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Supplementary Notes

Image data. We describe our raw data sources in more detail here. The first data source is
the National Agriculture Imagery Program (NAIP) (https://www.fsa.usda.gov/programs-and-
services/aerial-photography/imagery-programs/naip-imagery/). NAIP is administered by
the U.S. Department of Agriculture’s Farm Service Agency. It acquires aerial imagery annually
during the agricultural growing season on a three-year cycle staggered across states. Images are
orthorectified and disseminated publicly. In North Carolina, images are available at up to a 2 meter
per pixel resolution for 2004 and 2005. In 2006, 2008, 2009-10, 2012, 2014, and 2016, images are
available at up to a 1 meter per pixel resolution. We access the 2014-16 NAIP imagery through
Descartes Labs, a geospatial analytics company that provides an API interface for satellite imagery
(http://www.descarteslabs.com/). Of particular use is that Descartes overlays geographic meta-
data, such as state, county, and UTM grid. For our longitudinal analysis, we access NAIP imagery
using Google Earth Engine, which provides more years of historical NAIP imagery (https://
earthengine.google.com/datasets/).

Image Weighting. We over-sampled images from three categories in the hand validation process
— images containing locations that EIGs tagged as CAFOs, their neighbouring images, and images
matching a Google Places API search for common false positive categories. We did this to maximise
the information in our training set given limited tagging resources. As a 25% random sample of the
hand-validated images, the test set necessarily had a lower ratio of non-CAFO images to CAFO
images than in the population of images across the state. Based on the number of images containing
an EIG location, the expected class imbalance in the population of images was approximately 269
control images for every 1 CAFO image, compared to approximately 4 control images for every
CAFO image in the test set.

A more extreme class imbalance would alter the expected precision, as even a very low false
positive rate can correspond to a large number of false positives when applied to a large number
of negative examples. However, precision and sensitivity on the statewide distribution of images
may not apply to the primary use case for the model. If the use case is to detect CAFOs that
may have been missed after a manual enumeration, then the “natural distribution” of all possible
images in North Carolina may be inappropriate. In that setting, regulators and interest groups
may opt to manually inspect facilities with high predicted probabilities of being CAFOs that were
missed by the manual enumeration. To conserve resources, they might prioritise images with high
probabilities and continue inspecting until the signal-to-noise ratio is too low.

If the model is intended as a complete substitute for manual enumeration, the natural distri-
bution may consist of all images in a state. Here, sensitivity and precision will be fundamentally
affected by the baseline rate of CAFOs. To provide a sense of this, we develop a weighting protocol
to weight images in the test set to match the population distribution from which it was sampled
(all images in North Carolina excluding landscape images, see Supplementary Figure 4 for the score
distribution of excluded images). Supplementary Table [3| shows the distribution of images in the
population and the test sample for each model. The sample weight for each image category was
calculated as SEE&:%, so that sum of the weights added up to the total number of images
in the population. We confirmed the representativeness of the weighted sample by comparing the
weighted average model scores in the sample to the unweighted average scores in the population.
The unweighted average swine and poultry scores in the population were 0.0135 and 0.0236 re-
spectively, while the sample weighted averages were 0.0134 (weighted SE = 0.0009) and 0.0225
(weighted SE = 0.0010), respectively.

The downside to the population weighting approach is that, because the sample size is small
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relative to the population size, sampling variability may cause feature distortion. Each ordinary
control image in the sample, for example, is weighted up to represent nearly 400 such images in the
population. The weighting approach also puts more weight on occluded CAFO images, since by
definition there are more CAFO neighbour images than CAFO images in the statewide distribution,
and neighbour images are more likely to depict only edges of CAFOs. It is not possible to correct
for this by calculating weights after dropping occluded images, as occlusion was not known at the
time of image sampling. The weighted figures should therefore be interpreted only directionally.

Supplementary Figure[8|shows that the area under the ROC curve (AUC) remains high for both
the test set (unweighted) and statewide (weighted) distribution of images. The weighted AUC was
0.94 for the poultry model and 0.99 for the swine model, compared to unweighted results of 0.97
and 0.99, respectively. As expected, the precision-recall curve is most heavily influenced by the
increase in class imbalance [I]. Average precision drops to 50% for the poultry model and 67% for
the swine model. However, it of course matters greatly what the baseline is. The resource savings
curve shown in Supplementary Figure [9] suggests that the model can nonetheless aid substantially
compared to reviewing every image in the state. Reaching 95% sensitivity requires tagging fewer
than 10% of images compared to the baseline, which remains a substantial saving of resources. In
addition, the facility consolidation algorithm reduces the number of returned results by nearly half
compared to raw image results, further improving efficient use of manual resources by reducing the
number of items to review.

Supplementary Methods

Oversampling of difficult control images. We randomly sampled high-scoring false positive
images from early rounds of model training and categorised them according to Google’s place
categories (see https://developers.google.com/places/web-service/supported_types for a
complete taxonomy.). We obtained the following list of common false positive categories: store,
campground, airport, RV park, lodging, school, church, park, parking, shopping mall, roofing
contractor, supermarket, car dealer, cemetery, department store, and restaurant. Because 50,000
metres is the maximum search radius for the Google Places API, we then randomly seeded 5 point
locations at least 50,000 metres apart in each county and downloaded all images returned in a
Google Places API search for the above-listed categories. These images were added to subsequent
training rounds as control images. We note that this makes the classification task on the test
sample more difficult than in the natural setting.

Spatial algorithm for facility detection. We designed the following algorithm to consolidate
image-level predictions into unique facility locations.
1. Compute the class activation map for each pixel position (z,y) as M (z,y) = 232418 wgy fe(x,y),
where fy(x,y) is the feature map in the global average pooling layer at pixel position (x,y)
and w, is the weight for the CAFO class corresponding to feature g.

2. Identify activated pixel positions A(x,y) where M (x,y) > 0.5 max{M (z,y)}.

3. Using a standard k-means implementation, find & possible clusters of pixel activations A(x,y)
that are at least 150m apart, with a maximum of k = 5, and record their centroids C(z,y).

4. For each centroid C(z,y) found in step 3:
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(a) Centre image on position Cy(z,y) within the UTM grid and crop the image at 299x299
pixels.

(b) Repeat steps 1-3 on centred image.

(c) For each cluster of activated pixels found in step 3 representing an object of interest,
draw a polygon around the outer rim of the activated pixels belonging to that object
cluster.

(d) Record the centroid of each object cluster in UTM coordinates.

(e) Record the area of each object cluster using the shoelace algorithm, A = % | Z:»L;ll XY+
X, Y1 — 2?2_11 Xi+1Y; — X1V, |, where X is a vector of x coordinates for the object clus-

ter, and Y is the corresponding vector of y coordinates. Convert metres to feet in order
to obtain square footage.

5. Re-score all re-centred images to obtain new swine and poultry image predictions. Discard
images no longer classified as poultry CAFOs.

6. Within each UTM zone, compute the Euclidean distance between the UTM coordinates of
all CAFO objects. Combine CAFO objects that are within 250 metres of each other.

7. Record the facility coordinates as the average of the object centroids. Record the maximum
square footage across combined objects as the square footage estimate for the facility.

8. Repeat 6-7 until the minimum distance between all consolidated CAFO objects is 250 metres.

Facility validation. We hand validated each predicted facility location across the state to de-
termine whether it truly identified a poultry CAFO. For the subset of facilities in Duplin and
Cumberland counties, we performed a more detailed hand validation in order to obtain ground
truth size estimates for each facility. For each true positive predicted poultry facility, we counted
the number of barns visible in the satellite image as ground truth for the facility size. In this pro-
cess, we also manually verified the 250 meter threshold that we used to define the overlap between
the EIG facility list and our modelled list across the state. We first matched each model-identified
facility to the nearest EIG poultry location. We then plotted EIG poultry locations side-by-side
with the modelled locations on an interactive Google map to determine whether the closest location
was indeed the same facility.

Supplementary Figure shows the distribution of distances between the EIG location and
the modelled location for facilities manually confirmed to be the same location in the modelled
list and the EIG list. Only two out of 187 facilities were located more than 250 metres from
their EIG location, yet determined to be the same facility by manual verification. This confirmed
the appropriateness of the 250 meter threshold, which matches the definition that the algorithm
used to split facilities. Supplementary Figure [12]illustrates edge cases that we found during manual
inspection that would introduce a small amount of error into automated matching between EIG and
the modelled list. In a few cases, the EIG definition of a facility conflicted with the model’s definition
of separation by 250 metres, such that the model would find two facilities where EIGs would only
find one, or vice versa. For swine facilities, this exercise would likely increase in complexity because
permit addresses can be located away from the actual CAFO site. Fortunately, EIG satellite-based
tagging for poultry was largely consistent with our model’s identification of facilities.



Examples of false positives. Supplementary Figure provides examples of false positive
images. The top left panel depicts a swine CAFO whose lagoon is washed out in the image, making
it appear closer to a poultry CAFO. The top right panel depicts the warehouse of a flooring
manufacturer. Interestingly, this is an example that the EIG manual review classified as a poultry
CAFO, showing that manual review does not always represent ground truth. The bottom left panel
depicts an airplane hangar, and the bottom right panel depicts feed storage facilities.

We note that because even the human eye may not be able to positively distinguish these
facilities from CAFOs that higher-resolution imagery will be particularly promising for reducing
this source of noise.

Supplementary Discussion

Ecological Impact. The left panel of Supplementary Figure displays a CAFO that is sur-
rounded on three sides by the Old Millpond tributary, with potential “land application” areas
(where manure is applied) abutting the tributary. The right panel of Supplementary Figure
displays abandoned facilities detected by our model, with substantial waste surrounding the once-
operational CAFO.

Supplementary Figure provides an additional example of the vivid ecological impacts of
defunct CAFO facilities detected by the model. The poultry facilities open around 2008, with
little evidence pointing to a liquid manure storage system. Recall that the use of liquid vs. dry
manure storage systems is a critical distinction, with the latter largely exempted from permitting
requirements in North Carolina, as they arguably pose greater risk discharge into the water system.
Over time, operators appear to build more pit storage capacity, with the ones added by 2013
directly abutting the Upper Little River. As these pits are used, they appear to not be maintained,
exhibiting algae growth and signs of non-maintenance. By 2013, at least part of the facility is
defunct, with a roof collapsed.

Environmental justice comparison between poultry and swine sites. One of the most
contentious questions about CAFOs involves implications for “environmental justice.” In 2014,
environmental interest groups filed a formal complaint with EPA alleging that North Carolina’s
swine permitting process discriminated against minorities in violation of the Civil Rights Act. The
settlement arising out of that process requires the county to develop an “[environmental justice]
geographical information tool” by 2019. We here illustrate how our methods — which may be
particularly useful in the case of largely unpermitted poultry facilities — can provide the geographic
distribution of facilities that is up-to-date within three years (the cycle length of NAIP updates).
We merge 2010 census block demographic information to examine the demographic correlates of
CAFO siting. Supplementary Figure plots densities for census blocks with and without poultry
CAFOs in red and gray, respectively, for educational attainment, income, and race. The presence
of poultry CAFOs is defined by the true positive facilities returned by the model at a threshold of
0.5. We observe that CAFOs are disproportionately sited in communities with lower educational
attainment and at the lower income range. We observe that while both poultry and swine CAFO
presence are similarly associated with lower proportions of college graduates and lower household
incomes, the presence of swine CAFOs is more strongly associated with higher proportions of non-
white residents in accordance with previous work [2]. These figures show that while both swine
and poultry CAFO siting decisions have environmental justice dimensions, the racial dimension
appears distinct.
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Supplementary Figure 1: Tagging tool for image validation. Screen short of web app for
tagging images, developed using a PostgreSQL database for image meta-information and R’s Shiny
package. Research assistants were instructed to examine the NAIP tile and navigate to the Google
Maps or Google Earth for historical imagery. Upon examination of features, they coded (a) whether
the image was of a CAFO (CAFO, not CAFO, unsure), (b) the animal type (swine, cattle, poultry,
other, unsure), (c) components observed (facility, lagoon, feedlot), (d) proportion of the image that
is comprised of the CAFO (very little of the image < 10%, some of the image 10-25%, much of the
image 25-50%, majority of the image 50-75%, almost all of the image > 75%), and (e) proportion of
the CAFO that is in the image (some of the CAFO <33%, much of the CAFO 33-67%, majority of
the CAFO >67%). To assist taggers with the image proportion thresholds, the app superimposed
a 2x2 square grid on top of the image.



Supplementary Figure 2: CAFO image proportions. Examples of poultry and swine CAFO
images at each image proportion category determined by the research assistants using the tagging
tool in Supplementary Figure



Supplementary Figure 3: Low propensity CAFO images. Representative examples of con-
trol images excluded from hand validation and from subsequent model training, validation, and
test sets. The prototype model used to exclude images was based on permit locations for swine
CAFOs, as these are required to have permits in North Carolina, increasing the reliability of the
training data locations. We hand validated images at all swine permit locations in Duplin County,
a high-swine-producing jurisdiction. For control images, we took a random 10% sample of images
in the county and hand-validated that they did not include any type of CAFO. We trained a CNN
on the Duplin images and obtained 98% accuracy when testing on completely unseen images from
Sampson County, a neighbouring jurisdiction with a similarly high volume of swine permits. We
use a CAFO probability threshold below 0.007 to exclude low propensity images from subsequent
hand validation based on manual inspection of a random sample of images.
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Supplementary Figure 4: Score distribution of excluded images. Poultry (left) and swine
(right) score distributions from the final models for images excluded from hand validation with
the 0.007 threshold from the prototype model. The excluded images (about 20% of the 1,684,879
images in North Carolina) also had scores concentrated below 0.01 in the final swine and poultry

models.
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Supplementary Figure 5: Model accuracy comparison. Proportion of images correctly
classified (accuracy) for control images, swine images, and poultry images at score thresholds for
CAFOs varying from 0 to 1, using two modelling approaches — a single model that generates
probability scores for the swine and poultry classes at once, or two separate models that generate
scores for the swine and poultry classes, respectively, as reported in the paper. While the two
approaches produce similar accuracy for control images, the separate model approach was more
successful at distinguishing between swine and poultry images.

11



Triangular policy with exponential decay

0.05 A

0.04 -

©

o

w
1

o

o

N
1

Learning rate

0.01 4

0.00 +

0 1000 2000 3000 4000 5000 6000 7000
Training steps

Supplementary Figure 6: Triangular learning rate policy. Visual depiction of the triangular
learning rate policy algorithm using a minimum bound of 0.0002, a maximum bound of 0.05, and
a cycle length of 1250 training steps. The learning rate « of the CNN controls the rate at which
parameters of the loss function are updated in gradient descent. The triangular learning rate
policy linearly cycles through learning rates between minimum and maximum bounds within a set
number of training steps, with the maximum bound declining by an exponential factor at the end
of each cycle. The algorithm updates the learning rate « at each training step ¢ with the procedure
described in [3], using a step size of 2 times the epoch size. We arrived at the maximum learning
rate bounds for each model by calculating average classification error on the validation set with a
range of learning rates, and determining the minimum learning rate where the first difference of
the average classification error ceased to decrease. This occurred at o« = 0.05 for the swine model
and o = 0.04 for the poultry model. We obtained the minimum bound for the learning rate by
finding the minimum learning rate at which the average classification error decreased by at least
half a percent. This occurred at o = 0.0002 for the swine model and o = 0.0003 for the poultry
model.
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Supplementary Figure 7: F1 score curves. Harmonic mean of precision and sensitivity (re-
call), or “F1 Scores,” at each classification threshold from 0 to 1. The F1 score is calculated as

) ;;i‘i;fgf:ﬁ;;;f&% at each threshold. As a visual aide, the dotted horizontal blue lines represent
the F1 values at a threshold of 0.5, while the dotted blue vertical line demarcates the 0.5 threshold.
The solid black series represents the unweighted test image set presented in the paper, while the
dashed red series represents the weighted test image set described in the Supplemental Notes. The
latter attempts to capture the more extreme class imbalance in the population of North Carolina
images. The threshold of 0.5 represents a stabilisation point of the harmonic mean for both the

weighted and unweighted test samples.
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Supplementary Figure 8: Accuracy on weighted images. Population-weighted (red) and
unweighted (black) receiver operating characteristic (ROC) curve (left) and precision-recall (PR)
curve for the poultry (top) and swine (bottom) models on the test set of images. The weighted
curves reflect the expected class distribution of images in North Carolina (approx. 269 control
images for every 1 CAFO image), while the unweighted curves reflect the distribution of classes in
the test set as originally sampled (approx. 4 control images for every 1 CAFO image). The grey
lines represent the performance of a random classifier, or a model whose scores have no relationship
to ground truth beyond chance (dashed for weighted images, solid for unweighted).
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Supplementary Figure 9: Resource savings curve. Estimated manual resource savings at
varying levels of sensitivity for the poultry model based on the weighted precision and recall curves
presented in Supplementary Figure [8 The proportion of manual resources required is calculated
as the number of predicted poultry images returned by the model divided by the total number of
images in North Carolina. We estimate that 95% of poultry facilities could be detected using fewer
than 10% of manual resources.
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Supplementary Figure 10: Comparison of image-level predictions and facility localisa-
tion. Poultry CAFO split across two scored images in UTM grid system (top), and reconciliation
into a single facility using class activation maps and k-means clustering (bottom). The model scores
do not reflect the proportion of the facility that is within the image, leading to double counting of
facilities when summing scores. With the localisation within the image provided by class activa-
tion maps, the algorithm is able to infer that these two images have activated on a single facility.
Because the edges of the facility and its immediately surrounding area were most likely to activate,
while some areas of the facility interior often did not activate, we calculate the CAFO object area
as the area within the activation boundary.
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Supplementary Figure 11: Distance between modelled and manual locations. Distribu-
tion of distance in metres from modelled point location to the corresponding EIG facility location in
Duplin and Cumberland, for locations manually validated to be the same facility in both datasets.
The 250 meter threshold correctly matched modelled locations to EIG locations in 99% of cases.
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Supplementary Figure 12: Facility definition conflicts. Illustration of rare conflicts between
EIG (blue) and modelled (red) definitions of a facility. On the left, the model counted both sets
of buildings as belonging to the same facility, while EIG counted them as separate facilities. On
the right, the opposite situation occurred. For the most part, however, the two methods of tagging
agreed. Map data: Google, DigitalGlobe (2019).
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Supplementary Figure 13: False positive examples due to poor image resolution. From
top moving clockwise, (a) a swine CAFO whose lagoon is washed out in the image; (b) the warehouse
of a flooring manufacturer, which the EIG process manually classified as a CAFO; (c¢) an airplane
hangar; (d) feed storage facilities.
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0old Millpond Tributary

Supplementary Figure 14: Ecological impact. Two examples of the potential ecological
impact of poultry CAFOs detected by the model: proximity to water (right) and abandonment
(right). Map data: Google, DigitalGlobe (2019).
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Supplementary Figure 15: Abandonment. Ecological impact of CAFO abandonment for a
poultry facility with liquid manure storage near a river. From left to right, the liquid manure
storage system is developed between 2008 and 2013, but the facility is abandoned by 2018 without
cleanup of the system. Map data: Google, DigitalGlobe (2019).
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Supplementary Figure 16: Environmental justice. Comparison of demographics in census
blocks with CAFOs (pink) and without CAFOs (grey), limiting to poultry facilities (left) or swine
facilities (right) only. Both poultry and swine CAFOs tend to be in areas with lower proportions of
college graduates and lower household income, but swine CAFOs are more prevalent in areas with
higher proportions of non-white residents.
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Supplementary Tables

Oversampling  Sensitivity (Recall) Precision

Naive 0.94 0.89
ADASYN 0.93 0.88
SMOTE 0.93 0.88
Undersampling

Naive 0.95 0.77
Centroids 0.94 0.76
Near miss 0.92 0.86

No balancing
Original 0.92 0.89

Note: Precision is calculated using the original
ratio of control to CAFO images (7:1).

Supplementary Table 1: Class balancing techniques. Comparison of class balancing tech-
niques from a prototype swine model. We compared six different types of class balancing meth-
ods: oversampling the minority class using naive random sampling, Synthetic Minority Oversam-
pling Technique (SMOTE), and Adaptive Synthetic (ADASYN) sampling, and undersampling
the majority class using naive random sampling, cluster centroid, and near miss sampling (for
the specific implementation of these techniques, see the imbalanced-learn package documentation
at http://contrib.scikit-learn.org/imbalanced-learn/stable/introduction.html.) We
found that naive random oversampling of the CAFO class improved sensitivity by 2% while main-
taining similar precision to the unbalanced model. Undersampling improved sensitivity but signif-
icantly reduced precision.
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Criteria Swine

Poultry

Min. prop. of image 25%
taken up by CAFO

10%

Min. prop. of CAFO Any

visible in image

If image prop. under 25%,
over 67%, otherwise any

Manure storage Visible, liquid Not visible, dry

Supplementary Table 2: CAFO image training criteria. Criteria for CAFO image inclusion
into the training sample. The criteria reflect that the main visual distinction between poultry and

swine CAFOs is the presence of a lagoon.
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Swine Test Set

Poultry Test Set

Category Pop. n  Sample n Image weight Pop. n Sample n Image weight
CAFO images 1756 414 4.24 3228 821 3.93

CAFO neighbour images 18146 559 32.46 28974 378 76.65

Google Places images 2894 841 3.44 2894 841 3.44

Other control images 1323063 3456 382.83 1310763 3664 357.74

Supplementary Table 3: Image weight distribution. Distribution of images in the population
and the test set for each model. The sample weight for each image category was calculated as

Pop. Image n
Sample Image n’
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so that sum of the weights added up to the total number of images in the population.
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