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Abstract

Prior work has documented widespread racial and ethnic inequities
across sectors, such as healthcare, finance, and technology. Across
all of these domains, conducting disparity assessments at regular
time intervals is critical for surfacing potential biases in decision-
making and improving outcomes across demographic groups. Be-
cause disparity assessments fundamentally depend on the avail-
ability of demographic information, their efficacy is limited by the
availability and consistency of available demographic identifiers.
While prior work has considered the impact of missing data on
fairness, little attention has been paid to the role of delayed demo-
graphic data. Delayed data, while eventually observed, might be
missing at the critical point of monitoring and action — and delays
may be unequally distributed across groups in ways that distort
disparity assessments. We characterize such impacts in healthcare,
using electronic health records of over 5M patients across primary
care practices in all 50 states. Our contributions are threefold. First,
we document the high rate of race and ethnicity reporting delays
in a healthcare setting and demonstrate widespread variation in
rates at which demographics are reported across different groups.
Second, through a set of retrospective analyses using real data, we
find that such delays impact disparity assessments and hence con-
clusions made across a range of consequential healthcare outcomes,
particularly at more granular levels of state-level and practice-level
assessments. Third, we find limited ability of conventional methods
that impute missing race in mitigating the effects of reporting delays
on the accuracy of timely disparity assessments. Our insights and
methods generalize to many domains of algorithmic fairness where
delays in the availability of sensitive information may confound
audits, thus deserving closer attention within a pipeline-aware
machine learning framework.
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1 Introduction

Racial inequity in the United States (U.S.) remains a significant
issue in sectors such as healthcare, employment, finance, and edu-
cation.! In healthcare, where such disparities can be stark [5, 45, 52],
researchers, policymakers, and healthcare institutions have increas-
ingly turned toward assessments to measure, and potentially miti-
gate, such disparities [74]. Such assessments are also crucial tools
for auditing the fairness of machine learning (ML)-based diagnostic
tools — an area of growing concern as ML and data-driven decision-
making become more prominent in healthcare [13].

Less recognized is a core impediment for disparity assessments:
the timely reporting of demographic information (e.g., race, gender)
by patients and providers. In this work, we show that failing to
account for reporting delays, as distinct from missing data, can ob-
fuscate health disparities. Leveraging access to a large, longitudinal
dataset of over 5M patients, sourced from primary care practices
throughout the U.S., we both document the extent of race reporting
delays and examine the effect on disparity assessments, which we
expect to be increasingly common.

We make several contributions in this work. First, we provide
researchers and practitioners with a concrete definition of delay,

!For brevity, we use “race” to refer to both race and ethnicity throughout the remainder
of this paper.
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Figure 1: On the left, we show the conventional approach to disparity assessments, which results in a static measure of disparity.
On the right, we present the three core components of our analysis. First, we leverage access to a comprehensive dataset of over
1,000 primary care practices, 5M patients from all 50 states, and 100M patient interactions from 2010 to 2024. Second, we use
timestamped records to identify and measure delays in reporting of race information. Third, we demonstrate how reporting
delays drive errors in disparity assessments across a variety of consequential health outcomes, from the national (Figure 3) to

the practice level (Figure 11).

which occurs when information is initially unreported for an in-
dividual, but eventually becomes available after repeated interac-
tions with data collection systems (e.g., repeated patient visits to a
primary care provider). Importantly, such delays may affect vari-
ables that are considered “static” [18] (e.g., data usually collected at
the time of hospital admission such as race and pre-existing diag-
noses [63]). No prior works in healthcare or fair machine learning,
to the best of our knowledge, have rigorously analyzed the impact
of this type of temporal missingness of demographic attributes in
administrative data, which we are able to observe through a richly
timestamped healthcare dataset. We show that, in fact, delays are
widespread. Second, we examine heterogeneity in reporting delays
and find that rates of delayed reporting vary by race (and other
healthcare attributes), directly implicating bias concerns. Third,
we design and carry out a series of retrospective analyses on this
data to understand how delayed race reporting impacts disparity
assessments in a real-world, high-impact setting. We find conse-
quential distortions, with prevalence errors of 10 percentage points
or more not uncommon at the practice level. Lastly, we demonstrate
that widely used imputation methods like Bayesian Improved First
Name Surname Geocoding (BIFSG) [84], while relatively accurate
at individual prediction of race, do not significantly reduce errors
in disparity assessment across all outcomes of interest.

Our work highlights the importance of pipeline-aware, context-
specific approaches to data-driven decision making [4, 16, 81].
Pipeline-aware fairness involves considering all of the different
design decisions in the full ML pipeline and their effect on fair-
ness outcomes. As Black et al. [16] demonstrate, far more effort
has been spent studying bias in statistical models. Much less at-
tention has been paid to other aspects of the ML pipeline such
as data collection - the focus of our paper. In settings involving
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time-sensitive, routine disparity assessments (e.g., dashboards mea-
suring health outcomes for different racial groups), delayed race
data may hinder responsive and actionable feedback. Our results
suggest researchers and practitioners should expend greater efforts
to identify sources of delay that might exist within real-world data
collection pipelines, consider their downstream impacts, and test
policy and/or programmatic interventions to reduce delays. As we
show, delayed reporting may lead to inaccurate and misleading esti-
mates of disparities, with direct fairness implications; these findings
may similarly affect other high-stakes applications and geographic
domains. Figure 1 summarizes the value of our analytic approach,
which surfaces errors in disparity assessments across time and ge-
ography by leveraging timestamped race reporting information
from a unique health dataset, all of which would not be possible
via a conventional approach to disparity assessments using more
static data.

The rest of the paper is structured as follows. In Section 2, we
discuss the changing policy landscape related to monitoring and
addressing health disparities in the U.S. We also connect our work
to practical challenges in algorithmic fairness in the wild: (1) the fre-
quency of missing demographic data in many real-world contexts,
and (2) the importance of studying fairness dynamically. Section 3
provides an overview of our dataset, which uniquely affords us
access to information from over 1,000 practices across all 50 states
and over 5M patients in the U.S. Most notably, the data contains
fine-grained longitudinal information across over 100M patient
interactions, including timestamped reporting of race information,
which enables us to design realistic assessments of the magnitude,
correlates, and impact of reporting delays. Then, in Section 4 we
detail our methods, including details on data processing, key defini-
tions, and summary metrics. Section 5 describes the population of
patients with and without delays and presents the results from our
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retrospective analyses conducted on real patient data. Lastly, in Sec-
tion 6, we discuss the implications of our findings for researchers
and practitioners in both healthcare and algorithmic fairness. In par-
ticular, we call attention to the importance of considering fairness
in real-world deployment settings where the reporting mechanism
for demographic attributes may lead to delays over time.

2 Background and Related Work

Prior research has extensively documented racial health disparities
in the U.S., from pain management to life expectancy [6, 32, 41, 44,
66, 72]. However, there are several impediments to accurate and
timely assessments of disparities. In our work, we focus on one
challenge that has been neglected in prior work, but is of immense
practical consequence: reporting delays in demographic informa-
tion. While several prior works have studied system fairness over
time, these often focus on the distribution shift [59] arising from
changing sub-populations or systems behavior [70], whereas we
focus on a setting where the population remains the same but data
completion rates change over time. In the sections below, we de-
scribe both the policy background and the algorithmic fairness
literature motivating this work.

2.1 Policy Background

Data Infrastructure for Measuring Health Care Disparities.
Landmark studies, such as the “Heckler Report” (1985) [46] and
the Institute of Medicine’s (IOM) “Unequal Treatment: Confronting
Racial and Ethnic Disparities in Health Care” report [54], have
centrally shaped our understanding of racial disparities in the U.S.
healthcare system. Published nearly 20 years apart, these reports
revealed the harmful impact of racial health disparities throughout
the U.S., recommended improved data collection related to race, and
advanced legal, regulatory, and policy interventions specific to the
medical field. Following these reports, considerable research has
focused on reducing health disparities [72]. In our work, we build
on this research by advocating for the data infrastructure necessary
for timely disparity assessments in primary care settings.

The current picture of health disparities — at the national, state,
or local level — is limited by the quality of available demographic
data [15]. Many challenges first identified by IOM persist, in part
due to poor data collection [55]. A recent Urban Institute report
from James et al. [55] details challenges to collecting data on race,
including lack of trust from both patients and providers, limited
community engagement, and fragmented and inconsistent data
systems. Patients may be asked to provide their race multiple times,
with varying standards for recording racial categories across insti-
tutions. Data collection efforts are frequently uncoordinated and
siloed across different patient interaction points, such as hospitals
and insurance plans. Often, collection of race information is simply
not a priority, and there are few mechanisms in place to produce
high quality demographic data collection. Overall, no widespread re-
quirements for standardization and timely reporting of race in health-
care organizations exist. In particular, the goal of conducting regular
disparity assessments for meaningful health outcomes, while acknowl-
edged as worthwhile, has not been a consistent policy priority [27, 55].
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Mandated Reporting at Federal and State Levels. Recent
federally-led efforts to address such gaps have been slow and incon-
sistent [67]. For example, since 2016, Medicaid has required states
to develop health disparity assessment plans, which would require
stratification by race. However, implementation by the Centers
for Medicare and Medicaid Services (CMS) was itself delayed, and
reporting eventually became voluntary [85]. New regulations —
42 C.FR. § 437.10(b)(7), (d) (2023) — will require states to report
core health quality measures stratified by race starting in 2027 [85].
CMS also recently announced the Hospital Commitment to Health
Equity measure, which requires that hospitals participating in CMS
programs report on whether they are prioritizing equity, but does
not require systematic health disparity assessments [26].

More concrete advances have been led by states. Since 2011,
Michigan has been reporting on health disparities annually, with
programmatic efforts to reduce these disparities. Michigan Medicaid
now links reimbursements and performance bonuses to reductions
in health disparities across five measures: diabetes (hemoglobin
HbA1c) testing, cervical cancer screening, child wellness visits,
postpartum care, and chlamydia screening, an approach that aligns
with James et al. [55]’s recommendations. In particular, they argue
for tying accountability measures and incentives to the reporting
of health disparities. California now requires the reporting of race
information, although data collection is fragmented and lacks a
universal standard. Legislation enacted in 2022 requires hospitals
to prepare and submit annual health equity reports along with an
action plan [74]. The first reports will be due in mid-2025 and will
involve annual reporting on health outcomes disaggregated by race,
among other demographic characteristics [74]. As numerous other
states and localities propose similar initiatives to regularly report on
disparities [68], it will be increasingly important to consider, under-
stand, and potentially mitigate the impact of data reporting delays
on accurate assessments. Our study contributes a comprehensive
framework towards these aims.

2.2 Machine Learning Background

Dynamic and Pipeline Aware Fairness. Our work is also re-
lated to dynamic or longitudinal fairness [28, 39] assessment where
fairness of a sociotechnical system is assessed over time — due to
shifting populations [59] or system updates [70]. However, in con-
trast to prior work, we highlight that missingness in critical data
variables can occur dynamically due to delayed reporting (e.g., of
race). Another related literature is early stopping in clinical trials
where preliminary measurements of health outcomes can lead to
incorrect disparity assessments. Prior work [2, 24] has considered
the fairness implications of early stopping and adaptivity in clinical
trials. However, these settings differ from ours, in that it is assumed
that demographic data is available for all patients upfront.

Our work underscores the importance of a pipeline-aware ma-
chine learning [16] perspective. In the context we study, a pipeline-
aware perspective entails systematically interrogating data collec-
tion and reporting systems, as well as the way missing or damaged
data is handled in data preprocessing, and how imputation might
be performed. We identify delay as a potential blindspot in ma-
chine learning pipelines, as it is only recognizable across longitu-
dinal snapshots of individuals, while the bulk of the literature has
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analyzed static datasets. Our work shows the need for explicitly
examining reporting delays in decision-making pipelines.

Missingness in Demographic Information. Missing data
and imputation are well-studied topics in statistics and sociology
[64, 65]. The impact of missing data, particularly race data, has been
widely studied in health research as well [15, 17, 29, 30, 38, 76, 79].
Within the algorithmic fairness literature, there has been consid-
erable attention paid to the consequences of missing features —
including sensitive information [3, 12, 57, 69, 88] and missing data
imputation [36, 56, 89]. Zhang and Long [88] provide theoretical
bounds on fairness estimation error in the presence of missing data.
Fernando et al. [36] document several missingness patterns such
as item non-response and attrition, and find that imputing rows
with missing data can mitigate bias. However, they do not consider
delay in their discussion of missing data.

Jeanselme et al. [56] study multiple forms of missingness pro-
cesses and emphasize that no single imputation strategy outper-
forms across all processes. While they do not characterize delay, the
implication of their findings is that delay, when it exists, would also
manifest in its own unique patterns, further complicating efforts to
address missingness through imputation. Akpinar et al. [3] study
the systematic problem of “differential feature under-reporting™: a
phenomenon in which some data records are more likely to be com-
plete for individuals who interact with the system more frequently.
They show that under-reporting tends to exacerbate disparities and
propose mitigation methods. Our work assesses whether delay is
also differential in similar or dissimilar ways across patterns of
care-seeking behavior.

Our focus specifically on delays provides a novel opportunity to
advance the missing data literature. Not only are delays on their
own an important source of missing data to consider in real-world
applications, by definition, they produce data that is only miss-
ing for some period of time. In other words, the ability to validate
the ground truth of delayed data might shed light on some of the
mechanisms that contribute to missingness not at random (MNAR),
which otherwise are not observable to researchers within a static
dataset [12, 56, 57].

3 Data

We leverage access to the American Family Cohort (AFC) dataset,
which contains data from over 1,000 practices, all of which are part
of the American Board of Family Medicine (ABFM) PRIME Registry
[80]. The PRIME registry functions as an intermediary between
healthcare providers and the Centers for Medicare & Medicaid
Services (CMS). They help with collecting and analyzing data, and
produce quality measures on behalf of clinicians for incentive-based
programs managed by CMS [25]. In contrast to many conventional
machine learning datasets, these data contain fine-grained longitu-
dinal information of patient interactions (see Figure 1), including
changes in race reporting, which enables us to conduct realistic
assessments of the magnitude, correlates, and impact of reporting
delays.

Data Collection and Incentives for Disparity Assessments.
Healthcare practices that join the PRIME registry have access to a
detailed set of dashboards with information about their practice ser-
vice area, disease prevalence, and care quality gaps. Many practices
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share data with the registry because they do not have the capacity to
do their own analyses and reporting to be in compliance with CMS.
As previously noted, while CMS does not yet require racial health
disparities to be analyzed and reported, local programs and man-
dates are beginning to emerge. ABFM and partnering researchers
are well-positioned to conduct disparity assessments using health
data on behalf of practices in the registry. Our study is a practical
demonstration of this, specifically the potential impacts of delayed
reporting.

Key Features of Dataset. The AFC dataset is ideally suited
for studying reporting delays. First, this data contains longitudi-
nal information including patient demographics, visits, diagnoses,
observations, and procedures, as well as some clinician-specific de-
tails. Second, practices from all 50 states are represented in the data.
Third, the data includes significant representation from healthcare
practices and patients with both private and public insurance plans,
as well as distinct electronic health records (EHR) systems. These
characteristics make AFC data a meaningful and realistic test case
for studying racial disparities across the U.S., as opposed to analyses
that may focus on less diverse sub-regions, specific providers, single
EHR systems, or a small subset of medical conditions. Summary
statistics for this dataset are in Table 5.

Most importantly for our study, the data is longitudinal and
information updates are timestamped, providing the possibility of
observing the phenomenon of delay that would otherwise be hidden.
Every time information is modified or added for a patient, a new
record is added to the AFC dataset with a timestamp and linkable
patient ID (see Longitudinal Reporting in Figure 1), without over-
writing previous timestamped records for the same patient. This
includes cases when demographic data such as race is updated. As a
result, we can track the reporting of race for each patient over time
and produce estimates of delayed race reporting, differentiating
this dataset from other datasets with a static availability of race per
patient. These timestamps come from the data provider, and the
cadence of the updates does not always follow a regular pattern. In
particular, some practices push their data — meaning they submit
the data to the registry — while others experience data pulls at
regular intervals.

For large scale audits, by the time patient information is aggre-
gated into the AFC dataset, any upstream source of delay in reporting
of race — whether due to patient hesitance, failure to request the
information at the time of the patient visit, or data collection lags
on the part of the data provider — creates delay that can materially
affect the quality of disparity assessments. Therefore, we focus on
the consequences of delays rather than the precise causes of the
delays. We further define reporting delays in the next section.

4 Methods

In this section, we describe how we define and quantify the impact
of delays on disparity assessments?.

4.1 Defining Delays

We define race reporting delays using a time-based measure of de-
lay. Delayed reporting occurs if there is a gap between the earliest
possible date of reporting, and when race is actually reported. We

2Code: https://github.com/reglab/delayed-reporting
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operationalize the former as whichever occurs latest among (1)
the earliest timestamp denoting when the patient’s date of birth is
reported or (2) the earliest per-practice race reporting (i.e., the first
patient in a practice with race information). We consider a patient’s
race to be reported if there is a non-missing race or ethnicity entry
that corresponds to one of the federal race and ethnicity categories
(as described in Section 4.2). Importantly, our date information re-
flects the date when this information was shared or updated with
the data provider responsible for producing the AFC data, not the
clinical encounter when the patient may have self-reported race.
As a result, this date may lag in comparison to the true clinical
encounter. However, this definition of delay still captures realistic
data lags (e.g., due to a range of behavioral, administrative, and tech-
nological factors) that an independent evaluator would encounter
when conducting a disparity assessment.

4.2 Data Processing

4.2.1 Measurement of Race and Ethnicity. We parse and code cat-
egorical versions of patient race and ethnicity from both free-text
and categorical race-related fields in the AFC data, following the
same processing steps as Cheng et al. [22]. To harmonize across a
wide range of data schemas, we map all entries to the 1997 Office of
Management and Budget (OMB) federal standard for race and eth-
nicity reporting: American Indian or Alaska Native (AIAN), Asian,
Black, Native Hawaiian or Pacific Islander (NHPI), White, Mul-
tiracial, Other, and Hispanic [75].3 Following OMB standards, we
record patients as Hispanic or Latino if they indicate their ethnicity
as such, in addition to their indicated race. For analyses involving
prevalence estimates, we combine Asian and NHPI into the Asian
and Pacific Islander (API) category. To detect when race is unknown
or declined, we use string matching to a curated set of keywords
to identify data points with no reported race (see Appendix A). For
patients who report race multiple times (< 1%), we parse their first
reported race — matching the time at which we consider race to
be reported. Note that we expect detection rates for multi-racial
patients to be lower than those for other racial groups, as only
simple regex parsing rules are applied.

4.2.2  Cohort Definition. From the full AFC dataset of 7.8M patients,
we restrict analysis to patients for whom we ever have a recorded
race mappable to OMB categories, and we identify the earliest date
at which that recorded race is available. Because our objective is to
assess the prevalence and impact of delays (i.e., cases for which we
can eventually recover a race recording), we also exclude patients
who never report race, or whose race cannot be parsed using our
automatic processing techniques (~900k patients). We only consider
patients who are >18 years in 2018, which is the primary year we
use for most analyses. Our final cohort consists of 5,310, 700 adult
patients whose race is recorded with either some or no delay (as of
early 2024). We then identify whether a patient has experienced a
reporting delay by producing a continuous measure reflecting the
number of days from a patient’s earliest reporting opportunity up
until the date that race is in fact available (Section 4.1).

3Note that the race group of “Middle Eastern or North African” was only added in the
2024 OMB categories update [1].
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4.2.3  Health Outcomes and Metadata. We observe patient attributes
that have been standardized and cleaned according to the Obser-
vational Medical Outcomes Partnership (OMOP) Common Data
Model.# In addition to race (as described in Section 4.2.1), we extract
patient age, sex, and marital status. We also extract clinical infor-
mation such as the number of patient visits, the length of time they
have interacted with a practice, and health-related outcomes like
disease diagnoses, procedures, and observations. Like demographic
characteristics, all of these features follow the OMOP data model.
Like race information, some information is subject to reporting de-
lays and missingness. For understanding the AFC population (see
Table 5), we treat these attributes as fixed (i.e., we extract attribute
information if it ever appears in the AFC data) and do not consider
the impact of delays beyond delays in race reporting.

In the context of disparity assessments, we compute six binary
health outcomes: three condition diagnoses (depression, diabetes,
and hypertension), two procedures (electrocardiograms and de-
pression screens), and a clinical observation (hemoglobin HbAlc
tests). We curate these health outcomes based on prior literature
which provides evidence of racial disparities (see more details in
Appendix B).

4.3 Retrospective Analysis on the Impact of
Delays

Drawing on the definition of delay in Section 4.1 and the health
outcomes described in Section 4.2.3, we next examine the impact
of reporting delays via a retrospective analysis of disparities. We
consider disparity assessments to include any comparison of health
outcome prevalence by racial group, for a particular time period
(e.g., the White-Black hypertension diagnosis gap in the first quar-
ter of 2018). Since we have timestamps of when race information
became available for each individual patient, we can demonstrate
what a particular disparity assessment would have looked like ret-
rospectively, if it had been conducted at any previous time point.
For instance, we can simulate a disparity assessment for 2018 Q1
immediately following its conclusion, at which point 40.94% of pa-
tients have delayed race information and are thus excluded from
prevalence calculations by racial group. The same disparity assess-
ment for 2018 Q1, conducted with the benefit of more hindsight
(i.e., using more complete race data provided after delay, but health
outcomes remaining fixed for 2018 Q1), could yield different re-
sults because more patients would be included in the analysis given
their race availability. Our core objective is to isolate this impact of
reporting delays on health disparities.

We conduct these analyses at three distinct geographic levels:
national, state, and practice-level. First, with simulations at the
national level, our goal is to understand how delayed reporting of
race may affect aggregated disparity estimates similar to annual
reports like the “National Healthcare Quality and Disparities Re-
port” [37]. Second, as noted above, specific states, such as California
and Michigan, have been pushing for deeper assessments of health
disparities, so we also conduct analyses at the state level. Simu-
lating disparity assessments may yield more variation at the state
level, particularly as some states may experience more delays than
others. We may also more easily observe distinct trends in delayed

“https://www.ohdsi.org/data- standardization/
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reporting that are overridden at the national level. Lastly, because
administration of race reporting and mitigation efforts occur within
physician practices, we also study the impact of reporting delays at
the practice level.

4.4 Metrics for Error in Disparity Assessments

In all cases, we measure prevalence, or rates of occurrence, of health
outcomes. We introduce two primary error metrics of interest based
on changing accuracy of health monitoring, as race information
becomes more complete over time: prevalence errors and disparity
errors. Prevalence errors are the differences in prevalence estimates
for racial groups in a cohort (defined by a fixed time period such
as 2018 Q1) at some initial time point f;,ja (the first possible as-
sessment of the cohort, when race information is most incomplete)
compared to time point tg,,] (When all race information is known
for the cohort).> We also visually present prevalence estimates at
quarterly intervals past tj,jtja] to show how error is reduced over
time as more race information is collected (see Figures 3 and 4). Dis-
parities are the pairwise comparisons of prevalences between two
racial groups, and so disparity errors derive from, but do not neces-
sarily appear the same as, prevalence errors (i.e., prevalence errors
in the same direction may yield no disparity error). We summarize
all metrics in Table 1. To obtain uncertainty estimates, we boot-
strap by resampling 50 times across both practices and individual
patients, and averaging metrics across all bootstrapped samples.

5 Results

We begin by reporting results on the prevalence and correlates
of delays. We then report results from our retrospective analysis
described in Section 4.3 and calculate the error metrics described in
Section 4.4. We find that the impact of reporting delays is substan-
tial. Because of the richness of the dataset, we distill core results
here, and provide more detailed results in the Appendix.

Delays are the norm, not the exception. Over 73% of patients
(N = 3,911, 213) in our cohort experience some delay, and over
half experience delays > 60 days. Overall, 21 states and over half
of practices exhibit a similar degree of delay (75% of patients or
more), indicating that the phenomenon is both widespread and
consistent. Put differently, any well-intentioned efforts to conduct
routine, quarterly assessments (i.e., within three months of the
health outcomes in question) would likely discard a majority of all
patients from analysis.

Delayed reporting of race does not affect all groups evenly.
If patients with timely reported data are representative of all pa-
tients, reporting delays may not pose a substantive problem. But,
delays do not affect groups equally. Figure 2 shows that the cumula-
tive rates of reporting are much steeper for racial groups like AIAN
and NHPI, while White, Black, and Asian groups appear to experi-
ence greater lags. Kruskal-Wallis tests for all pairwise comparisons
are statistically significant with p < 0.01, even with Benjamini-
Hochberg adjustment for multiple comparisons. In short, reporting
delays are not only pervasive, but themselves have a distributive
dimension across race.

5We also report relative absolute prevalence error in Section G, which is a common
metric used to evaluate prevalence under class imbalance [35].
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Figure 2: Reporting rates differ by race and ethnicity. On the
x-axis, we show the time difference from the earliest date at
which a patient could have reported race and ethnicity up
until the date at which their race and ethnicity is known. To
see the differences more clearly, we only depict the first three
years on the x-axis. The cumulative proportion of patients
within each racial and ethnic group who have reported race
and ethnicity is on the y-axis.

Patients with delayed race reporting are older, more care-
seeking, and less healthy. We also find that reporting delays are
correlated with a wide range of other patient attributes, threatening
the validity of static disparity assessments. Tables 2 and 5 present
differences in means across a variety of patient-level characteristics,
almost all of which are statistically significant. White patients are
over-represented among those with delays while Hispanic patients
are under-represented. Patients with delays also have more visits
on average, and their first visit occurs earlier in the data. Lastly,
patients with delays tend to be less healthy, with higher rates of all
six health outcomes we measure. For example, they are more than
10 percentage points more likely to receive a diabetes (HbA1c) test.

Delay is also associated with differences in practice-level
characteristics related to data collection and data manage-
ment. Patients without delays are more likely to come from prac-
tices using Practice Management (PM) systems. PM systems au-
tomate many billing and administrative tasks, which can include
data collection of demographic information [11]. This finding aligns
with prior work that suggests integrating EHR and PM systems may
lead to improved data collection [20]. Delays are also associated
with practices that have their data only “pulled” — meaning the
registry initiates extracting data on some regular cadence. Patients
without delays are more likely to come from practices that combine
data pulls with data “pushes” and other update methods — likely
closer to real-time updates. The relationship between delays and
specific EHR systems is particularly strong, while having multiple
EHR systems is more likely among patients with no delay (Table 5).

Delayed reporting can obfuscate measurement of preva-
lence. Even if reporting delays are pervasive and unevenly dis-
tributed, do they affect the estimation of health outcomes? We find
that using prevalence estimates that do not account for delays can
significantly distort time-sensitive monitoring of health-related out-
comes. We illustrate this phenomenon by calculating prevalence
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Metric ‘ Definition Equation
Y;
prevalence ; ;) Rate at which outcome Y occurs, estimated for any group j at any time ¢ ZZ’GJ 1‘
> icj
weighted prevalence; ;) Prevalence weighted by posterior probability p;; when race is unobserved ZIZ;;; Yi
i i

prevalence errorj

relative absolute prevalence error; | Absolute difference between initial and final prevalence for group j relative to final prevalence

J
average prevalence error
disparity ; ;.1 ;)
disparity error; ;.1

average disparity error

Difference between initial and final prevalence for group j

Absolute prevalence error averaged across all groups
Difference in prevalence between groups j and j + 1 at any time t
Difference between initial and final disparity for two groups
Absolute disparity error averaged across all pairwise group combinations

prevalence ;. .y — prevalence(; .

revalence —prevalence
I Goting)) P Uitgian) |

prevalence(]‘,ﬁ“ﬂl)

é Zf’ | prevalence error |
prevalence ; ;) — prevalencej,; ;)
disparity j jy1,pg,.0) — dISPATILY (j ja1 450)
ﬁ Zf Zj]+1 |disparity error(; ;,q)|

Table 1: Error metrics for prevalence and disparity assessments from time ¢, (maximum number of patients with delayed
reporting) to tg,.1 (race fully known). Y denotes a health outcome, with Y; € {0, 1} indicating the presence or absence of the
outcome for an individual i at time ¢, in a population of N patients. j denotes an individual racial group (and j + 1 a different
racial group), up to G total racial groups. p;; denotes the posterior probability of an individual i (where 0 < p;; < 1) belonging to

a specific racial group ;.

Overall Average ‘ No Delay  Delay
N 5,310,700 ‘ 1,399,487 3,911,213
Age (years) 58.02 55.97 58.76
Female (%) 56.26 55.34 56.59
Male (%) 43.69 44.58 43.37
Other (%) 4.69 7.61 3.65
AIAN (%) 0.73 0.73 0.74
Asian (%) 2.69 2.78 2.65
Black (%) 8.45 8.78 8.33
NHPI (%) 0.52 0.66 0.47
White (%) 80.25 77.49 81.24
Hisp (%) 10.91 13.52 9.98
Other (%) 4.12 4.78 3.89
Multi (%) 0.89 0.93 0.87

Table 2: On average, patients who experience delays are older
and more likely to be White. We show differences in average
demographic characteristics between patients who experi-
ence delays compared to patients with no delays. All differ-
ences are statistically significant (p < 0.01) with multiple
testing corrections except AIAN (%). Also see Appendix 5.

rates for a cohort of 1, 776, 729 patients from 2018 Q1. This is a sub-
set of all ~ 5.3M patients in our study, as we restrict to (1) patients
whose date-of-birth is reported before 2018 (ensuring minimum
patient data robustness for the time period in question) and (2) prac-
tices that report race before 2018 (eliminating practices that were
not collecting race at all). We can produce estimates first at #j,j4j,] im-
mediately following the conclusion of the quarter, when only 59.06%
of patients have recorded race, then at regular intervals up to tgy,,
when 100% of patients have recorded race. Since our disparity as-
sessment remains exclusively focused on 2018 Q1, health outcomes
in the cohort are held fixed based on those occurring in that quarter;
the only change across iterations is the proportion of patients omit-
ted due to missing race information (which decreases over time).
Table 3 summarizes changes in prevalence and disparity estimates,
attributable entirely to delayed race information, between tg,,, and
Linitial (Where a number closer to zero indicates a lower error). For
example, diabetes (HbA1c) testing prevalence error among Hispanic
patients is 5.56 percentage points, which is higher than for other
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racial groups. This means that the true prevalence estimate, mea-
sured at tgy,], is around 5 percentage points higher than the preva-
lence estimate at tj,jja]. Most error values are positive, consistent
with our finding from Table 5 that greater delay is associated with
higher prevalence of health outcomes. The average prevalence error
across all groups and all outcomes is 2.15 percentage points. Figure 3
visualizes these trends at quarterly intervals from right after 2018
Q1 up to 3 years later (t3y,s), when 99.85% of patients have recorded
race and the average prevalence error has been reduced to less than
0.1 percentage points. The effects of delays across multiple consec-
utive cohorts (2018 Q1, Q2, Q3, and Q4) are detailed in Appendix K.

We observe similar discrepancies at the state and practice level.
37 states have the same or higher amount of average prevalence
error as seen at the national level, while California in particular
has a lower average prevalence error (1.20 percentage points). Fig-
ure 4 illustrates state-level examples of the 2018 Q1 assessment
and underscores the heterogeneity and unpredictability of delayed
reporting’s effects across different geographies. As shown in Fig-
ure 11 in the Appendix, most prevalence estimate errors at the
practice level are small and clustered around 0, though there are
a non-negligible number of outliers. Across over 1,000 individual
practices, 13.39% of all prevalence estimates for each race group
and health outcome are incorrect by over 10 percentage points.

Delayed reporting distorts true disparity in retrospective
analyses. Do these prevalence errors affect estimates of disparities
between demographic groups? As seen in Figures 3 and 4, even
small absolute differences can lead to changes in the relative magni-
tude of group-level disparities. For example, an early assessment of
Arkansas hypertension prevalence in 2018 Q1, conducted at #j;;ia],
would lead one to conclude there is virtually no disparity between
API and Hispanic patients. However, with more complete race
information available after three years, one can see that the API-
Hispanic hypertension gap was actually more than 5 percentage
points in that quarter, with no overlap in 95% confidence intervals.
Similar minimizations of disparities occur at the national level for
the Hispanic-ATAN hypertension gap, the White-ATAN diabetes
(HbA1c) testing gap, and the Hispanic-Black diabetes gap (see Fig-
ure 7), among others. As further detailed in Table 3 and Appendix I,
the magnitude and direction of disparity error varies across pair-
wise comparisons, across outcomes, and across geographic scales
of assessment.
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Health outcome Prevalence error Average prevalence error Average disparity error

AIAN  API  Black Hispanic White
Diabetes 0.88 0.86 1.12 0.26 0.75 0.81 0.57
Hypertension 1.64 096  2.09 0.54 1.88 1.49 1.05
Depression 1.63 035 0.71 0.77 1.18 0.93 0.64
Depression screen 0.97 1.25 0.87 —0.18 1.38 1.02 0.86
Electrocardiogram  1.07  5.00  4.53 3.41 4.85 3.86 2.06
HbA1lc 4.14 3.60 5.26 5.56 5.34 4.78 1.34

Table 3: Errors in prevalence and disparity estimation between t;,;4ja1 and tg,,1 at the national level for each racial group and
health outcome, focused on health outcomes for a cohort in 2018 Q1. Values provided are percentage points; i.e., premature
assessment of Hispanic HbA1c tests underestimates prevalence by 5.56 percentage points. See Table 1 for definitions of metrics
and Table 6 for relative absolute prevalence error. Most prevalence errors are statistically significant (p < 0.05) with multiple
testing correction.

condition : hypertension procedure : electrocardiogram measurement : HbAlc
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Figure 3: Simulations at the national level for one condition (hypertension), one procedure (electrocardiograms), and one
measurement (HbA1c for diabetes). See additional outcomes in Figure 7. If delayed reporting had no effect on prevalence, we
would expect to see horizontal lines for each race line within facets. Instead, each facet shows that rank orderings of prevalence
by race changes over time, and prevalence by race often increases monotonically. Additionally, there is high uncertainty for
some estimates such as electrocardiogram procedures, and those estimates experience the most fluctuation over time. All
prevalence estimates are conducted on a fixed cohort of patients from 2018 Q1.
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state : New Jersey

condition : hypertension
state : Arkansas
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30.0
350, —— AIAN
40.0 BLACK
25.0 o/m 30.01 / e
[V
Q 35.01 Hﬂ API
T 20.0 o 20
© .
5 30.01 0.0
o
15.0 25.01 15.01 2
s PN L PN A
0 1 2 3 0 1 2 3 0 1 2 3

Years since initial assessment
Figure 4: Simulations at the state level for hypertension diagnoses, electrocardiogram procedures, and HbA1c tests. Changes in
prevalence estimates over time differ in magnitude across races, indicating variability in disparities across race groups. The
states shown are each chosen from among the top three states with the highest average number of patients for each health
outcome. See additional state-level outcomes in Figure 8. All prevalence estimates are conducted on a fixed cohort of patients
from 2018 Q1.

Imputation is not a panacea for delayed reporting. One
approach to mitigate the effect of delayed race information might
be to impute the posterior probability of a patient’s race, as is a
common strategy for missing data in general. We explore whether
widely used imputation methods such as Bayesian Improved First
Name Surname Geocoding (BIFSG) can improve the accuracy of
disparity assessments performed prior to obtaining complete race
information for all patients [33, 53, 84]. Bayesian methods that
predict individuals’ race using a combination of first names, last
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names, and geography have been used across various domains to
evaluate disparities [33, 34, 47, 87]. Following conventional practice
[21, 34], in order to calculate a BIFSG version of prevalence, we
weight each patient’s contribution to each racial group’s prevalence
by their posterior probability p;; of being in that group (see Section
4.4).

At the individual level, BIFSG achieves AUROC values > 65% for
all racial groups. However, performance varies substantially across
groups, with AUROCs ranging from 93.6 for Hispanic patients and
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67.5 for AIAN patients,® suggesting group-level estimates may vary
in accuracy [23]. We can see this problem in Figure 5, where preva-
lence estimates based on imputed probabilities from BIFSG are often
over-estimated for minority groups (prevalence error is negative)
though never for the majority White group. As a result of such
over-estimation, BIFSG does not consistently reduce delay-based
errors in disparities, which aligns with prior work on missing race
or gender data [21]. We perform one-sided Mann Whitney U-tests
comparing error metrics between estimates of prevalence using
BIFSG and t3ys versus t;,;siqr and t3yrs, with Benjamini-Hochberg
correction for multiple testing. We observe that the average dispar-
ity error (detailed in Section 4.3) is only significantly improved (at
0.05 level) for diabetes diagnoses, electrocardiogram procedures,
and HbA1c measurements. However, the average prevalence error
does significantly decrease with the use of BIFSG for all outcomes,
though the size of the difference is numerically small for some
outcomes (see Figure 12 in the Appendix). Note that results are
sensitive to rounding of p;;. These results indicate that imputation
methods like BIFSG can mitigate delayed reporting to some degree
with regard to prevalence errors, but do not produce accurate preva-
lence point estimates nor disparity error estimates. Thus, BIFSG
cannot always replace accurate, self-reported race information in
prevalence and disparity estimation.

6 Discussion: Implications for Practitioners

Our findings inform how to improve the use of data-driven decision-
making tools in light of demographic reporting delays.

More holistic efforts should be made to understand and
address the mechanisms driving delays. While there is an ex-
tensive literature on accounting for and imputing missing data in
healthcare, the impact of changing missingness over time is less
studied. Thus, modeling missingness mechanisms is an interesting
direction of future work. In our case, this might involve efforts to
uncover why delayed reporting is correlated with health outcomes,
and the precise mechanisms through which delays occur during the
patient intake and reporting process. This recommendation touches
on a key limitation of our study, which is a retrospective analysis
of a de-identified, pre-existing dataset. Given that we do not have
the ability to contact the individual decision-makers (e.g., nurses,
clinicians, intake coordinators, etc.), we are unable to explore the
many upstream factors that may have caused delayed race report-
ing. More qualitative analyses are essential to uncover the drivers of
delayed reporting. For example, surveys could be conducted across
practice sites to understand common data collection protocol and
infrastructural reasons for delays.

One implication of our findings is that different EHR systems
vary in their patient delayed reporting rates, suggesting that user
design choices, as well as backend software architectures, may con-
tribute to delays — a meaningful overlap between human computer
interaction (HCI) and fairness domains. Since rates of delay also
vary across racial groups, these efforts should further consider the
role of individual behavior — such as hesitance to report race — and
practice-side variation in recordkeeping. We build on calls in the so-
cial sciences for incorporating qualitative research methods in data

®We note that BIFSG AUROC for patients in ‘Other’ race groups was low (34.22). For
fair comparison with BIFSG, we exclude this group from all simulations.
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science work [42], and complement existing efforts to document
and understand practitioner experiences with data collection [7],
with appropriate data protection mechanisms (and communication
to patients thereof) [58]. This recommendation also aligns with the
growing recognition in algorithmic fairness that decision-making
tools should be studied in their institutional contexts [83, 86].

Understanding delays retrospectively is complex and chal-
lenging to test. Although we cannot study the precise mechanisms
of delays, we hypothesize several mechanisms through which de-
lays might occur, and why there are higher rates of delay among
White patients and patients with more health conditions.

Patient hesitance: While we cannot directly measure hesitance,
we study patients whose reported race changes from “declined”
or “unknown” to “known.” We find only small differences in the
proportion of White patients in this group relative to other patients
in the data, which suggests that hesitance does not play a significant
role in the delays that we observe here.

Systemic Complexity and Delayed Presentation: Patients with
complex health conditions might have more complicated medical
records and/or more administrative tasks [60], thus potentially
leading to administrative delays in fully completing demographic
information [73].

Intake / registration visits: Some patient visits might be intake
visits, where race data may be missing when these are not properly
administered. Prior research suggests that Black and Hispanic pa-
tients are more likely to utilize the emergency department [9, 51]
and may face greater barriers to accessing primary care regularly
[19]. Racial minorities also have lower health insurance rates [48],
an additional barrier to scheduling routine, preventative care visits.
To evaluate the role of intake visits, we test whether removing the
first timestamp associated with a patient’s DOB would eliminate
reporting delays. If intake visits explained reporting delays, we
would expect race information to be recorded by the second times-
tamp. While we observe a significant decrease in the percentage
of patients with delays (around 20 percentage points), it does not
appear that intake visits explain all of the reporting delays in our
data.

Electronic health record (EHR) system-dependent lags: Patients
whose race is collected from practices with specific EHR systems
might experience greater lags (e.g., due to specific data entry work-
flows). Prior research has shown tradeoffs between verbally collect-
ing information from patients compared to paper forms or tablets
[82]. Table 5 provides some evidence of EHR-system differences.

Several features of our study may also limit the generalizability
of some findings. We focus only on a primary healthcare setting,
and do not include data from other external databases. Conclusions
from research on hospitals and emergency departments may be
less applicable. As mentioned earlier, the dataset and cohort used in
our analyses were retrospective. In particular, the dataset was not
specifically constructed to be a representative sample of the U.S.
population, despite the AFC dataset having relatively representative
coverage. Lastly, our study is limited to U.S. health data. Findings
may differ in other geographic settings, or with other notions of
social identity such as caste [78].

Imputation alone is not enough; practitioners should in-
vest in improving data collection efforts on the ground. We
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Figure 5: BIFSG over-estimates prevalence for several minority race groups (e.g., Black and AIAN patients) across several
outcomes, though average prevalence error is improved. For example, prevalence estimates with BIFSG for Black patients
(yellow diamonds) are higher than estimates at t;,;;;,; (yellow circles) and 3y, (yellow triangles), but are closer to estimates at
tsyrs (yellow triangles). In each subplot, the y-axis denotes the estimated prevalence. Values for t;,,;;;,; and t3y,s match the same
national values as shown in Figure 3. See additional outcomes in Figure 14.

find that a widely used imputation method may perform satisfac-
torily on individual-level accuracy, but does not fundamentally
improve group-level disparity assessments affected by reporting de-
lays. In situations where timely feedback is necessary, our findings
suggest practitioners should advocate for the suite of policy and
programmatic changes that may reduce delays in the first place. It is
important to consider principles such as data minimization [14, 58],
and ensure robust privacy protections [71] when designing strate-
gies to incentivize timely data reporting. Augmenting existing data
collection with more reliable demographic data sources may be
another promising direction — e.g., integrating EHR and insurance
data, which may have higher reporting standards.

Future work should study the impact of delays on other
types of disparity metrics and ML-based metrics. Importantly,
outcomes of interest may not be binary (e.g., number of days to
readmission after discharge from a hospital). Similarly, the impact
of delayed race reporting should also be assessed in the context of
fairness metrics corresponding to ML-based predictive models (e.g.,
models predicting clinical interventions such as vassopressor ad-
ministration [40]). In this vein, our work connects to the literature
on algorithmic audits in ML [61, 77] — in particular, how missing
and unreliable demographic data may impede auditing efforts [10].
Our work suggests one reason why static audits — completed once
in time - may fail to detect disparities. Furthermore, when conduct-
ing disparity assessments that involve aggregating data across sites
or practices, it may be important to design data sampling and non-
respondent follow-up strategies that account for delayed reporting.

Lastly, it’s worth noting that we exclude patients (approximately
11%) for whom race information is never available. Even though
we are ultimately able to recover race data for all of the patients in
our cohort — those with reporting delays — traditional sources of
missingness may also bias our disparity estimates.

The existence of delays in race reporting underscores the
importance of continuously and dynamically assessing fair-
ness. Our results show that rates of missingness can be different
between groups at different points of time. Hence, continuous as-
sessment would be required to assess the robustness of conclusions
made about disparities. It is important to consider sociotechnical
systems as dynamic, and how data missingness rates may change
over time, driven by repeated user interactions with the same sys-
tem (see Section K in the Appendix, where we analyze delayed
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reporting for consecutive patient cohorts and discuss implications
for real-time monitoring scenarios). Prior work in algorithmic fair-
ness has similarly raised the issue that fairness research should
study the long-term impacts of deployed systems [28]. Our work
aligns with such concerns, though we focus on underlying changes
in the data. In particular, we urge fairness researchers to avoid
treating data inputs as fixed, and to re-evaluate historical disparity
assessments as more data that was initially missing becomes avail-
able over time. Our work also suggests another vulnerability to
current static audit approaches: in the presence of reporting delays,
providers might advertently or inadvertently leverage reporting
delays to achieve more favorable audit outcomes.

7 Conclusion

In this work, we demonstrate the impact of delayed demographic in-
formation reporting when auditing the fairness of decision-making
systems. We focus on applications to healthcare where regular and
timely monitoring of health disparities is critical. However, our
work extends to any setting in which time-sensitive evaluations
must be conducted prematurely. In a nationwide health dataset,
we find that delayed reporting is a widespread problem, affecting
nearly 3 out of every 4 patients. Furthermore, delays do not impact
all patients evenly. Rates of delayed reporting vary by race and there
are demographic, health, and practice-level differences between
patients with and without delays. Furthermore, when we retro-
spectively estimate the impact of delays on disparity assessments,
we find that delays can lead to inaccurate depictions of disparities.
While these distortions are relatively small at the national level,
there is greater heterogeneity for estimates at the state and prac-
tice levels — an important consideration as recent health equity
initiatives have occurred at the state level, and mitigation efforts
necessarily start at the practice level.

Broadly, our work highlights a crucial gap in the current au-
diting space: the need for frequent monitoring of systems reliant
on seemingly “static” variables like race. In fast-paced deployment
environments, delays in specific data inputs may arise, leading to
unexpected performance. Prior research has pointed out that ac-
cess to individual-level demographic data is often unrealistic in
real-world settings [7, 8, 10, 50, 62]. Our work complicates this
finding: demographic data can also be delayed, thus highlighting
an important direction for future work.
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8 Ethical Statement

We now address ethical considerations that arose in the course of
this work.

First, our work deals with sensitive patient health data. All anal-
yses were conducted on secure, remote servers approved for High
Risk and Protected Health Information (PHI) data, and the research
was approved by the Institutional Review Board, including Waiver
of Informed Consent, Waiver of Assent, and Waiver of HIPAA Au-
thorization. To protect confidentiality, we only produced aggregated
results for cell sizes > 10. The American Family Cohort dataset is
used solely for research purposes, allowing researchers to inves-
tigate core questions of health equity and to generate knowledge
that may inform the improvement of healthcare services across a
nationwide network of primary care practices.

Second, another ethical consideration lies in the measurement of
race. Through all of our findings, our central focus is on the sober-
ing reality that health disparities exist between different groups
within communities across the U.S. The true nature of these dis-
parities are, of course, always more complex and intersectional
than the socially constructed racial categories we choose to use at
any given moment (i.e., individuals’ self-reported racial categories
may not align with federal categories or may change over time),
and the improper reification of racial categories (including through
statistical imputation methods such as BIFSG) may itself run the
risk of feeding back into the entrenchment or exacerbation of those
disparities. At the same time, in the absence of any records of race
identification, we may not be able to detect and act upon dispar-
ities at all. Central to algorithmic fairness has been the notion of
“fairness through awareness” [31]. At core, our study identifies an
underappreciated mechanism, delayed demographic reporting, by
which that awareness can be obfuscated. Critically, the utilization
of racial categories, obtained through self-reporting or through
imputation methods, to assess disparities does not in any way imply
that they should also be used in individual-level medical decision
making [49], where the ethical considerations may be significantly
more acute.
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A Detecting when Race and Ethnicity is
Unknown or Declined

The dataset contains multiple datapoints (at different timepoints)
per patient / practice. Each datapoint is associated with a modifi-
cation date of race. Further, each datapoint contains two free-text
fields - ‘patientracetext’ and ‘patientethnicitytext’. Race codes are
also available in fields of ‘patientracecode’ and ‘patientraceethnic-
ity’. We define patient race to be unknown or declined at a given
timepoint if both the following conditions are met:

(1) Free text fields (after lower-casing) are in the following
list: ‘race not reported - don’t know’, ‘nh’, ‘unspecified’,
‘do not use’, ‘not hispanic/latino ethnicity’, ‘other/declined’,
‘non-hispanic’, ‘not of hispanic, latino/a or spanish origin’,
‘refuse’, ‘not hispanic’, ‘declined’, ‘unknown’, ‘patient de-
clined information’, ‘unreported/refused to report’, ‘patient
declined’, ‘not set’, ‘refuse to report/ unreported’, ‘declined
to answer’, ‘not reported’, ‘non hispanic’, ‘withheld’, ‘un-
known/unwilling’, ‘w’, ‘<none>’, ‘NA’, ‘unknown/unreported’,
‘decline to answer’, ‘refused to report’, ‘unknown / not re-
ported’, ‘not hispanic or latino’, ‘non hispanic-non latino’,
‘non - hispanic/latino’, ‘prefers not to answer’, “unspeci-
fied’, ‘refused’, ‘refused to report/unreported’, ‘unknown/not
reported’, ‘not hispanic / latino’, ‘dec’, ‘refused, unknown’,
‘undefined’, ‘chose not to disclose’, ‘unk’, ‘race not reported -
refusal’, ‘non hispanic or latino’, ‘n’, ‘nsp’, ‘x’, ‘unk’, ‘declines
to state’, ‘unavailable / unknown’, ‘refus’, ‘dec’, ‘not hispanic,
latino/a, or spanish origin’, ‘non-hispanic / non latino’, ‘state
prohibited’, ‘decline’, ‘declined to specify’, ‘not provided’, ‘pa-
tient refused’, ‘un’, “unreported / refused to report’, ‘race not
reported - not ascertained’, ‘unknown to patient’, ‘declines
to specify’, ‘decli’, ‘dc’, ‘ds’, ‘ua’, ‘uo’, ‘n’, ‘d’, ‘v, ‘r’, ‘unkno’,
‘nr’, ‘unreported / unknown (uds)’, ‘unreported / unknown’,
‘unavailable’, ‘2186-5’, ‘9’.

(2) Categorical codes are either invalid codes or strings indi-
cating no information. Specifically, they are among the fol-
lowing list: ‘UNK’, ‘NA’, ‘UN’, ‘U’, ‘2186-5’, nan, ‘UNK’, ‘UN’,
2186 - 5°, ‘N’, ©312507°, ‘NH’, ‘NR’, ‘ASKU’.

Note that if some information is provided in either field - race or
ethnicity — we do not consider race to be unreported. The only
exception is when patients only report that they are non-Hispanic,
with no other race information provided. In such cases, race is
considered missing or delayed.

B Extraction of Health Outcomes

We extract six clinical outcomes curated based a literature review:
i.e., there is evidence of disparities between racial group for each of
these outcomes. For example, prior work has documented higher
depression screening rates among Black and Asian patients com-
pared to White patients [43]. Health outcomes in each case are
extracted by relying primarily on Systematized Nomenclature of
Medicine (SNOMED) codes, which are used for clinical documenta-
tion and billing purposes. Codes in each case are retrieved using
a database search tool. We extract health outcomes based on the
presence of specific diagnosis, documentation, and billing codes.
We rely primarily on SNOMED-CT codes because they are also
used for clinical documentation, apart from just billing. To identify
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relevant codes per outcome, we use the Athena search tool.” Using
a relevant search term per outcome, we retrieve a list of codes that
are returned as matches per search. Then, we filter these codes
manually by reading the text description corresponding to the code.
We assume that a code, if entered in the system, is accurate. An
overview of the codes for each outcome is provided in Table 4.
To fully account for outcomes, we also include codes where the
presence of an outcome is indirectly indicated. For example, the
SNOMED-CT code corresponding to the condition of “Senile de-
mentia with depression” is also included in the list of codes for
identifying the outcome of depression diagnosis.

Clinical Outcome Vocabulary =~ Number of codes (example,

)

Depression diagnosis

Diabetes diagnosis
Hypertension diagnosis
Diabetes HBAlc measurement
Electrocardiogram procedure
Depression screening procedure

SNOMED, OMOP Extension
SNOMED, OMOP Extension
SNOMED, OMOP Extension
SNOMED, OMOP Extension
SNOMED, CPT4, HCPCS
SNOMED, CPT4, HCPCS

104 (e.g., 35489007

92 (e.g., 771000119108
10 (e.g, 78975002

1 (43396009

38 (e.g., 93005

4 (e.g., 96127

)
)
)
)
)
)

Table 4: Overview of codes for each outcome variable.

C Cohort Size versus Delay

In Figure 6, we visualize cohort size versus average delay (in days),
as they vary across different quarters for which to conduct the
disparity assessment. We choose the 2018 Q1 cohort because it has
a reasonable sample size, as well as a high average delay.
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Figure 6: Cohort size vs average delay of race reporting for
different quarters as the focus of disparity assessment.

D Comparing Patients with and without Delays

Table 5 shows the average difference in demographic characteristics
and all other variables considered in the main text.

E Retrospective Analysis for Additional Health
Outcomes

Figure 7 and Figure 8 show the results from the retrospective anal-
ysis at both the national and state level for three additional health
outcomes: diabetes, depression, and depression screens.

7https://athena.ohdsi.org/search-terms/start
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Overall Average ‘ No Delay Delay  Difference

N 5,310,700 ‘ 1,399,487 3,911,213
Patient-level Characteristics
Age (years) 58.02 55.97 58.76 2.79"*
Female (%) 56.26 55.34 56.59 1.25"**
Male (%) 43.69 44.58 43.37 —1.217"*
Other (%) 4.69 7.61 3.65 —3.96**
ATAN (%) 0.73 0.73 0.74 0.01
Demographics Asian (%) 2.69 2.78 2.65 —0.12**
Black (%) 8.45 8.78 8.33 —0.45**
NHPI (%) 0.52 0.66 0.47 —0.18***
White (%) 80.25 77.49 81.24 3,75
Hisp (%) 10.91 13.52 9.98 —3.54**
Other (%) 4.12 4.78 3.89 —0.89 ***
Multi (%) 0.89 0.93 0.87 —0.07 ***
Single (%) 28.28 30.26 27.64 —2.62**
Marital Status Married (%) 58.72 57.26 59.19 1.93%*
Divorced (%) 7.42 7.33 7.45 0.12**
Widowed (%) 5.51 5.02 5.67 0.65***
Partner (%) 0.07 0.12 0.05 —0.08 ***
Other (%) 4.69 7.61 3.65 —3.96**
Visits Avg. yearly visits (2007-2023) 0.82 0.50 0.93 0.43™**
Earliest year 2016.23 2017.08 2015.92 —1.15***
Diabetes (%) 10.84 8.54 11.66 312"
Depression (%) 12.33 9.90 13.20 3.30"*
Health Hypertension (%) 25.17 20.24 26.93 6.70"**
Depression screen (%) 14.44 10.26 15.94 5.67***
Electrocardiogram (%) 26.84 18.63 29.78 11.15**
Hbalc (%) 25.46 17.74 28.22 10.49**
Practice-level Characteristics (Mapped to Patients)
Practice Info. Available (%) 85.93 86.25 85.82 —0.43 "
Unavailable (%) 14.07 13.75 14.18 0.43**
Data Source  EHR & PM (%) 6.38 9.86 5.13 —4.737
EHR only (%) 93.02 89.59 94.25 4.66**
Push, pull, and other (%) 17.43 21.87 15.84 —6.03 "
Data Update  Pull only (%) 81.07 76.39 82.76 6.37"**
Other (%) 1.45 1.70 1.36 —0.34
Multiple (%) 17.71 22.16 16.11 ~6.05
eMDs - Solution Series (%) 51.96 45.19 54.40 9.21™**
Amazing Charts (%) 8.60 9.22 8.38 —0.84***
eMDs - Practice Partner (%) 3.18 4.43 2.73 -1.70 ***
Veradigm EHR (%) 3.00 3.67 2.76 —0.91**
EHR System  eClinicalWorks (%) 1.82 1.12 2.07 0.95**
GE Centricity (%) 1.75 1.20 1.95 0.75***
Aprima (%) 1.63 1.55 1.66 0.11***
Athenahealth (%) 1.33 2.06 1.07 —0.99 ***
eMDs - Lytec MD (%) 1.21 2.02 0.91 -1.11*
Other (%) 7.22 7.00 7.30 0.30***

Table 5: Differences in average demographic characteristics, visits, health outcomes, and practice-level characteristics between
patients who experience delays compared to patients with no delays. Most of the differences are statistically significant with
* %% = p < 0.01 even with Benjamini-Hochberg adjustment for multiple comparisons. On average, patients who experience
delays are older, more likely to be White, and have more visits. They also have higher prevalence rates of adverse health
conditions and procedures. ATAN = American Indian or Alaska Native; NHPI = Native Hawaiian or Pacific Islander; EHR =
electronic health record; PM = practice management system.
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Figure 7: Simulations at the national level for two conditions (diabetes and depression) and one procedure (depression screens).
All disparity estimates are conducted on a fixed cohort of patients from 2018 Q1.
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Figure 8: Simulations at the state level for two conditions (diabetes and depression) and one procedure (depression screens).
The states shown are among the top three states with the highest average number of patients with each health outcome. All
disparity estimates are conducted on a fixed cohort of patients from 2018 Q1.

F Delayed Reporting for 2017 Q1 and 2018 Q1
Cohorts

Figures 9 and 10 implement national-level disparity assessments
for different cohorts—2017 Q1 and 2019 Q1. They show temporal
differences in the effect of delays. In 2019 Q1, delays play a minor
role—affecting prevalence and disparity estimates slightly (e.g., the
Black-API disparity for HbAlc measurements decreases in t3yys)
compared to fpitia]). Delays have a much larger effect on disparity
estimates for the 2017 Q1 cohort in line with the findings from
Figure 6 that show greater average delay in 2017 compared to 2019
and later.

G Relative Absolute Prevalence Error

We show relative absolute prevalence error by race in Table 6.

Relative absolute error accounts for class imbalance, and shows
the magnitude of the prevalence error relative to the true overall
prevalence. For example, prevalence errors for hypertension and
depression are broadly similar among AIAN, Hispanic, and White
subgroups in Table 3. But relative absolute errors (shown here) are
much larger for depression compared to hypertension since the
true overall prevalence of depression overall is smaller.

H Distribution of Errors in Prevalence

Figure 11 shows the distribution of prevalence errors at the practice
level across different racial groups and for all health outcomes. We

present prevalence errors averaged across 50 bootstrapped samples.

Most of the errors are centered around 0, though there are numerous
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Health outcome Relative absolute prevalence error

AJIAN APl  Black Hispanic White
Diabetes 8.79 1079  9.54 3.92 9.34
Hypertension 8.62 772 7.87 3.81 8.87
Depression 20.60 10.00 11.63 9.97 11.57
Depression screen  27.47  33.28 17.70 10.45 28.67
Electrocardiogram  8.16 23.53 21.92 18.74 23.11
HbA1lc 3339 22.26 31.11 33.02 38.24

Table 6: Relative absolute errors in prevalence between t;;,;tia1
and tg,,,1 at the national level for each racial group and health
outcome, focused on health outcomes for a cohort in 2018
Q1. Values provided are percentage points.

outliers. Overall, prevalence errors skew positive, reflecting a trend
similar to the national level (Table 3).

I Exacerbation, Minimization, and Sign
Switches in Disparity Assessment Error

We also consider whether delays consistently lead to over- or under-
estimates of the true disparity in absolute terms or whether the
direction of the disparity changes entirely. We call the case of an
over-estimate an exacerbation and the case of an under-estimate
a minimization. When we observe exacerbation, the disparity at
tinitial appears higher than it actually is at tg,,1 (and in minimiza-
tion, lower than it actually is). Exacerbations may be a concern
when there are limited resources, but the consequences for not
intervening are small. Minimizations may be a concern when there
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Figure 9: Simulations at the national level for a fixed cohort of patients from 2017 Q1.
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Figure 10: Simulations at the national level for a fixed cohort of patients from 2019 Q1.

are serious health concerns that would require immediate inter-
vention. Sign changes (i.e., the direction of the disparity changes,
which can be either exacerbations or minimizations) are a problem
in either setting as they would distort any meaningful takeaways
related to the disparity.

Table 7 summarizes these trends by comparing disparity esti-
mates (i.e., pairwise differences in prevalence across groups, for each
outcome) between tjniia] and tgpn,), at the national level. Delays are
more likely to minimize the true disparity for three outcomes; i.e.,
premature evaluations often underestimate disparities. But delays
are more likely to exacerbate the true disparity for the other three
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outcomes; i.e., premature evaluations also often overestimate dispar-
ities. Perhaps most concerning is the high rate of sign switching for
an outcome like electrocardiogram procedures; i.e., premature eval-
uations can be wrong about the direction of disparity on average
14% of the time.

J BIFSG: Impact on Error Metrics

BIFSG improves average prevalence error (Figure 12), but the di-
rection of error changes in some cases (Figures 5 and 14). We also
visualize worst-case prevalence error, or the highest absolute gap
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Figure 11: Distribution of prevalence errors for all conditions
averaged across all bootstrapped samples at the practice level.
‘We remove all practice-level prevalence estimates that in-
volve fewer than 10 patients on average to preserve patient
privacy.

%Exacerbation %Minimization %Sign Switch

Diabetes 51.6 41.2 7.2
Depression 21.2 73.8 5.0
Hypertension 29.4 64.6 6.0
Depression screen 56.4 32.8 10.8
Electrocardiogram 40.0 46.0 14.0
HbA1c 43.4 42.8 13.8

Table 7: Comparison of errors in disparity estimation. We
classify sign switches (i.e., rank order changes for the pair-
wise comparisons, which can be either exacerbations or min-
imizations as well) first, and then classify the remaining
errors as exacerbations or minimizations.

in prevalence error across groups. Furthermore, BIFSG mitigates
disparity error in three out of six outcomes (see Figure 13).
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Figure 12: BIFSG reduces the average prevalence error for
all outcomes and the worst-case prevalence error for most
outcomes.
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Figure 13: BIFSG mitigates error in disparity assessment (dis-
parity error) in three out of six outcomes, but not the others.

K Delayed Reporting across Consecutive
Disparity Assessments

The impact of delayed reporting on disparity assessments cannot
be disentangled from the real-world setting in which disparity
assessments may be used — e.g., to inform state and local healthcare
organizations about any serious health equity gaps and to produce
timely interventions. In a real-world setting, monitoring would
be conducted at regular intervals for different cohorts (e.g., 2018
Q1, 2018 Q2, 2018 Q3, etc.). As a result, we now let the clock run
beyond a single quarter in 2018 and examine delays in real time.
Figure 15 illustrates a full year of disparity assessments, where
the evaluation of a1 (i-e., 2018 Q1 to Q4) and the improved
evaluation of fs3y,s appear together. Note that at each time step,
we only present estimates from i, and #3y,s. For each outcome
we focus on a single pairwise comparison between a White and
non-White group, whichever group experiences the largest average
disparity at t3y,s for that outcome over the course of 2018.

This figure underscores that delay can manifest in every time step
— a formidable challenge for continuously monitoring disparities.
In principle, evidence of disparities would trigger interventions
as soon as possible and regular monitoring would subsequently
reveal improvements over time. But as long as delays continue
to distort ground truth disparity estimates at the same pace as
assessments are conducted, decision-makers may need to choose
between estimating disparities inaccurately or monitoring health
disparities at a slower pace.
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Figure 14: BIFSG over-estimates prevalence for several minority race groups (e.g., Black and AIAN patients) across several
outcomes, though average prevalence error is improved. In each subplot, the y-axis denotes the estimated prevalence. Values
for t;,i;iq1 and t3y,s match the same national values as shown in Figure 7.

condition : hypertension

procedure : electrocardiogram
N

5 B &5 B

Prevalence

s

2018 Q4
Quarter of disparity assessment

procedure : depression screen
e =

Prevalence

race = BLACK race = AlAI
27
26 24
25
o o 22
S 2a S
5 5
© 2 © 20
> >
922 ]
o I
21 18
20
19 16
2018 Q1 2018 Q2 2018 Q3 2018 Q4 2018 Q1 2018 Q2 2018 Q3 2018 Q4
Quarter of disparity assessment Quarter of disparity assessment
condition : diabetes condition : depression
race = BLACK race = API
12
o T
11 9] mmmmmmmTTTT
8% 8,
g g
g o g
a [
5
8
____________________ 4
N 3
2018 Q1 2018 Q2 2018 Q3 2018 Q4 2018 Q1 2018 Q2 2018 Q3 2018 Q4

Quarter of disparity assessment

Quarter of disparity assessment

Quarter of disparity assessment

2018 Q4

Figure 15: Comparison of prevalence estimates for different health outcomes at quarterly intervals starting in 2018. This figure
invokes a real-world example of conducting regular disparity estimates given incomplete or delayed information. For each
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