0.94 0.66 0.95 3.1 0.7 3.0
100 5,000 0.94 0.54 0.94 3.0 0.3 3.0

1,000 100 0.89 0.87 0.90 2.4 2.2 2.4
1,000 1,000 0.93 0.80 0.93 1.2 0.7 1.2
1,000 5,000 0.97 0.67 0.97 1.0 0.3 1.0
5,000 100 0.87 0.86 0.87 2.2 2.2 2.2
5,000 1,000 0.88 0.84 0.88 0.8 0.7 0.8
5,000 5,000 0.94 0.83 0.94 0.5 0.3 0.5
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categorical variable denoting the individual’s surname and G is a categori-
cal variable denoting the individual’s geolocation; and the race probability 
model is

PrP (A = a |S = s,G = g)
PrP (A = a |G = g)PrP (S = s | A = a )

a PrP (A = a |G = g)PrP (S = s | A = a)
,

where the prior probabilities on the right are parameter estimates based on 
Census Bureau surveys. Specifically, researchers commonly use as PrP(A |G ) 
the Census Bureau’s American Community Survey (ACS) estimates of the 
number of people of each race residing in each geolocation. And they com-
pute PrP(S | A) based on the Census Bureau’s 2010 table of frequently occur-
ring surnames. For BISG, then, the training dataset T  is the microdata— 
i.e., individual- level survey responses— that the Census Bureau collects to 
generate the ACS and surname estimates. The standard dual- bootstrap pro-
cedure outlined in Algorithm 1 thus calls for the analyst to resample the 
microdata with replacement and recompute the racial composition of each 
geolocation and surname.4

The challenge, however, is that T  is inaccessible. The Census Bureau gen-
erally does not publish microdata for privacy reasons. This is not an issue 
for the microdata on which the surname- race probabilities are based: Since 
the surname table is just a raw tabulation, we can still essentially reconstruct 
the microdata that produced it and resample from it.5 But the same is not 
true of the microdata on which the ACS race- by- geolocation estimates are 
based. The ACS estimates of the racial composition of geographic areas 
are not raw tabulations of survey microdata; rather, they are produced by 
re- weighting the microdata to adjust for factors like probability of selection 
in an unknown and presumably complex way.6 Thus, a solution for the race- 
by- geolocation probabilities is required.

The key intuition behind the solution we propose is that we seek to resa-
mple the microdata T and recompute the prior PrP(A |G ) only as a means 

4. The surname table is a raw tabulation of data from the decennial census, which covers 
the entire population of the United States. Thus, depending on the population for which race- 
specific outcomes are to be estimated, resampling the data that produced the surname table 
might be unnecessary. Nonetheless, we outline our procedure to include resampling for two 
reasons. First, it could be appropriate to do so, depending on the estimand. Second, race- 
by- name probabilities are sometimes sourced from data that are properly characterized as a 
sample, rather than the entire population. For example, Imai et al. (2022) use voting records 
from a handful of states to estimate the race- by- name probabilities. In such cases, resampling 
would likely be appropriate.

5. Such a reconstruction is necessarily imprecise since the surname table aggregates all sur-
names held by fewer than 100 individuals into a single “Other” category. Our reconstruction 
of the microdata can never recover these surnames. We leave a detailed examination of the 
significance of this issue to future work.

6. Some ACS microdata are available, but only at levels of geographic granularity that are 
too low to be useful in most applications. Such microdata are also incomplete— they consist 
of only about two- thirds of the records used to produce the ACS estimates— and thus might 
not be any more amenable to direct resampling.
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of, essentially, drawing from the approximate sampling distribution of 
PrP(A |G ). If  we can approximate the sampling distribution of  PrP(A |G ) 
in some other way, then we can just draw from it directly— no resampling 
or model- refitting needed. Fortunately, the Census Bureau suggests and 
endorses a way of estimating key parameters of the sampling distribution 
even without microdata. We outline the approach below, with further details 
available in appendix A.

As an initial matter, we center the sampling distribution of PrP(A |G ) at 
the published ACS estimate, which we denote by ˆ G. Then, to estimate the 
covariance of this sampling distribution, which we denote by ˆ G , we use the 
publicly available ACS variance replicates. These are 80 “pseudo- estimates” 
of the racial composition of each geolocation, which we denote by ˆG

r  for 
r = 1, …, 80. The Census Bureau uses them to estimate variances via the 
successive differences replication (SDR) method. The variance replicates 
are not bootstrap statistics; they have “no other use [beyond calculating 
SDR variances] and no independent meaning” (Census Bureau 2022). So we 
cannot directly apply the dual- bootstrap algorithm to them. Instead, we use 
the variance replicates to estimate the covariance of the race- by- geolocation 
probability estimates based on the formula prescribed by the Census Bureau:

ˆ
G

4
80 r=1

80

 ( ˆG
r ˆ G)( ˆG

r ˆ G)T .

When ACS estimates that there are zero people of a given race in a geo-
graphic area, all associated variance replicates are zero. In such “zero- count” 
cases, we follow the Census Bureau’s recommendation not to use the above 
formula; instead, we assume the estimate has zero covariance with the other 
estimates and essentially derive the variance from the Census Bureau’s esti-
mated margin of error (Census Bureau 2022). Section A.1 of appendix A 
describes the procedure in more detail. As we discuss in section 7.5.2, the 
choice to account for uncertainty in zero- count geolocations can be influ-
ential in specific circumstances.

Finally, we assume that the sampling distribution of PrP(A |G) is normal, 
so the parameter estimates ( ˆG, ˆ

G) fully specify the sampling distribution 
as N ( ˆG, ˆ

G). We leave generalizations of the form of the sampling distri-
bution to future work. See section A.2 of appendix A for more discussion.

With the sampling distribution of PrP(A |G) in hand, our modified dual- 
bootstrap routine can be executed. Algorithm 2 states the modified imple-
mentation. The key distinction from Algorithm 1 is that the bootstrap race- 
by- geolocation probability estimate PrP*

b
(A |G) is computed by drawing 

directly from the sampling distribution N( ˆ G, ˆ
G) instead of  by refitting 

on resampled microdata. As with Algorithm 1, the resampling steps in this 
algorithm use simple resampling with replacement, but more complex forms 
of resampling may be appropriate (Owen 2007; Derby et al. 2024).

As mentioned in section 7.2, recent work has proposed an alternative 
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approach: setting the sampling distribution to the posterior distribution 
obtained by updating an assumed prior with the ACS race- by- geolocation 
estimates (Derby et al. 2024). We do not adopt this approach because, as 
discussed above, the Census Bureau offers its own account of the uncertainty 
of its estimates. This uncertainty is multifaceted— it includes considerations 
like the Census Bureau’s sampling scheme and survey nonresponse, as well as 
adjustments the Census Bureau has made to account for them— and inscru-
table to the general public. So, rather than impose our own model for this 
uncertainty by specifying an ultimately arbitrary prior, we prefer to use the 
model offered by the Census Bureau, which is best positioned to develop one.

One potential advantage to assuming a prior distribution instead of 
using the Census Bureau’s uncertainty model is that it can accommodate 
a superpopulation framework for the race probability model. For example, 
a researcher can assume an abstract superpopulation of which each year’s 
demographic composition is a sample. The prior distribution characterizes 
the superpopulation of race probabilities and is updated by a given year’s 
observed demographic composition. To our knowledge, the Census Bureau’s 
uncertainty model cannot accommodate such a superpopulation framework 
because it only models uncertainty arising from its survey sampling proce-
dure. In our view, however, this limitation is significant only if  the super-
population parameters of the race probability model are of independent 
interest. In most applications— like the study of racial disparities— the race 
probability model is merely nuisance.

Consider, for example, the task of estimating racial disparities in tax audit 
rates. It is true that researchers might be interested in the racial disparity at 
the superpopulation level (e.g., as a parameter of an abstract data- generating 
process that produces the observed tax audit rates by race each year). But, 
to estimate such a disparity, they necessarily use observed tax audit data 
from certain, well- defined years. Suppose that the race of the taxpayer in 
each audit decision is unavailable, so the researchers impute it using BISG 
with ACS data from the relevant years. Quantifying the uncertainty of any 
individual race imputation and how it affects the uncertainty of the final 
disparity estimate requires only an understanding of the error of the year- 
specific BISG model used for that imputation; it does not require reference 
to any BISG (or other race probability) model at the superpopulation level.

7.5.2  BISG Simulations

We show via simulation that the uncertainty of BISG imputations gener-
ally has little effect on the variance of the resulting racial disparity estimate. 
For this simulation, we use the 2017– 2021 ACS five- year estimates of the 
racial composition of each census block group and the 2010 Census Bureau 
surname table. We use the following data- generating process for both the 
training and primary populations:



Box 7.2

Algorithm 2: BISG Dual- Bootstrap

Data:  ACS Estimate ˆ , ACS Covariance Matrix Estimate ˆ , Surname 
Table S, Primary Dataset P = {Sj,Gj,Yj}j =1

nP , Number of Bootstrap 
Draws B ∈ N, Level α ∈ [0,1], Race Groups a′ and a″

Result: Confidence interval for the demographic disparity estimate ˆ

for b in range B do
 Resample S*b by sampling with replacement from S // optional; see 
Footnote 4
for s in {Sj}j =1

nP , a in supp(A) do

Compute PrP*
b
(S = s | A = a) from S*b // optional; see Footnote 4

for g in {Gj}j =1
nP  do

Sample PrP*
b
(A |G = g) N( ˆ g, ˆ

g)

Resample P*b by sampling with replacement from P
for j in range nP do

Compute

PrP*
b
(A = a |S = Sj*b,G = G j*b)

PrP*
b
(A = a |G = G j*b)

PrP*
b
(S = Sj*b | A = a )

a PrP*
b
(A = a |G = G j*b)

PrP*
b
(S = Sj*b | A = a)

,

PrP*
b
(A = a |S = Sj*b,G = G j*b)

PrP*
b
(A = a |G = G j*b)

PrP*
b
(S = Sj*b | A = a )

a PrP*
b
(A = a |G = G j*b)

PrP*
b
(S = Sj*b | A = a)

,

Compute

ˆ*b j =1
nP PrP*

b
(A = a |S = Sj*b,G = G j*b)Yj*b

j =1
nP PrP*

b
(A = a |S = Sj*b,G = G j*b)

j =1
nP PrP*

b
(A = a |S = Sj*b,G = G j*b)Yj*b

j =1
nP PrP*

b
(A = a |S = Sj*b,G = G j*b)

Output (1 –  α)- level percentile bootstrap confidence interval

ˆ
B
( /2), ˆ

B
(1 /2)( )

where ˆ B
( ) is the empirical α- percentile of the ˆ*b
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• The proxy tuple (G, S) is sampled i.i.d. from the marginal census block 
group and surname frequencies given by the ACS estimates and the 
Census Bureau surname table, excluding tuples where the racial com-
position of the surname is withheld by the Census Bureau and tuples 
where the surname and census block group have mutually exclusive 
racial compositions.

• The outcome Y is i.i.d. standard normal, independent of G, S, and A: 
Y ~ N(0, 1).

Because the race probability model is estimated using BISG and the out-
come is independent of race, no concrete race indicators need to be gen-
erated for this simulation. In each of 100 simulation repetitions, we draw 
1,000 (G, S, Y) tuples as the primary dataset P. On this dataset, we estimate 
the average outcome ˆ for each race using BISG- estimated probabilities. 
We then estimate the standard error using both the dual- bootstrap and the 
single- bootstrap.

Table 7.2 reports the results. Overall, accounting for measurement uncer-
tainty in this setting barely affects the resulting standard errors. Our simula-
tion results from section 7.4.2 suggest that measurement uncertainty might 
have a more substantial effect on the bottom line if  our primary dataset P 
were larger, since it would amplify over more individuals whose races must 
be imputed. Future work might systematically investigate how much larger P 
must be for measurement uncertainty to have a substantial effect. For now, 
we note that Elzayn et al. (2025) also obtain only slightly larger standard 
errors (in absolute terms) when they apply our method to estimate the uncer-
tainty of their BISG- based estimates of tax audit disparities by race using a 
primary dataset of over 100 million individual income tax returns. Figure 7.2 
offers one explanation for the relative durability of this phenomenon: For 

Table 7.2 Average standard error of the estimated average outcome of each race, as 
estimated by the dual- bootstrap and the single- bootstrap when BISG is 
used for imputation

Average Standard Error

Race Group Dual- Bootstrap Single- Bootstrap

American Indian and Alaska Native 0.11 (0.02) 0.18 (0.06)
Asian and Pacific Islander 0.11 (0.01) 0.11 (0.01)
Black 0.07 (0.00) 0.07 (0.00)
Hispanic 0.06 (0.00) 0.06 (0.00)
Multiracial 0.07 (0.01) 0.06 (0.01)
White 0.04 (0.00) 0.04 (0.00)

Note: Standard deviations over the simulation repetitions are in parentheses. The dual- 
bootstrap’s average estimate of the standard error is the same as that of the single- bootstrap 
except for the American Indian and Alaska Native group, for which it is lower. We offer one 
explanation for this in figures 3– 4 and the associated discussion below.
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most units, the bootstrap standard error of the posterior race probability 
is low, close to 0.05 on average. For comparison, the bootstrap standard 
errors of the race probabilities in the machine learning simulation of section 
7.4.2 are about 0.23, nearly five times larger. The standard errors are much 
smaller here likely because the BISG model is fairly rigid, and the ACS and 
surname prior probabilities that parameterize it are based on millions of 
individual- level training points.

The notable exception in table 7.2 is the American Indian and Alaska 
Native group, for which the dual- bootstrap standard error is substantially 
less than the single- bootstrap standard error. As a theoretical matter, it 
might generally be possible for standard errors to decrease after properly 
accounting for measurement error; we do not prove so in our specific set-
ting, but Reifeis and Hudgens (2022) show that this can occur in the closely 
related setting of  IPW estimation of  the average treatment effect on the 
treated. However, we believe that the specific reduction observed here is due 
to our handling of zero counts and our specific data- generating process, as 
described in more detail below.

Although measurement uncertainty appears to be of nominal significance 
marginally over the entire population of the United States, we find evidence 
that it, and the way it is modeled, can be influential in certain situations. To 
illustrate, we rerun the above simulations for each state— that is, we sample 

Fig. 7.2 Bootstrap standard error of the BISG- estimated probability of being  
a given race plotted against the BISG- estimated probability in one simulation  
repetition.
Note: The horizontal black line indicates the average bootstrap standard error. “AIAN” is the 
abbreviation for American Indian and Alaska Native, and “API” is the abbreviation for Asian 
and Pacific Islander.
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census block groups from the marginal frequencies given by the ACS esti-
mates within each state. Figure 7.3 shows the state- by- state results for three 
racial groups that we highlight here because of their particularly prominent 
trends; section B.1 of appendix B contains corresponding figures for other 
racial groups. In most states, accounting for measurement uncertainty has 
essentially no effect on the uncertainty of the average outcome estimate for 

Fig. 7.3 Dual- bootstrap and single- bootstrap standard errors of the estimated av-
erage outcome for the White, Multiracial, and American Indian and Alaska Native 
(AIAN) race groups in each state. The states are ordered by the proportion of census 
block groups in which the American Community Survey estimates there are zero 
people of the given race.
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White people; it increases the uncertainty of the average outcome estimate 
for multiracial people; and it decreases the uncertainty of the average out-
come estimate for American Indians and Alaska Natives.

We believe that the key to understanding these seemingly incompatible 
phenomena lies primarily in (1) the prevalence of each race group overall, 
(2) the geographic concentration of certain race groups, and (3) the distri-
bution of the outcome among race groups. White people are much more 
prevalent than multiracial people overall: The 2017– 2021 ACS data we use 
estimates that 59 percent of  the population is White, while 3 percent are 
multiracial. Thus, ACS estimates of the proportion of White people in each 
census block group are more precise— in other words, have less measure-
ment uncertainty— than estimates of the proportion of multiracial people. 
This explains why measurement uncertainty increases the uncertainty of 
the average outcome estimate for multiracial people more than it does for 
White people.

American Indians and Alaska Natives are even less prevalent than multi-
racial people overall: The 2017– 2021 ACS data we use estimate that about 
0.6 percent of  the population is American Indian or Alaska Native. But 
accounting for measurement uncertainty generally decreases the uncertainty 
of  the average outcome estimate in these simulations because they are a 
geographically concentrated minority: As figure 7.3 shows, the ACS esti-
mates that there are zero American Indians and Alaska Natives in most 
census block groups in most states. As discussed in section 7.5.1, we use the 
ACS estimated margin of error instead of the ACS variance replicates to 
approximate the sampling distribution of such estimates since it is possible 
that American Indians and Alaska Natives in fact reside in those block 
groups and were simply not sampled by ACS. Accounting for measurement 
uncertainty in this way gives nonzero weight to people who otherwise would 
have none. When the outcomes of these people are informative of the aver-
age outcome of American Indians and Alaska Natives— as they are in this 
simulation, since all units have outcomes drawn from a standard normal 
distribution— giving them nonzero weight increases the effective sample size 
and thus decreases the standard error of the average outcome estimate. This 
phenomenon likely explains the overall decrease in the standard error for 
American Indians and Alaska Natives reported in table 7.2.

We illustrate some of these dynamics through an additional simulation 
focused on the American Indian and Alaska Native population in New Mex-
ico. In this simulation, we generate synthetic states by taking ACS estimates 
from New Mexico and altering (1) the total prevalence of American Indian 
and Alaska Native people in the state and (2) the percentage of census block 
groups in the state in which zero American Indian and Alaska Native people 
are estimated to reside. Section B.2 of appendix B describes this process in 
detail. We then rerun the previous simulation on each synthetic state. As 
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figure 7.4 shows, accounting for measurement uncertainty decreases stan-
dard errors the less prevalent and the more concentrated the race group is.

These results for the American Indian and Alaska Native group demon-
strate that a proper accounting of uncertainty in zero- count geolocations 
can, in specific circumstances, be influential. Our choice to take at face value 
the Census Bureau’s margins of error when quantifying the uncertainty of 
the estimated average outcomes of a race group gives influence to people 
in geolocations where ACS estimates no people of that race group reside. 
This motivation to properly leverage data from zero- count geolocations also 
underlies some of the work of Imai et al. (2022)— though they focus on how 
accounting for the migration of racial minorities since the last decennial 
census can improve imputation accuracy, whereas we focus on how account-
ing for the possible nonselection of racial minorities in ACS sampling can 
improve uncertainty quantification of downstream estimates. We emphasize 
that in practice, however, properly accounting for uncertainty in zero- count 
geolocations might not have as drastic or counterintuitive an effect as shown 
here, where the outcomes of all simulated units are equally informative for 
all race groups. On the contrary, it might in some cases increase standard 
errors if  the outcomes of people in zero- count geolocations are substantially 
different from those of the target race group. In other cases, it might have 
no effect on balance.

Taken together, the phenomena identified in the simulations above high-
light that, although the uncertainty of BISG imputations might not be sub-
stantial in studies of the general US population, properly accounting for 
it in studies of particular geographic areas or demographic groups can be 
important to ensuring that the resulting inference is neither conservative nor 

Fig. 7.4 Dual- bootstrap and single- bootstrap standard errors of the estimated av-
erage outcome for the American Indian and Alaska Native (AIAN) race group in 
New Mexico when American Community Survey estimates of the total counts and 
geographic concentrations of AIAN people in the state are artificially altered
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anti- conservative. More generally, our finding is consistent with a broader 
literature on the challenges of  race imputation for certain demographic 
groups (e.g., Imai et al. 2022).

7.6  Application

We apply the dual- bootstrap to study racial disparities in health outcomes 
using the American Family Cohort (AFC) dataset (Vala et al. 2023). The 
dataset contains electronic health records from the primary care visits of 
patients in the United States. Relevant features for our purposes include 
patient geolocation; first name; surname; self- reported race, which are pro-
vided as mapped to White, Black, Hispanic, Asian and Pacific Islander, 
American Indian and Alaska Native, Multiracial, and Other; and indica-
tors for the diagnosis of asthma, obesity, and diabetes at any point during 
the time period covered by the dataset. We downsample the data due to 
computational constraints by taking a stratified random sample of 100,000 
patients with the same race proportions as the full dataset. Although we do 
not adopt them here, general steps can be taken in practice to improve the 
computational efficiency of the bootstrap (e.g., Kleiner et al. 2014).

We preprocess the dataset as follows. First, we produce race proxies 
by converting categorical geolocation, first name, and surname data into 
numerical race probability estimates. Specifically, we convert the surnames 
into “prior probability” features by computing the probability of each of 
the six race categories (excluding Other) given surname based on the Census 
Bureau’s 2010 surname table. And we convert the first names and geoloca-
tions into “update” features by computing the probability of the first name 
or geolocation given each of the six race categories. We use mean imputation 
for any missing geolocation, first name, or surname probabilities and include 
a binary missingness indicator for each as a separate feature. Second, we 
randomly split the data into a primary dataset of size 20,000 and a training 
dataset of size 80,000. We mask self- reported race in the primary dataset 
and health outcomes in the training dataset.

On the training dataset, we fit a random forest of patients’ races on the 
processed features defined above. Although these same features could be run 
through BISG to output race probabilities, we choose to use a random forest 
because Cheng et al. (2023) find that it produces more accurate estimates in 
this dataset. We allow for slight tuning of the random forest hyperparame-
ters. Specifically, we perform a grid search of the following hyperparameters 
using 5- fold cross- validation.

Number of Trees: 100.
Maximum Tree Splits: 20, 50, 100.
Proportion of Features per Split (p = 21): p, 0.5p, 0.75p.
Minimum Number of Units to Initiate Split: 10, 25, 100.
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We then apply the random forest to the primary dataset to estimate 
patients’ race probabilities. With those estimates in hand, we estimate the 
incidence rates of asthma, obesity, and diabetes for each race in the primary 
dataset. To compute confidence intervals for each estimate, we use both the 
single- bootstrap, which retains the original random forest model, and the 
dual- bootstrap, which refits a new random forest model on bootstrapped 
draws of the training dataset. We run 100 bootstrap iterations.

Figure 7.5 shows the results. In general, the single- bootstrap understates 
the uncertainties of the prevalence estimates compared to the dual- bootstrap. 
But this trend is not uniform across races. For Asian and Pacific Islander, 
Black, Hispanic, and White patients, the widths of the dual- bootstrap and 
single- bootstrap confidence intervals are essentially the same. On the other 
hand, the dual- bootstrap confidence intervals are substantially wider than 
the single- bootstrap confidence intervals for American Indian and Alaska 
Native, Multiracial, and Other patients— in some cases doubly so. This 
appears largely to be because those patients appear infrequently in the data 
on which the random forest model was trained, so their race probability 
estimates are more variable. As figure 7.6 shows, the dual- bootstrap confi-
dence interval widths are nearly identical to the single- bootstrap ones when 
we alter our downsample so that all races are equally represented in the 
training dataset.

Fig. 7.5 Widths of dual- bootstrap vs. single- bootstrap confidence intervals of the 
estimated prevalence of certain health conditions by race. This analysis was con-
ducted on a 100,000- unit subsample of the American Family Cohort population with 
the same racial composition as the full population. Points are sized by the proportion 
of units in the subsample that are of the given race group. AIAN is the abbreviation 
for American Indian and Alaska Native, and API is the abbreviation for Asian and 
Pacific Islander.
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7.7  Discussion

We propose a dual- bootstrap procedure to more accurately account for the 
uncertainty of race imputations that are subsequently used to estimate racial 
disparities and other race- specific outcomes. Our method is straightforward 
to implement, although complications can arise when the underlying data 
used to train the race probability model are unavailable. We offer one way 
of overcoming such difficulties in the specific case of BISG, an imputation 
model that is often parameterized by ACS race- by- geolocation estimates 
that are based on undisclosed microdata. Our simulation results suggest 
that the measurement uncertainty of BISG generally does not impact the 
uncertainty of downstream estimates, likely because it is a fairly rigid model 
with a relatively large sample size underpinning its parameter estimates. But 
it can be significant for specific race groups in specific geographies, with the 
potential to increase or decrease the standard error of  downstream esti-
mates, as our state- by- state results show. And we emphasize that despite its 
overall low variability— or perhaps because of it— BISG still suffers from 
bias, as others have shown and sought to improve (e.g. Imai et al. 2022).

We see several opportunities for future work in this direction. Most imme-
diately, an investigation of the theoretical properties of the dual- bootstrap 
when the race probability model falls outside the Z- estimator framework 
could be informative. On the practical side, a closer examination and 
improvement of some of the design choices made in our adaptation of the 

Fig. 7.6 Widths of dual- bootstrap vs. single- bootstrap confidence intervals of the 
estimated prevalence of certain health conditions by race. This analysis was con-
ducted on a 100,000- unit subsample of the American Family Cohort population 
where each race was equally represented in the training dataset. AIAN is the abbre-
viation for American Indian and Alaska Native, and API is the abbreviation for 
Asian and Pacific Islander.
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dual- bootstrap to BISG— such as our choice to use a normal distribution 
and other choices outlined in appendix A— could produce more accurate 
inference. Any changes or additions by the Census Bureau to the data prod-
ucts it publishes could help or hinder these efforts. We also see broader 
opportunities in this space. For example, the development of prospective 
heuristics for study design akin to a power analysis might prove useful to 
applied researchers. In some settings, researchers have a choice between 
analyzing a small dataset where race is observed and analyzing a larger 
dataset where race must be imputed. The need to account for measurement 
uncertainty— which, as shown in this paper, can be substantial or not— 
only complicates this choice. A set of heuristics that allows researchers to 
prospectively approximate the standard error that would result from each 
choice given certain parameters like the sample sizes of  the datasets, the 
accuracy of the imputations, and the variability of the outcome might help 
with the decision.
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Appendices

A.  Implementation Details for the BISG Adaptation of  
the Dual- Bootstrap

We outline our approach to a few issues that can arise when implementing 
our dual- bootstrap adaptation to BISG.

A.1 Zero Counts

In the ACS dataset, some geographic areas are estimated to have zero 
people of certain races. Intuitively, such “zero counts” are more common 
at the census block group level than at the ZIP code tabulation area level. 
In such cases, all 80 variance replicates also estimate zero people of that 
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race, even though a full count may have revealed people of that race in that 
area. To nonetheless reflect this uncertainty, the Census Bureau reports a 
margin of error based on a different method from the successive differences 
replication method.

Whenever we encounter such instances of zero counts, we impute pos-
sible observed values for the 80 variance replicates from a discrete uniform 
distribution with minimum value 0 and maximum value determined by the 
margin of error. In particular, we derive the estimated variance from the 
reported margin of error using a formula prescribed by the Census Bureau. 
The variance, combined with the fact that observed counts can never be less 
than 0, allows us to derive the maximum possible value of the discrete uni-
form distribution. We sample from this distribution 80 times independently 
and replace the zero counts in the variance replicates with these values (and 
update the estimated total counts across all races in the variance replicates) 
for purposes of estimating the covariance matrix ˆ .

Our choice of parametric distribution here has little downstream impact 
since it is used only to recover the variance, which maps directly to the mar-
gin of error given by the Census Bureau. But our estimates for zero- count 
races in a geolocation have approximately zero covariance with the estimates 
for other races even though this might not be the case in reality. We leave an 
examination of the significance of this choice and possible improvements 
to it to future work.

A.2  Impermissible Sampled Probabilities

In some cases, the draws of vectors PrP*
b
(A |G = g) N( ˆ g, ˆ

gg) will include 
elements that are less than 0 or greater than 1. This arises because we assume 
that the sampling distribution of the conditional race- by- geolocation prob-
ability estimates is multivariate normal. In such instances, we simply round 
the elements to 0 or 1 accordingly. The rounding to 1 is not strictly necessary, 
since the normalization that occurs in Bayes’ Theorem implicitly handles it; 
but the rounding to 0 appears to be necessary.

This problem likely can be avoided by imposing an alternative form on 
the sampling distribution. For example, there might exist a unique set of 
parameters that best fit ˆ g and ˆ

g as a Dirichlet distribution. If  so, then 
modeling the sampling distribution as a Dirichlet with those parameters 
instead would sidestep this issue. We also note here that the densities of 
the Dirichlet distribution and the multivariate normal distribution with the 
same means and covariances converge asymptotically (Ouimet 2022). This 
might suggest that this problem is less significant in relatively large sample 
sizes like the ACS, but more research is needed to be sure.

A.3 Mutually Exclusive Conditional Probabilities

In some cases, the conditional surname- by- race probabilities and the con-
ditional race- by- geolocation probabilities are incompatible. For example, an 
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individual might have a surname that, according to the 2010 surname table, 
only White people have. But he or she might live in a census block group that, 
according to ACS estimates, has no White people. This problem is not unique 
to the dual- bootstrap; it can occur in any application of BISG. But it is more 
likely to occur when applying the dual- bootstrap, which calls for repeated 
computation of BISG probabilities on resamples of the training data.

Because this problem extends beyond the dual- bootstrap, we do not pro-
pose any particular solution. For purposes of the simulations in section 7.5, 
however, our stopgap approach is to give primacy to the surname probabili-
ties: If  the conditional surname- by- race probabilities and the conditional 
race- by- geolocation probabilities are incompatible, we simply do not update 
the former with the latter.

B Additional Details on BISG Simulations

B.1 Additional State- by- State Results

Figure 7.7 shows the results of  the state- by- state simulation in section 
7.5.2 for the remaining race categories that we study. Although the trends 
shown here are less pronounced, we believe they can be interpreted within 
the framework described in section 7.5.2.

B.2 Additional Details on New Mexico Simulation

In this section, we describe in more detail the New Mexico simulation 
reported in section 7.5.2. We select New Mexico for illustrative purposes 
and focus on the effect of varying total size and census block group concen-
tration of the American Indian and Alaska Native (AIAN) population in 
the state on the standard error of the average group outcome estimate. The 
following simulation can be conducted for any state and any race group.

The simulation follows the same general procedure as the state- by- state 
simulation in section 7.5.2 for just New Mexico, except we modify the 2017– 
2021 ACS five- year estimates of  the AIAN composition of  each census 
block group in the state. The actual estimated total population of AIAN 
in New Mexico is 181,021, and about 49 percent of census block groups 
are estimated to have zero AIAN people. We vary the proportion of census 
block groups with zero- count AIAN from 30 percent to 80 percent, and 
also vary the total population of AIAN among the values 50,000, 100,000, 
200,000, and 400,000.

When modifying the proportion of census block groups with zero- count 
AIAN, we start with the existing distribution of AIAN counts in census 
block groups. We decrease the proportion of zero- count AIAN census block 
groups by randomly selecting zero- count AIAN census block groups (with-
out replacement) and assigning them all the AIAN information (including 
ACS margins of error and variance replicate estimates) of randomly selected 
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non- zero- count AIAN census block groups (with replacement). Similarly, 
we increase the proportion of zero- count AIAN census block groups by 
randomly selecting non- zero- count AIAN census block groups (without 
replacement) and assigning them the AIAN information of  zero- count 
AIAN census block groups (with replacement). To then achieve the desired 
total population of AIAN, we scale all non- zero counts (and margins of 
error) of  AIAN proportionally up or down. The result is that each syn-

Fig. 7.7 Dual- bootstrap and single- bootstrap standard errors of the estimated av-
erage outcome for the Asian and Pacific Islander (API), Black, and Hispanic race 
groups in each state. The states are ordered by the proportion of census block groups 
in which the American Community Survey estimates there are zero people of the 
given race.
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thetically generated New Mexico has different total sizes and census block 
group concentrations of AIAN, but a similarly shaped distribution of AIAN 
among non- zero- count AIAN census block groups.

Having modified the records of the ACS table that report AIAN informa-
tion, we simply follow through with the rest of the procedure described in 
section 7.5 and appendix A, including estimating the covariance matrix with 
zero- count adjustments, implementing Algorithm 2, and conducting the 
standard error estimation simulation with 1,000 tuples in our synthetically 
generated New Mexico.

C Asymptotic Normality of the Dual- Bootstrap

C.1 Proof of Asymptotic Normality for Logistic Regression

We prove that the dual- bootstrap produces asymptotically normal boot-
strap statistics with properly calibrated variance under the simplifying 
assumption that the race probabilities obey the logistic regression model

(1) Pr(A = 1| Z ) =
exp( T Z)

1 + exp( T Z)
.

The proof can be readily extended to other race probability models that 
fall within the Z- estimation framework. The theorem may also hold for 
other race probability models as well, but we leave a proof of such results 
to future work.

For ease of notation, let a E[Y | A = a] for a ∈ {0, 1}.
Let

(2) (z,a, y)
(z,a, y)

1(z,a, y)

0(z,a, y)

z a
exp( T z)

1 + exp( T z)

exp( T z)
1 + exp( T z)

y
exp( T z)

1 + exp( T z) 1

1
1 + exp( T z)

y
1

1 + exp( T z) 0

and assume that [ 1 0 ]T p where Θ is open and p <  is 
fixed.

Then, defining the map ( ) P , note that 0 [ 1 0 ]T  satis-
fies ψ(θ0) = 0. We show this coordinate by coordinate. First,

(3) E Z A
exp( TZ)

1 + exp( TZ)
= E[ZA] E[Z Pr(A = 1|Z)]

(4) = E[Z Pr(A = 1| Z )] E[Z Pr(A = 1|Z)]

(5) = 0,
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where (4) follows from the tower property conditioning on Z and the fact 
that A is binary. Second,

(6) E exp Z( )
1 + exp Z( )

Y
exp Z( )

1 + exp Z( ) 1 = E Pr(A = 1 | Z)Y[ ] E Pr(A = 1 | Z)[ ] 1

(7) = E Pr(A = 1 | Z)Y[ ] E Pr(A = 1 | Z)[ ]
E AY( )

Pr A = 1( )

(8) = E Pr(A = 1 | Z)Y[ ] E AY( )

(9) = E Pr(A = 1 | Z)E Y | Z( )[ ] E E AY | Z( ){ }

(10) = E E(A | Z)E Y | Z( ) E AY | Z( )[ ]

(11) = 0,

where (7), (8), and (9) follow from the law of total expectation, and (11) fol-
lows from our identifying assumption of zero covariance. The proof of the 
third coordinate is analogous.

Let ̂ n be an approximate zero of the estimating equation n( ) Pn ,  
and let ˆ n* be an approximate zero of  the bootstrapped estimating equa-
tion n*( ) Pn* >. By Theorem 10.16 of Kosorok (2008),

(12) n(ˆ
n 0)

d

Z N 0,V
0

1P[
0 0

](V
0

1)T( )
and

(13) n(ˆ
n* ˆ

n)
P

*
k0Z

if  five conditions hold. We verify each condition in turn. As a preliminary 
matter, note that Exercise 10.5.5 of Kosorok (2008) already verifies each of 
the five conditions for the first coordinate of ψθ. So we verify them for the 
remaining two coordinates, focusing without loss of generality on the first 
of the two.

(A) For any sequence { n} ,  ( n) 0 implies n 0 0. 
Proof. By assumption,

(14) E exp( n
T Z )

1 + exp( n
T Z )

Y
exp( n

T Z )
1 + exp( n

T Z ) 1n 0.

Distributing the expectation and dividing by both sides yields

(15) 
E exp( n

T Z )
1 + exp( n

T Z )
Y

E exp( n
T Z )

1 + exp( n
T Z )

1n 0,

so it suffices to show that
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(16) 
E exp( n

T Z )
1 + exp( n

T Z )
Y

E exp( n
T Z )

1 + exp( n
T Z )

1.

Since we know from (1) and (6) that

(17) 1 =
E exp( TZ )

1 + exp( TZ )
Y

E exp( TZ )
1 + exp( TZ )

,

it suffices to prove that the numerator and denominator of (16) each con-
verge to their corresponding limit. We prove the denominator first. From 
Example 10.5.5 of Kosorok (2008), we can take as given that n . Since 
these are constants, this implies that n

p
. Moreover, it is trivially true that 

an i.i.d. sequence Z1, Z2, . . . where each Zi is distributed as Z satisfies Zn
d Z. 

Then Slutsky’s theorem implies that nZ
d Z. The continuous mapping 

theorem then implies that n ⊙ Z d  ⊙ Z. Since the logistic function is 
bounded and continuous, convergence in distribution implies that

(18) E exp( n
T Z )

1 + exp( n
T Z )

E exp( TZ )
1 + exp( TZ )

.

The proof for the numerator is similar but slightly more delicate. Again from 
Example 10.5.5 of Kosorok (2008), we can take as given that n . Since 
these are constants, this implies that n

p
. Moreover, it is trivially true that 

an i.i.d. sequence (Z1, Y1), (Z2, Y2), . . . where each (Zi, Yi) is distributed as (Z, Y)  
satisfies (Zn,Yn) d (Z,Y ). Since α is a constant, the portmanteau lemma 
implies that (Zn,Yn, n) d (Z,Y, ). Then the continuous mapping theorem 
implies that

(19) 
exp( n

T Z )
1 + exp( n

T Z )
Y

d exp( TZ )
1 + exp( TZ )

Y.

If  Y has a finite second moment, then

(20) E exp( n
T Z )

1 + exp( n
T Z )

Y
2

< E[ Y |2] <

for all n , so

(21) 
exp( n

T Z )
1 + exp( n

T Z )
Y

is uniformly integrable.7 This, combined with convergence in distribution, 
implies that

7. See Uniformly Integrable Variables from Random Services, https:// www .randomservices 
.org /random /expect /Uniform .html.
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(22) E exp( n
T Z )

1 + exp( n
T Z )

Y E exp( TZ )
1 + exp( TZ )

Y .

Thus, the proof is complete.

(B) The class { : } is strong Glivenko- Cantelli. Proof. As indicated 
by Van der Vaart (2000), it suffices to show separately that each coordinate 
class is strong Glivenko- Cantelli. This can be done under several differ-
ent regularity conditions. We assume two regularity conditions. First, we 
assume that each coordinate of (Z, A, Y ) is bounded almost surely— i.e., 
that (Z, A, Y ) ~ P where P has measure zero outside a bounded subset of 

p+2. Second, we assume that Θ is bounded. Then let p+2 = jIj be a parti-
tion in cubes of volume 1. Since each ψ1 in the class has partial derivatives 
up to order α > ( p + 2)  /  2 that are bounded by constants Mj on each of 
the cubes Ij, Example 19.9 of Van der Vaart (2000) guarantees that, for any 
V ≥ (p + 2)  /  α,

(23) log N[]( , :{ },L2(P)) K
1 V

j =1
 (M j

2P(I j))V /(V+2)
(V+2)/V

.

Since P has measure zero outside a bounded subset of p+2, the series con-
verges for any V ≥ (p + 2)  /  α. Then, setting V ∈ [(p + 2)  /  α, 2), we see that 
the function class has finite bracketing integral:

(24) J[](1,{ : },L2(P))
0

1

 log N[]( ,{ : },L2(P)) d

(25) 
0

1

 K
1 V

j =1
 (M j

2P(I j))V /(V+2)
(V+2)/V

 d

(26) = K
j =1

 (M j
2P(I j))V /(V+2)

(V+2)/V

 
0

1

 
1 V

 d

(27) C
0

1

 
1 V /2

 d

(28) < ,

where C is a constant. Thus, by Theorem 19.5 of Van der Vaart (2000), the 
function class is Donsker. Hence, it is strong Glivenko- Cantelli (Kosorok 
2008). Note that we can probably relax the assumption that P has measure 
zero if  we instead assume it has a certain concentration.

(C) For some η > 0, the class F { : ,  || 0 ||  }> is Donsker 
and (

0
)2  0 as || 0 ||  0.

Proof. The first statement follows immediately from our proof of (B). The 
second statement follows from similar logic to the proof of (A), assuming 
that E[|Y | 4 ] < . Observe that
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(29) P(
0
)2 = E exp( TZ )

1 + exp( TZ )
(Y 1)

exp( TZ )
1 + exp( TZ )

(Y 1)
2

.

Consider the first outer term obtained by squaring the inside:

(30) E exp( TZ )
1 + exp( TZ )

(Y 1)
2

(31) = E exp( TZ )
1 + exp( TZ )

2

Y 2 2 1E
exp( TZ )

1 + exp( TZ )

2

Y + 1
2E exp( TZ )

1 + exp( TZ )

2

(32) E exp( TZ )
1 + exp( TZ )

2

Y 2 2 1E
exp( TZ )

1 + exp( TZ )

2

Y + 1
2E exp( TZ )

1 + exp( TZ )

2

,

where convergence occurs by application of the continuous mapping theo-
rem and uniform integrability (again, assuming that the fourth moment of 
Y is finite) to the fact that ( , 1) ( , 1). Since this is just the second outer 
term obtained by squaring the inside, it suffices to show that the inner term 
converges to twice it. Observe that

(33) E exp( TZ )
1 + exp( TZ )

(Y 1)
exp( TZ )

1 + exp( TZ )
(Y 1)

(34) = E exp( TZ )
1 + exp( TZ )

exp( TZ )
1 + exp( TZ )

{Y 2
1Y 1Y + 1 1} .

Distributing and taking each term in turn, we have, by repeated application 
of the continuous mapping theorem,

(35) E
exp( TZ )

1 + exp( TZ )
exp( TZ )

1 + exp( TZ )
Y 2 E exp( TZ )

1 + exp( TZ )

2

Y 2

(36) 1E
exp( TZ )

1 + exp( TZ )
exp( TZ )

1 + exp( TZ )
Y 1E

exp( TZ )
1 + exp( TZ )

2

Y

(37) 1E
exp( TZ )

1 + exp( TZ )
exp( TZ )

1 + exp( TZ )
Y 1E

exp( TZ )
1 + exp( TZ )

2

Y

(38) 1 1E
exp( TZ )

1 + exp( TZ )
exp( TZ )

1 + exp( TZ ) 1
2E exp( TZ )

1 + exp( TZ )

2

.

Combining terms completes the proof.

(D) P ||
0
||2 <  and ( ) is differentiable at 0 with nonsingular derivative 

matrix V
0
. Proof. The first part holds for ψ1 and ψ0 if  Y has finite second 

moment. To verify the second part, observe that

(39) 1 =
exp( T z)

(1 + exp( T z))2
y 1( )z,
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(40) 
1

1 =
exp( T z)

1 + exp( T z)
.

These continuous partial derivatives are uniformly bounded within a neigh-
borhood of θ0:

(41) 1 ( y + 1 + ) z ,

(42) 
1

1 1.

Moreover, these upper bounds are integrable if  we assume that E Y[ ] < , 
E Z[ ] < , and Z and Y have finite variances. Thus, the Leibniz integral 
rule (applying the dominated convergence theorem and mean value theo-
rem) implies that

(43) E[ 1] | = 0
= E 1 | = 0

= E exp( TZ )
(1 + exp( TZ ))2

(Y 1)Z ,

(44) 
1

E[ 1] | = 0
= E

1
1 | = 0

= E exp( TZ )
1 + exp( TZ )

.

A similar argument holds for the partial derivatives of  ψ0. Notably, one 
regularity condition for the derivative matrix to be nonsingular is that the 
expected value of the race probabilities must be bounded away from 0 and 1.

(E) n (ˆ
n) = op(n

1/2 ) and n(ˆ
n) = op(n

1/2). 
Proof. This follows for the last two coordinates of n(ˆ

n) because ˆ1n and 
ˆ

0n are exact zeros of the estimating equation. The same is true of the last 
two coordinates of n(ˆ

n).

C.2 Extending the Z- Estimator Framework to Other Models

In this section, we briefly describe how the linear disparity estimator 
that Elzayn et al. (2025) consider might fit into the Z- estimator framework 
used to prove asymptotic normality of the dual- bootstrap in section C.1 
of appendix C. The linear disparity estimator ˆ l is given by the estimated 
slope coefficient in the linear regression of Y on the estimated probability 
Pr(A = 1| Z ) plus an intercept term.

We can formulate ˆ l as a Z- estimator. Specifically, let

(45) (z,a, y)
(z,a, y)

l(z,a, y)

z a
exp( T z)

1 + exp( T z)

exp( T z)
1 + exp( T z)

y
exp( T z)

1 + exp( T z) l
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and assume that [ l ]T p where Θ is open and p <  is fixed. 
Then, defining the map ( ) P , we can show that 0 [ l ]T  
satisfies ( 0) = 0, where δl is the true disparity. If  the same five conditions 
discussed in appendix C also hold here, then the dual- bootstrap is asymp-
totically normal for the linear disparity estimator as well. We leave verifica-
tion of these conditions to future work.
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