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As US agriculture has grown and industrialized, livestock pro-
duction has shifted to operations that exclusively raise large 
numbers of animals in confinement1. These CAFOs are esti-

mated to produce more than 40% of US livestock2, with large facili-
ties each raising over 2,500 pigs or 125,000 broiler chickens3. Such 
specialization not only increases productivity, but also raises impor-
tant questions about environmental impact. For recent reviews on 
the evidence of health and environmental effects of CAFOs, see 
previously published studies4,5. As the Environmental Protection 
Agency (EPA) noted, agriculture is “the leading contributor of pol-
lutants to identified water quality impairments in the Nation’s riv-
ers and streams, lakes, ponds, and reservoirs”6. Livestock generate 
13 to 25 times the amount of manure that humans produce; how-
ever, animal waste, in contrast to human waste, is not required to be 
treated7. CAFOs generate about 335 million tons of waste per year, 
with excess nutrients posing considerable ecological and human 
health risks8,9.

Yet litigation over the past few decades has hindered regulatory 
efforts and environmental monitoring of CAFOs. Under the US 
Clean Water Act, CAFOs that ‘discharge’ pollutants into national 
waters are required to apply for and abide by the terms of a fed-
eral permit, known as the National Pollutant Discharge Elimination 
System (NPDES). NPDES permits require discharge reporting 
and violations of permit effluent limitations can trigger substan-
tial fines. Federal courts have rejected the EPA’s proposals to cover 
CAFOs that had the potential to discharge, holding that the EPA 
could only require permits for CAFOs that actually discharge pol-
lutants (see Waterkeeper v. EPA10 and Nat’l Pork Producers Council 
v. EPA11). Under-permitting—the failure to apply for a permit 
when required—is known to be a serious issue, as the EPA esti-
mates that nearly 60% of CAFOs do not hold permits12. In 2008, 
the Government Accountability Office lamented the lack of basic 
information about CAFOs: “no federal agency collects accurate and 
consistent data on the number, size, and location of CAFOs”13. In 
2011, the EPA proposed running a survey to collect such informa-
tion, including global positioning system (GPS) location and size. 
The EPA sought comments on existing data sources, including the 

possibility of “augment[ing] information from satellite images and 
aerial photography location information to obtain a comprehen-
sive, consistent national inventory of CAFOs”[12]. The proposal 
was withdrawn in 2012, with the EPA highlighting the possibility 
of obtaining such information from existing data sources14. In 2016, 
after the EPA requested the return of data it had released, a fed-
eral court concluded that the EPA could not release available GPS 
coordinates as a dataset, even in instances where individual loca-
tions were publicly available (American Farm Bureau Fed. v. EPA15). 
Owing to these developments, scholars have criticized the lack of 
basic information about CAFOs16–18.

In response to the lack of information about CAFOs, a wide 
range of environmental and public interest groups—including Pew 
Charitable Trusts19,20, the National Resources Defense Council20, 
the Environmental Working Group21, Food and Water Watch22, 
Waterkeeper Alliance21, the Sierra Club23 and EarthJustice20,24—has 
engaged in extensive and resource-intensive efforts to improve 
monitoring of CAFOs. Because location information is critical 
for monitoring discharges and other forms of environmental non-
compliance, numerous groups have attempted to collect more-
comprehensive information about CAFO coordinates. Two groups, 
for instance, hired contractors to manually scan through satellite 
images in select states to identify CAFOs21, including over three 
years of data for each state (S. Rundquist, personal communication). 
In other instances, contractors physically identified facilities by 
plane or car (J. Quinlivan, personal communication). After environ-
mental interest groups (EIGs) petitioned to remove Iowa’s author-
ity to permit CAFOs, the EPA and Iowa’s Department of Natural 
Resources entered into an agreement requiring Iowa to conduct a 
comprehensive census of CAFOs. To comply with the agreement, 
Iowa employed individuals to manually label satellite images, a pro-
cess that took roughly 3.5 years to complete25. Although valuable, 
such efforts are resource-intensive and do not easily scale over time 
and geography.

We contribute to this important issue of public health and envi-
ronmental law, science and sustainability by demonstrating how 
recent advances in image-learning, or ‘deep-learning’, techniques 
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can considerably lower the cost of environmental monitoring and 
regulatory enforcement. Applications of deep learning to agricul-
tural data have been reviewed previously26; however, the previ-
ous study does not include a case for environmental regulation of 
CAFOs. Although locating facilities alone does not measure dis-
charges, it is a necessary, and time-consuming, step for any form 
of monitoring. We construct a dataset of pig and poultry CAFOs in 
North Carolina, by manually validating the data from a manual cen-
sus conducted by two leading EIGs against publicly available, high-
resolution satellite images from the US Department of Agriculture’s 
National Agricultural Imagery Program (NAIP). Acquired annually 
during the growing season on a three-year cycle staggered across 
states, these images are easily downloadable through an online 
service at resolutions up to 1 m per pixel (Supplementary Notes). 
We downloaded all imagery for the state of North Carolina in the 
format of 299 × 299 image tiles at a resolution of 1 m per pixel and 
manually tagged 24,440 images. We trained two convolutional 
neural networks (CNNs) to detect the presence of pig and poultry 
CAFOs individually and demonstrate high-classification accuracy 
on the 25% of image tiles reserved for testing.

Although a necessary first step, determining whether an image 
tile contains a CAFO (henceforth referred to as ‘image-level’ pre-
dictions) is less useful for the regulatory context, as a single CAFO 
facility can be split across multiple image tiles. To consolidate image 
scores into actual facility locations for regulators (henceforth referred 
to as ‘facility-level’ predictions), we focused on poultry operations, 
which can contribute as much nutrient run-off to watersheds as pig 

operations27,28, but are largely unpermitted in North Carolina and are 
therefore substantially harder to detect. We developed an algorithm 
to transform scores for image tiles into latitude and longitude point 
locations for individual poultry facilities. We show with manually 
validated results that we can detect 15% more poultry CAFOs than 
previously known. We further illustrate the utility of our approach 
by showing how it scales geographically and longitudinally and pro-
vides legally important estimates of facility size and other compliance 
priorities. Given the global growth in intensive livestock farming29, 
our methods have potential for other jurisdictions.

Results
First, we demonstrate the accuracy of the model at the image level 
on the 25% of manually validated images that was reserved for test-

Table 1 | Image accuracy statistics 

Area under the curve CAFO Control

Image ROC PR

Poultry All images 0.972 0.917 833 4,871

Non-occluded 0.998 0.980 262 4,871

Pigs All images 0.986 0.923 399 4,871

Non-occluded 1.000 0.991 124 4,871

Statistics are presented for all test images (all images) and test images without occluded CAFO 
images (non-occluded). PR, precision-recall curve; ROC, receiver-operating characteristic curve.
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Fig. 1 | Examples of image occlusion. a–d, Examples of occluded (a,c) and non-occluded (b,d) images of poultry (a,b) and pig (c,d) CAFOs.
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ing. Image tiles present a convenient unit of analysis but are limited 
in their ability to depict entire facilities due to the fact that facili-
ties can span multiple images. Because tiles at times occluded sub-
stantial parts of the CAFO, we report accuracy metrics using (1) all 
CAFO and control images and (2) non-occluded CAFO images and 
all control images. We define ‘non-occluded’ as pig CAFO images 
with at least 25% of the image taken up by the CAFO facility or 
lagoon and, because poultry CAFOs tend to lack lagoons, poultry 
images with at least 10% of the image taken up by the CAFO facil-
ity (Fig. 1). Second, we report results from our facility identifica-
tion, which addresses occlusion (when the facility is only partially 
in the image) by recentring images after an initial round of scoring 
and assigning latitude and longitude locations for poultry facilities 
within the images.

Image level. Because the optimal classification threshold (the prob-
ability level at which to classify an image as containing a CAFO) will 
vary on the basis of the end-user’s tolerance for false-positive and 
false-negative images, we assessed performance at all classification 
thresholds between 0 and 1 for a holistic view of model performance. 
We first generated three standard classification accuracy metrics:
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Sensitivity
No correct CAFO predictions

No CAFO images

Specificity
No correct control predictions

No control images

Precision
No correct CAFO predictions

No all CAFO predictions

where a CAFO prediction is correct if a CAFO image receives a 
CAFO probability score above a certain threshold, a control pre-
diction is correct if a control image receives a CAFO score below 

that same threshold. Sensitivity (also known as recall) captures the 
proportion of correct predictions among CAFO images; specific-
ity captures the proportion of correct predictions among control 
images; and precision, a measure of search relevance, captures the 
proportion of CAFO predictions that are truly CAFOs. The sum-
mary statistics that we present incorporate these metrics at all pos-
sible classification thresholds between 0 and 1.

With these metrics calculated at every classification threshold, 
we computed the area under the curve for the receiver-operating 
characteristic (ROC) curve, which plots specificity against sensi-
tivity at each threshold and the precision-recall curve, which plots 
precision against sensitivity at each threshold. The area under the 
ROC curve provides a sense of average sensitivity across all possible 
values of specificity, whereas the area under the precision-recall 
curve provides a sense of average precision at all possible values of 
sensitivity. We report both sets of statistics because the precision-
recall curve is recommended with class imbalance30. Relative to all 
of North Carolina, CAFOs are rare. On the basis of the EIG data, 
CAFO images constitute about 0.37% of the 1,684,879 images in 
North Carolina. Imbalance is more exaggerated statewide than 
in the test set owing to our attempt to manually validate as many 
CAFO images as possible. To provide a sense of performance on 
all images statewide, Supplementary Fig. 8 presents a weighted ver-
sion of these metrics, using the weighting procedure described in 
the Supplementary Notes. For all metrics, values close to 1 indicate 
higher accuracy.

Table 1 presents the area under the curve values for the pig and 
poultry models, and Fig. 2 plots the corresponding ROC and preci-
sion-recall curves for all images (solid) and images without occlu-
sion (dashed). Among all test images, the area under the curve for 
the poultry ROC curve is 0.97, which rises to over 0.99 for poul-
try and pig when excluding occluded CAFO images. We see com-
parable improvement in precision-recall curves when excluding 
occluded CAFO images. Table 1, however, shows that non-occluded 
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Fig. 2 | Classification performance. a–d, ROC curves (a,c) and precision-recall curves (b,d) for the poultry (a,b) and pig (c,d) models on the test set of 
images, split by whether the test sample included occluded CAFO images. The grey lines in each panel represent the performance of a random classifier 
predicting the presence of a poultry (a,b) or a pig (c,d) CAFO (dashed grey lines are associated with non-occluded images, solid grey lines with all images).
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CAFO images comprise only about 30% of all CAFO images, sug-
gesting that more work is needed to transform image predictions 
into a useful format.

Facility level. As a substantive matter, environmental groups and 
regulators are more concerned with the locations of individual 
facilities than with the images. As is evident from Table 1, image 
occlusion stemming from the tile system may hinder detection 
of facilities. Figure 3 shows that when lagoons are occluded, a 
pig CAFO may appear close to a poultry CAFO, because the tile 
obscured the liquid manure storage system that is prototypical of 
pig CAFOs.

We therefore developed an approach to consolidate image-level 
predictions into latitude and longitude coordinates of unique facili-
ties. We utilized ‘class activation maps,’ which depict which pixels 
activate the predicted class31. After classifying poultry CAFOs at the 
image level by taking the maximum score across the pig and poultry 
models, we used these activation maps to recentre the image on the 
CAFO. We then rescored the recentred images with both CNN mod-
els, and discarded any facilities for which the maximum score was 
no longer the poultry score or did not meet the poultry classification 
threshold. Finally, we clustered the activated pixels in the recentred 
image and represented the facility as a polygon shape, using the poly-
gon centre as the point location. The end result is a list of latitudes 

and longitudes for (predicted) poultry facilities. Figure 3 depicts this 
process for a CAFO initially classified as poultry due to occlusion, 
but that was (correctly) reclassified as pig after recentring revealed 
the manure lagoon (see Supplementary Methods for details).

To provide a sense of performance, we manually validated the 
point locations for 4,659 predicted poultry facilities using a score 
threshold of 0.5 for the initial image-level predictions. We chose this 
threshold for demonstration purposes because it maintained a high 
harmonic mean of sensitivity and precision in both the weighted and 
unweighted test image samples (Supplementary Fig. 7). In practice, 
however, researchers may use different classification thresholds to 
meet their tolerance for false-positive and false-negative images. We 
also matched each confirmed poultry facility location to the nearest 
EIG location to determine the overlap between our results and the 
manual census. We considered model-identified CAFO locations to 
be the same as EIG locations when they were within 250 m of each 
other. Supplementary Figure 11 shows that this distance threshold 
correctly matched EIG locations to modelled locations in 99% of 
cases in a validation sample.

Through our earlier manual-validation efforts, we discovered 
that roughly 1.4% of EIG facility locations did not locate an existing  
poultry CAFO in reference to our NAIP imagery. Adjusting for this  
source of noise, we found that 73% of our predicted poultry facil-
ity locations were truly poultry CAFOs (analogous to precision), 
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Poultry score: 0.97
Pig score: 0.94

Poultry score: 0.86
Pig score: 1.00

Fig. 3 | Illustration of class activation map algorithm for image-level classification. a, The algorithm first performs class activation mapping on the 
original image. b, Subsequently, the algorithm identifies the centroid of the activated clusters found by k-means clustering. c, The image is then recentred. 
d, Finally, the algorithm performs class activation mapping on the recentred image with both the pig and poultry models to identify the final class and size 
of the CAFO object. The poultry and pig scores in the top right corners of b and d indicate the predicted probability of the image containing a poultry or pig 
CAFO, respectively, obtained from the models.

Nature Sustainability | VOL 2 | APRIL 2019 | 298–306 | www.nature.com/natsustain 301

http://www.nature.com/natsustain


Articles NATUrE SUsTAInAbIlITy

whereas our predicted facility locations included 70% of EIG iden-
tified locations (analogous to sensitivity). It is worth noting that 
such precision is quite high given that CAFOs comprise only 0.4% 
of the raw image data. On average, modelled point locations were 
60 m from the manually coded location provided by EIGs, when the 
length of a conventional CAFO barn can easily exceed 100 m.

Our model results and validation supplement EIG data in impor-
tant ways. The validation efforts helped to identify difficult-to-clas-
sify facilities. Among the 1.4% of EIG locations that did not locate 
a poultry CAFO, for example, was a facility that visually appeared 
to be a CAFO, but was in fact a warehouse (Supplementary Fig. 13). 
Most importantly, although the model missed CAFOs that were 
manually detected by EIGs at a threshold of 0.5, it also detected an 
additional 589 CAFOs that EIGs were unable to detect. This is per-
haps because the timing of the NAIP imagery (2014–2016) did not 
line up with the timing of the EIG manual census (2013–2014) or 
because, even to the human eye, poultry facilities can appear similar 
to other objects, such as airplane hangars and greenhouses, in aerial 

imagery because they lack outdoor lagoons. The newly detected 
facility locations represent a 15% gain from the manual census. 
Similar to capture–recapture methods32, the model can help to iden-
tify facilities that may have been missed with the manual census of 
CAFOs.

One limitation to this facility-level analysis is that it is computa-
tionally intensive. That said, it is considerably less computationally 
demanding than image classification methods that use overlap-
ping strides to ensure that CAFOs are centred in at least one image. 
Consolidating images into facility locations additionally reduces the 
burden on manual reviewers: at a threshold of 0.5, consolidation 
into facility locations reduces the number of items for review by 
nearly half (from 8,165 images to 4,659 facility locations).

Discussion
Having demonstrated the accuracy of a deep-learning approach, 
we illustrate some potential benefits and applications and conclude 
with future directions.
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Fig. 4 | Heat map of manually identified and modelled poultry locations. a,b, The locations across North Carolina obtained by manual tagging efforts (a) 
and the fully automated machine-learning solution (b), including false-positive images. c, The 589 confirmed additional poultry facility locations.
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Compared to the existing manual census, our approach prom-
ises to save considerable resources. For instance, the Environmental 
Working Group employs individuals to manually scan across a 
territory of satellite images on Google Maps, averaging 1.5 h per 
1,000 km2. To classify the entire state of North Carolina by man-
ual tagging would require nearly 6 weeks of full-time work; to 
classify the entire United States would require over 7 years for a 
single imagery set. This manual census becomes infeasible as satel-
lite coverage expands, for example, when including daily captures 
of the full globe33. By contrast, the automated approach can score 
North Carolina in fewer than 2 days with a standard workstation. 
The model may also be used as a complement to pinpoint where 
resources to validate images should be deployed. On the basis of 
the precision-recall curves weighted at the expected state-level dis-
tribution of images (269 control images for every CAFO image), we 
estimate that one could capture 75% of poultry CAFOs using less 
than 2% of manual resources or 95% of poultry CAFOs using less 
than 10% of manual resources (Supplementary Fig. 9). The facility 
consolidation approach reduces the use of manual resources even 
further—one can capture 70% of manually tagged poultry CAFOs 
using 0.28% of manual resources, while identifying an additional 
15% of previously unknown facilities. Figure 4 provides a heat map 
of the distribution of poultry locations, comparing the manually 
identified locations with model-based locations. These maps show 
that our model is able to recover the geographical distribution of 
CAFOs extremely well.

Our approach also scales over time. This is important because the 
Government Accountability Office has expressly noted that the lack 
of consistent and reliable data has impeded the ability to understand 
changes in agricultural practices over time13. NAIP imagery data, 
however, were available at the same resolution in North Carolina 
from 2008 to 2016 (Supplementary Notes). Using these longitudi-
nal data, we examined whether the construction of large industrial 
feed mills was associated with growth in poultry CAFOs34. We used 
public materials to identify the construction of feed mills in North 
Carolina and focused on one constructed in 2011. We applied our 
model to a 80-km radius around the feed mill, because this radius 
has been described to be the threshold for transportation costs35, 
and manually tag historical NAIP images for validation. Figure 5 
plots the area around the feed mill along with the density of poultry 
CAFOs that opened after the feed mill was constructed. The model 

detected 93% of all poultry CAFOs in the area and was 97% accurate 
in determining which ones appeared after the feed mill had opened.

Our approach may also help to determine NPDES compli-
ance priorities. The class activation map can provide a meaning-
ful measure for size, which is a critical dimension under federal 
law. The EPA has lamented the lack of information on size, as 
decentralized enforcement has resulted in missing, outdated or 
biased data, impeding prioritization across jurisdictions. We esti-
mate the square footage of poultry CAFOs based on the activation 
maps (see Supplementary Methods for details). To assess the qual-
ity of estimates, we manually coded the number of barns for all 
model-detected facilities in Duplin and Cumberland counties. The 
Spearman rank correlation coefficient between the manually coded 
number of barns and the model size estimates is 0.46 (P < 0.001), 
showing that these estimates may be a meaningful way to enable 
environmental groups and regulators to prioritize resources.

In addition, our approach can facilitate the identification of facili-
ties that pose particular risk due to proximity to water sources or 
abandonment. Supplementary Figures 14 and 15 provide specific 
examples. Abandoned CAFO sites may be cross-referenced with 
expired permit data to determine which facilities have undergone the 
appropriate clean-up procedures. Facilities operating under a Clean 
Water Act permit are required to remove waste and facilities from 
the site upon closure. Without such clean-up, the abandonment of 
all sites, permitted or not, can have considerable ecological conse-
quences and should be prioritized for environmental compliance.

We conclude with some thoughts on future directions. First, 
although computer vision has been most rapidly adopted in the private 
sector, the public sector has been late to adopt artificial intelligence, 
creating a substantial ‘technology gap’36. Our case study suggests that 
smart compliance, rather than displacing conventional enforcement37, 
may free up the resources of nonprofit organizations and govern-
ment agencies to focus efforts on facilities that pose the greatest risk 
of environmental harm. Partnerships between groups with the tech-
nical capacity and regulators are crucial to bridging the technology 
gap. Second, the challenge that we faced when trying to reconcile the 
EIG and NAIP data illustrates the importance of replicability. When 
nonprofit organizations or governments conduct exhaustive man-
ual surveys, storing the underlying data (that is, image files or date 
stamps) should greatly facilitate the application of computer vision. 
Third, more work remains to be done to enable the efficient search 

a bManual Modelled

New CAFO density

Feed mill Feed mill

Fig. 5 | Longitudinal detection of CAFO growth. The density of poultry CAFO locations constructed after a feed mill opened in 2011 was quantified.  
a, Manually tagged density of CAFOs constructed after the feed mill opened. b, Modelled density.
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for, and detection and localization of, facilities. Last, although we 
demonstrated that our approach yields accurate predictions, predic-
tion errors are of course still expected. Given that regulation demands 
high accuracy, a more appropriate solution may be a hybrid one, in 
which humans can iteratively refine model predictions38.

We believe much work can be done to facilitate environmental 
monitoring, as satellite imagery data are available at continuously 
increasing resolution and frequency. One company, for instance, 
captures the globe’s landmass on a daily basis39 and another com-
pany captures images at 15 cm per pixel40. These improved data and 
the methods described herein may ultimately enable not only the 
identification of CAFOs, but also more genuine discharge measure-
ments of CAFOs. Such applications may be useful not only in the 
context of the United States, but also in many other countries that 
have seen rapid growth in industrial agriculture29.

Methods
Data. We started with two raw data sources. First, we obtained the most recent 
release of NAIP satellite images for North Carolina (2014–2016). We took 
advantage of the research platform from Descartes Labs, a geospatial analytics 
company, to download 299 × 299 image tiles, at 1 m per pixel, using the universal 
transverse mercator grid for North Carolina (Supplementary Notes). For the 
entire state, these raw NAIP data comprised 1,684,879 images (~32 gigabytes). 
Second, we obtained data from two environmental groups that contained point 
locations (latitude and longitude) of pig and poultry CAFOs from the manual 
census of North Carolina conducted between 2013 and 2014. The Environmental 
Working Group collected information on pigs and Waterkeeper Alliance collected 
information on poultry, which we call the EIG data. EIG point locations are based 
on permit data for pigs and a combination of ground monitoring and manual 
tagging of Google Earth satellite images for poultry. Owing to time differences in 
imagery data and imprecision in latitude and/or longitude (for example, referring 
to mailing address not agricultural facility), EIG point locations did not always 
resolve to a CAFO image in the NAIP data.

To resolve these differences in EIG and NAIP data for ground-truth data, we 
trained a team of student researchers to validate and tag NAIP images using a 
web application (Supplementary Fig. 1). For each image, coders were instructed 
to compare NAIP images against Google Maps and historical imagery on Google 
Earth where necessary, and to code animal type (pig, cattle, poultry or other) 
and facility features (building, manure storage type or feedlot). We validated our 
protocol for distinguishing CAFO types against the protocol independently derived 
by EIGs. Coders also indicated the proportion of the image depicting the CAFO 
and the proportion of the CAFO depicted in the image (see Supplementary Fig. 2 
for examples). During the initial training of research assistants, we double-coded 
all images to ensure inter-coder reliability. Subsequently, the team met weekly to 
review and resolve classification conflicts on a randomly sampled subset of images.

We assigned the team (1) all NAIP images with an EIG (suspected CAFO) 
point location, (2) all images neighbouring an EIG point location on the 
universal transverse mercator grid (to match topology), and (3) randomly 
sampled control images, which were suspected not to contain a CAFO from 
the EIG census. Owing to resource constraints and the sheer number of control 
images, we developed a prototype model (98% accuracy) to help us to focus 
our efforts on more difficult control images to classify. Using scores from this 
model, we excluded control images with very low probabilities (below 0.007) of 
containing a CAFO from manual validation. We arrived at this score threshold 
through manual inspection of a random sample of results. Supplementary Figure 
3 shows a representative set of excluded images, which tended to consist of 
trees and empty landscapes. The threshold excluded a total of 339,020 images 
out of 1,684,879 (about 20%) from eligibility to be sampled for manual 
validation. Supplementary Figure 4 confirms that these excluded images also 
had scores concentrated below 0.01 in the final poultry and pig models. We also 
oversampled difficult-to-classify images for manual validation by identifying 
Google’s place categories that were associated with false-positive images in 
prototype models (see Supplementary Methods for details).

In total, the research team validated 24,440 images, with 3,385 and 1,599 images 
substantially depicting poultry and pig CAFOs, respectively. Interrater reliability 
for classification decisions was high (96% agreement).

Image modelling. We leveraged recent advances in image processing that have 
rapidly improved classification performance by CNNs, often dubbed ‘deep 
learning’41,42. We applied transfer learning with Google’s Inception V3 in the 
TensorFlow framework43, which uses features learned on much larger image 
datasets, to retrain the final CNN layer for our classification problem44.

Our classification problem involved three classes: poultry CAFOs, pig CAFOs 
and no CAFOs (control). There are several approaches to this type of multi-class 
problem. One approach would be to develop a single CNN to issue scores for all 
three classes at once. Another approach would be to develop one CNN to classify 

poultry CAFOs and another to classify pig CAFOs, with classification based on the 
higher of the two scores. Supplementary Figure 5 shows that the separate model 
approach outperformed the single model approach when it came to distinguishing 
poultry from pig images. Accordingly, we trained two separate CNNs to obtain 
probability scores for pig and poultry CAFOs independently.

We applied techniques common to CNNs to reduce overfitting on our training 
dataset45,46. In particular, we switched the left–right orientation of the images at 
random intervals, and randomly permuted the saturation (colour intensity) and 
brightness (contrast) of the RGB channels in the images. We also applied dropout 
to the input layer of our neural network, for which input units are randomly 
dropped during training with fixed probability to pare down the network47. Our 
classification problem involves substantial class imbalance: manual EIG coding 
produced 3,969 poultry locations and 2,291 pig locations out of 1,684,879 images 
of the entire state. Such class imbalance has been shown to negatively impact 
classification performance48,49. Accordingly, we naively oversampled images of 
CAFOs to match the number of images without CAFOs in the training set to 
enhance learning on the minority (CAFO) class. Supplementary Table 1 shows  
that naive oversampling outperformed other class-balancing techniques on 
prototype models. In addition, we oversampled difficult control images for  
manual validation. We randomly sampled high-scoring false-positive images  
from early rounds of model training and categorized them according to  
Google’s place categories (see Supplementary Methods for details). These images 
were added to subsequent training rounds as control images. To optimize the 
learning rate (that is, the rate at which parameters of the loss function are  
updated in gradient descent), we used a triangular learning rate policy with an 
exponential decay parameter50. Supplementary Figure 6 provides a visualization  
of this procedure.

We randomly split our manually validated data into 60% for training, 15% 
for validation and 25% for testing. Because an image may only partially depict 
a CAFO (see Fig. 1 for examples of image occlusion), we experimented with 
limiting the CAFO images in the training set based on the fraction of the image 
depicting a CAFO and the fraction of the CAFO depicted in the image. Because 
pig CAFOs generally contain outdoor lagoons (manure storage pits), model 
performance improved when more of the image depicted the CAFO, increasing 
the chances that both facility and lagoon would be visible. Because poultry CAFOs 
tend to lack outdoor lagoons, more of the facility tended to fit within the image 
and performance improved when more of the CAFO was depicted in the image. 
Supplementary Table 2 describes the criteria that we used to limit CAFO images in 
the training set.

Facility detection. Because the image probability scores do not represent the 
proportion of a CAFO displayed in the image, image predictions do not provide 
the required facility locations (see the top panel of Supplementary Fig. 10 for 
an example). We required a localization approach to consolidate image-level 
predictions to a unique list of facilities with latitude and longitude point locations. 
The global average pooling layer of a CNN with Inception V3’s architecture can 
perform localization tasks through a technique called class activation mapping31. 
This technique computes the dot product of the final softmax weights for a 
particular class and the feature map at the final global average pooling layer of the 
network to obtain a spatial representation of features that have activated the class.

By identifying the areas of the image that the model used to obtain the CAFO 
classification, class activation maps provide two additional pieces of information: 
where the activated pixels occur within the image, and a rough estimate of the 
object’s size within the image. To provide the additional benefit of adding context 
to the object, we attempted to centre the CAFO within the image before using 
the class activation to estimate its size. By inspecting initial class activation maps, 
we saw that there may be many choices for the optimal centre of the facility. In 
addition, there may be several objects of interest within a single image. To be sure 
that we were exploring all the best possible centres identified by the model, we 
configured an algorithm to localize and compute the area of all possible CAFO 
objects within each image. The Supplementary Methods provide a detailed 
description of the procedure, and the bottom panel of Supplementary Fig. 10 
provides a visual representation.

After running the algorithm described above on our true-positive poultry 
images, we scored all centred images once more with the pig and poultry models. 
This gave us the benefit of using newfound context after recentring to discard 
images that appeared to depict poultry facilities only because the liquid manure 
storage lagoon was occluded in the first instance (Fig. 3). Once the objects were 
confirmed as poultry by the second round of scoring, we developed a method to 
combine objects that represented the same CAFO within different images. First, 
we calculated the distances between all CAFO object centroids in metres on the 
universal transverse mercator grid. Next, we iteratively combined each object into 
a pair with its closest neighbouring object(s) if the neighbouring object’s centroid 
was within 250 m of its centroid. The 250-m threshold was obtained by testing a 
range of thresholds and manually validating the accuracy of the resulting facility 
locations. We define the centroid for the newly paired set of objects as the average 
of all objects’ centroids. As a size estimate, we keep the maximum square footage 
among all objects as the facility size, after prioritizing higher scoring objects and 
objects that are fully contained within the image. We repeated this process until the 
minimum distance between all CAFO objects was at least 250 m. In this way, we 
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reduced 9,601 possible CAFO objects statewide to 4,659 unique facilities. A detailed 
description on how we validated this approach can be found in the Supplementary 
Methods.

Data availability
The replication code and datasets generated during the current study are available 
in the GitHub repository github.com/slnader/cafo_public.

Received: 12 September 2018; Accepted: 15 February 2019;  
Published online: 8 April 2019

References
	1.	 Dimitri, C., Effland, A. & Conklin, N. The 20th Century Transformation of 

U.S. Agriculture and Farm Policy Economic Information Bulletin 3 (USDA, 
2005).

	2.	 Copeland, C. Animal Waste and Water Quality: EPA Regulation of 
Concentrated Animal Feeding Operations (CAFOs) Technical Report No. 
CRS-RL31851 (Congressional Research Service, 2010).

	3.	 40 C.F.R. 122.23 - Concentrated Animal Feeding Operations (Applicable to 
State NPDES Programs) (Environmental Protection Agency, 2011); https://
www.govinfo.gov/app/details/CFR-2011-title40-vol22/CFR-2011-title40-vol22-
sec122-23 

	4.	 Casey, J. A., Kim, B. F., Larsen, J., Price, L. B. & Nachman, K. E. Industrial 
food animal production and community health. Curr. Environ. Health Rep. 2, 
259–271 (2015).

	5.	 Hribar, C. Understanding Concentrated Animal Feeding Operations and  
Their Impact on Communities (National Association of Local Boards of 
Health, 2010). 

	6.	 Environmental Protection Agency National pollutant discharge elimination 
system permit regulation and effluent limitation guidelines and standards for 
concentrated animal feeding operations (CAFOs). Fed. Regist. 68,  
7176–7274 (2003).

	7.	 Rogers, S. & Haines, J. Detecting and Mitigating the Environmental Impact of 
Fecal Pathogens Originating from Confined Animal Feeding Operations (EPA, 
2005).

	8.	 Graham, J. P. & Nachman, K. E. Managing waste from confined animal 
feeding operations in the United States: the need for sanitary reform. J. Water 
Health 8, 646–670 (2010).

	9.	 Conerly, O. & Vazquez Coriano, L. Literature Review of Contaminants in 
Livestock and Poultry Manure and Implications for Water Quality Report No. 
EPA 820-R-13-002 (EPA, 2013).

	10.	Waterkeeper v. EPA [2005] 399 F.3d 486 (2d Cir. 2005).
	11.	Nat’l Pork Producers Council v. EPA [2011] 635 F.3d 738 (5th Cir. 2011).
	12.	Environmental Protection Agency National pollutant discharge elimination 

system (NPDES) concentrated animal feeding operation (CAFO) reporting 
rule. Fed. Regist. 76, 65431–65458 (2011).

	13.	Concentrated Animal Feeding Operations: EPA Needs More Information and A 
Clearly Defined Strategy to Protect Air and Water Quality from Pollutants of 
Concern Technical Report No. GAO-08-944 (US Government Accountability 
Office, 2008).

	14.	Environmental Protection Agency National pollutant discharge elimination 
system (NPDES) concentrated animal feeding operation (CAFO) reporting 
rule. Fed. Regist. 77, 42679–42682 (2012).

	15.	American Farm Bureau Fed. v. EPA [2016] 836 F.3d 963 (8th Cir. 2016).
	16.	Brown, C. R. Uncooperative federalism, misguided textualism: the federal 

courts’ mistaken hostility toward pre-discharge regulation of confined animal 
feeding operations under the clean water act. Temple J. Sci. Technol. Environ. 
Law 30, 175–219 (2011).

	17.	Jerger, S. EPA’s new CAFO land application requirements: an exercise in 
unsupervised self-monitoring. Stanf. Environ. Law J. 23, 91–130 (2004).

	18.	Moses, A. & Tomaselli, P. in International Farm Animal, Wildlife and Food 
Safety Law (eds Steier, G. & Patel, K.) 185–214 (Springer, 2017).

	19.	Pew Commission on Industrial Farm Animal Production Putting Meat on the 
Table: Industrial Farm Animal Production in America (Pew Charitable Trusts 
and Johns Hopkins Bloomberg School of Public Health, 2007).

	20.	Peterka, A. Enviro groups return CAFO data at heart of Hill probes. E&E 
Daily https://www.eenews.net/stories/1059979265/print (11 April 2013).

	21.	Formuzis, A. Fields of filth: landmark report maps feces-laden hog and 
chicken operations in North Carolina. Environmental Working Group https://
www.ewg.org/release/fields-filth-landmark-report-maps-feces-laden-hog-and-
chicken-operations-north-carolina (22 June 2016).

	22.	Factory Farm Nation 2015 Edition (Food & Water Watch, 2015); https://www.
factoryfarmmap.org/wp-content/uploads/2015/05/
FoodandWaterWatchFactoryFarmFinalReportNationMay2015.pdf

	23.	Stopping CAFO Pollution (Michigan Chapter, Sierra Club, 2018); https://www.
sierraclub.org/michigan/stopping-cafo-pollution

	24.	Complaint Under Title VI of the Civil Rights Act of 1964 (EarthJustice, 2014); 
https://go.nature.com/2VRyw15

	25.	2017 Annual Report for Work Plan Agreement Between the Iowa Department 
of Natural Resources and the Environmental Protection Agency Region 7 (Iowa 
Department of Natural Resources, 2017).

	26.	Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: a survey. 
Comput. Electron. Agric. 147, 70–90 (2018).

	27.	Osburn, C. L., Handsel, L. T., Peirels, B. L. & Paerl, H. W. Predicting source 
of dissolved organic nitrogen to an estuary from an agro-urban coastal 
watershed. Environ. Sci. Technol. 50, 8473–8484 (2016).

	28.	Patt, H. A Comparison of PAN and P2O5 Produced from Poultry, Swine and 
Cattle Operations in North Carolina (Division of Water Resources, North 
Carolina Department of Environmental Quality, 2017); https://go.nature.
com/2NWY3Df

	29.	Ilea, R. C. Intensive livestock farming: global trends, increased  
environmental concerns, and ethical solutions. J. Agric. Environ. Ethics 22, 
153–167 (2009).

	30.	Saito, T. & Rehmsmeier, M. The precision-recall plot is more informative than 
the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS 
ONE 10, e0118432 (2015).

	31.	Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. & Torralba, A. Learning deep 
features for discriminative localization. In IEEE Conference on Computer 
Vision and Pattern Recognition 2921–2929 (IEEE, 2016).

	32.	Amstrup, S. C., McDonald, T. L. & Manly, B. F. Handbook of Capture–
Recapture Analysis (Princeton Univ. Press, 2010).

	33.	Hurst, N. How daily images of the entire Earth will change the way we look 
at it. Smithsonian https://www.smithsonianmag.com/innovation/how-daily-
images-entire-earth-will-change-way-we-look-it-180962467/ (13 March 2017).

	34.	MacDonald, J. M. et al. Contracts, Markets, and Prices: Organizing the 
Production and Use of Agricultural Commodities Agricultural Economic 
Report No. aer-837 (US Department of Agriculture, 2004).

	35.	McVey, M. J. et al. Identifying an efficient feed distribution system in the 
Midwest. In SAEA 2003 Annual Meeting https://go.nature.com/2Cece28 
(Southern Agricultural Economics Association, 2003).

	36.	Newcombe, T. Is government ready for AI? Government Technology  
http://www.govtech.com/products/Is-Government-Ready-for-AI.html  
(1 July 2018).

	37.	Walton, B. EPA turns away from CAFO water pollution. Circle of Blue  
https://www.circleofblue.org/2016/water-policy-politics/epa-turns-away-cafo-
water-pollution/ (2016).

	38.	Branson, S. et al. Visual recognition with humans in the loop. In European 
Conference on Computer Vision Vol. 6314 (eds Daniilidis, K. et al.) 438–451 
(Springer, 2010). 

	39.	Scoles, S. 88 new satellites will watch Earth, all the time, all the places. Wired 
https://www.wired.com/2017/02/88-tiny-satellites-will-watch-time-
everywhere/ (14 February 2017).

	40.	What are the technical specifications for Google Imagery? (Google, 2018); 
https://support.google.com/mapsdata/answer/6261838?hl=en

	41.	Russakovsky, O. et al. ImageNet large scale visual recognition challenge. Int. J. 
Comput. Vision 115, 211–252 (2014).

	42.	Simonyan, K. & Zisserman, A. Very deep convolutional networks for 
large-scale image recognition. In 3rd International Conference on Learning 
Representations https://go.nature.com/2TwYLwN (Computational and 
Biological Learning Society, 2014).

	43.	Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. & Wojna, Z. Rethinking the 
inception architecture for computer vision. In IEEE Conference on Computer 
Vision and Pattern Recognition 2818–2826 (IEEE, 2016).

	44.	Oquab, M., Bottou, L., Laptev, I. & Sivic, J. Learning and transferring 
mid-level image representations using convolutional neural networks.  
In IEEE Conference on Computer Vision and Pattern Recognition 1717–1724 
(IEEE, 2014).

	45.	Simard, P. Y., Steinkraus, D. & Platt, J. C. Best practices for convolutional 
neural networks applied to visual document analysis. 7th International 
Conference on Document Analysis and Recognition. Institute of Electrical 
and Electronics Engineers. 958-962 (2003).

	46.	Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with 
deep convolutional neural networks. In Advances in Neural  
Information Processing Systems Vol. 25 (eds Pereira, F. et al.)  
1097–1105 (ACM, 2012).

	47.	Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. 
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. 
Learn. Res. 15, 1929–1958 (2014).

	48.	Buda, M., Maki, A. & Mazurowski, M. A. A systematic study of the class 
imbalance problem in convolutional neural networks. Neural Netw. 106, 
249–259 (2018).

	49.	Mazurowski, M. A. et al. Training neural network classifiers for medical 
decision making: the effects of imbalanced datasets on classification 
performance. Neural Netw. 21, 427–436 (2008).

	50.	Smith, L. N. Cyclical learning rates for training neural networks. 2017 IEEE 
Winter Conference on Applications of Computer Vision. Institute of 
Electrical and Electronics Engineers. 464-472 (2017).

Nature Sustainability | VOL 2 | APRIL 2019 | 298–306 | www.nature.com/natsustain 305

http://github.com/slnader/cafo_public
https://www.govinfo.gov/app/details/CFR-2011-title40-vol22/CFR-2011-title40-vol22-sec122-23
https://www.govinfo.gov/app/details/CFR-2011-title40-vol22/CFR-2011-title40-vol22-sec122-23
https://www.govinfo.gov/app/details/CFR-2011-title40-vol22/CFR-2011-title40-vol22-sec122-23
https://www.eenews.net/stories/1059979265/print
https://www.ewg.org/release/fields-filth-landmark-report-maps-feces-laden-hog-and-chicken-operations-north-carolina
https://www.ewg.org/release/fields-filth-landmark-report-maps-feces-laden-hog-and-chicken-operations-north-carolina
https://www.ewg.org/release/fields-filth-landmark-report-maps-feces-laden-hog-and-chicken-operations-north-carolina
https://www.sierraclub.org/michigan/stopping-cafo-pollution
https://www.sierraclub.org/michigan/stopping-cafo-pollution
https://go.nature.com/2VRyw15
https://go.nature.com/2NWY3Df
https://go.nature.com/2NWY3Df
https://www.smithsonianmag.com/innovation/how-daily-images-entire-earth-will-change-way-we-look-it-180962467/
https://www.smithsonianmag.com/innovation/how-daily-images-entire-earth-will-change-way-we-look-it-180962467/
https://go.nature.com/2Cece28
http://www.govtech.com/products/Is-Government-Ready-for-AI.html
https://www.circleofblue.org/2016/water-policy-politics/epa-turns-away-cafo-water-pollution/
https://www.circleofblue.org/2016/water-policy-politics/epa-turns-away-cafo-water-pollution/
https://www.wired.com/2017/02/88-tiny-satellites-will-watch-time-everywhere/
https://www.wired.com/2017/02/88-tiny-satellites-will-watch-time-everywhere/
https://support.google.com/mapsdata/answer/6261838?hl=en
https://go.nature.com/2TwYLwN
http://www.nature.com/natsustain


Articles NATUrE SUsTAInAbIlITy

Acknowledgements
We thank Z. Ashwood, G. Hong, C. Hull and A. Teuscher for research assistance,  
the Environmental Working Group for sharing data, Descartes Labs and Google  
Earth Engine for providing access to their research platform, the GRACE 
Communications Foundation and the Stanford Institute for Economic and Policy 
Research for generous support, and C. Cox, B. Erden, S. A. C. Gomez, M. Hancher,  
M. Engelman Lado, J. Lee, P. Lehner, D. Lobell, J. Quinlivan, S. Rundquist, D. Sivas and 
the participants of the Data for Sustainable Development class at Stanford University for 
helpful conversations.

Author contributions
C.H.-N. and D.E.H. jointly designed the study, collected data, developed the methods, 
performed the analysis and wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41893-019-0246-x.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to D.E.H.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019

Nature Sustainability | VOL 2 | APRIL 2019 | 298–306 | www.nature.com/natsustain306

https://doi.org/10.1038/s41893-019-0246-x
https://doi.org/10.1038/s41893-019-0246-x
http://www.nature.com/reprints
http://www.nature.com/natsustain

	Deep learning to map concentrated animal feeding operations

	Results

	Image level. 
	Facility level. 

	Discussion

	Methods

	Data
	Image modelling
	Facility detection

	Acknowledgements

	Fig. 1 Examples of image occlusion.
	Fig. 2 Classification performance.
	Fig. 3 Illustration of class activation map algorithm for image-level classification.
	Fig. 4 Heat map of manually identified and modelled poultry locations.
	Fig. 5 Longitudinal detection of CAFO growth.
	Table 1 Image accuracy statistics .




