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Abstract

Tax authorities around the world rely on audits to detect underreported tax liabilities
and to verify that taxpayers qualify for the benefits they claim. We study differences in
Internal Revenue Service audit rates between Black and non-Black taxpayers. Because
neither we nor the IRS observe taxpayer race, we propose and employ a novel partial
identification strategy to estimate these differences. Despite race-blind audit selection,
we find that Black taxpayers are audited at 2.9 to 4.7 times the rate of non-Black
taxpayers. An important driver of the disparity is differing audit rates by race among
taxpayers claiming the Earned Income Tax Credit (EITC). Using counterfactual audit
selection models to explore why the disparity arises, we find that maximizing the
detection of underreported taxes would not lead to Black EITC claimants being audited
at higher rates. Rather, the audit disparity among EITC claimants stems in large part
from a policy decision to prioritize detecting overclaims of refundable credits over
other forms of noncompliance. Modifying the audit selection algorithm to target total
underreported taxes while holding fixed the number of audited EITC claimants would
reduce the share of audited taxpayers who are Black, and would lead to more audits
focused on accurate reporting of business income and deductions; fewer audits focused
on the eligibility of claimed dependents; higher per-audit costs; and more detected
noncompliance.
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1 Introduction

In recent decades, U.S. policymakers have increasingly relied on the income tax system to

implement a host of social programs; for example, the Earned Income Tax Credit (EITC)

has replaced welfare as the largest cash-based safety net program in the United States. The

Internal Revenue Service (IRS) administers these programs and is also charged with ensuring

that individuals meet their taxpaying obligations. Like tax authorities around the world, it

relies on audits to detect underreporting of tax liabilities and to verify that taxpayers qualify

for the benefits they claim.

The task of selecting which taxpayers to audit is partly a prediction exercise—which

taxpayers have underreported tax obligations that an audit would uncover?—and partly a

policy determination—what type of underreporting should be predicted and pursued?

Evidence from many domains in which data-driven algorithms are used to allocate

enforcement resources suggests that both aspects of this process may inadvertently

reinforce disadvantages against historically marginalized groups (Angwin et al., 2016;

Buolamwini and Gebru, 2018; Obermeyer et al., 2019). Such concerns are particularly

acute for tax audits, which can exacerbate financial strain for the lowest income taxpayers

– whose tax refunds are typically frozen while an audit is in place – and can dissuade

individuals from participating in safety net programs for which they qualify (Guyton et al.,

2018; National Taxpayer Advocate, 2019a).

In this paper, we investigate racial disparities in the selection of taxpayers for audit,

focusing on differences in the selection of Black and non-Black taxpayers. Because the IRS

does not collect information about taxpayers’ race, identifying differences in audit rates by

race is itself a significant challenge. Researchers have developed a range of tools for imputing

race from other observed characteristics, but such approaches can lead to biased estimates

for the parameters of interest unless restrictive assumptions are satisfied (Chen et al., 2019;

Knox et al., 2022). A second methodological challenge is that even if we could observe

taxpayer race, the fact that underreporting is observed only for those returns that were
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selected for audit (the so-called selective labels problem) (Kleinberg et al., 2018a) makes it

difficult to understand why disparities emerge or which policies would lessen them.

We investigate this topic using comprehensive administrative microdata on approximately

148 million tax returns and 780,000 audits.1 To circumvent the selective labels problem, we

also leverage nearly 72,000 audits of randomly selected taxpayers to investigate the effects

of counterfactual audit selection policies. To address the problem of missing race, we use

Bayesian Improved First Name and Surname Geocoding (BIFSG) to impute race based on

taxpayers’ names and census block groups (Imai and Khanna, 2016; Voicu, 2018). We then

propose and implement a novel approach for bounding the true audit disparity by race from

the (imperfectly measured) BIFSG proxy. By individually matching a subset of the tax data

to self-identified race data from other administrative sources, we provide evidence that the

assumptions underlying our bounding approach are satisfied in practice.

We report a number of new results about racial disparities in tax audits. First, we

estimate that the audit rate for returns filed by Black taxpayers is between 0.81 and 1.34

percentage points higher than the audit rate for non-Black taxpayers. This (unconditional)

disparity is substantial when compared to the base audit rate of 0.54% for the overall U.S.

population. In relative terms, our estimates imply that Black taxpayers are audited at

between 2.9 to 4.7 times the rate of non-Black taxpayers.

Second, we find that an important contributor to the racial audit disparity is a difference

in audit rates among Black and non-Black taxpayers who claim the EITC. Others have

speculated that Black taxpayers may be audited at higher rates because they are more

likely than non-Black taxpayers to claim the EITC, and EITC claimants (of any race) are

audited at higher rates than most other taxpayers (Bloomquist, 2019; Kiel and Fresques,

2019). However, we find that this channel does not fully explain the disparity we observe.

Rather, we estimate a substantial disparity in the selection of taxpayers for audit within

the population of EITC claimants: Black taxpayers claiming the EITC are between 2.9 and

1We primarily focus on tax year 2014 – the most recent year for which audit outcome data was complete
at the time of our analysis. We find similar results for other years spanning the 2010–2018 time period.
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4.4 times as likely to be audited as non-Black EITC claimants. In contrast, we observe a

much smaller, though still statistically significant, difference in audit rates between Black

and non-Black taxpayers who do not claim the EITC.

Third, we explore the factors contributing to the observed audit disparity among

taxpayers claiming the EITC. Because EITC audit selection is largely automated, and

because the IRS does not observe race, the disparity is unlikely to be driven by disparate

treatment of Black and non-Black taxpayers.2 At the same time, we find that the disparity

cannot be explained by group-level differences in total dollars of tax underreporting: we

estimate that Black EITC claimants are audited at higher rates than non-Black EITC

claimants within each decile of under-reported taxes.

To better understand the source of the audit disparity in light of this finding, we

simulate counterfactual audit selection algorithms for EITC claimants, using data from

audits of randomly selected tax returns. We explore potential explanations related to both

aspects of the audit selection process described above: predicting which taxpayers have

underreported taxes that an audit would uncover and the policy decision concerning which

types of underreporting to predict and pursue (the algorithmic objective).

Beginning with the algorithmic objective, recall that taxpayers may underreport taxes by

misreporting their taxable income and/or by overstating their eligibility for tax-administered

benefits, often in the form of refundable credits. Although details of the IRS audit selection

algorithm are confidential, the agency publicly reports that the model underlying its primary

program for auditing EITC claimants is designed to detect noncompliance from this latter

source of underreporting — i.e., overclaimed refundable credits. Using our simulated audit

algorithms, we find that when audits of EITC claimants are allocated based on this objective,

Black taxpayers are audited at higher rates than non-Black taxpayers. In contrast, if audits

were allocated based on the objective of maximizing total dollars of detected underreporting

— from any source of noncompliance — we find that Black EITC claimants would be audited

2By disparate treatment, we mean different audit rates for taxpayers who file identical tax returns and
differ only with respect to their race.
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at lower rates than non-Black EITC claimants.

Why does the algorithmic objective shape the distribution of audits by race? Among

taxpayers claiming the EITC, the highest underreporting is associated with taxpayers who

have substantial independent contractor or other business income, but who underreport this

income to such a degree that they appear to qualify for the EITC. Among this group, we find

that those with the most underreporting are disproportionately non-Black. Despite their high

levels of noncompliance, audit algorithms focused exclusively on refundable credits under-

prioritize these taxpayers because only a portion of their underreporting takes the form of

overclaimed credits – the rest stems from underreported taxable income. At the same time,

we find that EITC returns filed by Black taxpayers appear more likely to violate the legal

requirements for claiming children, which translates into larger average dollar adjustments

to the refundable credits claimed on their returns. As a result, audit algorithms that are

exclusively focused on this form of noncompliance select Black taxpayers at higher rates.

With any potential change to the audit selection algorithm, it is important to consider the

consequences for the operational process through which audits are conducted. Along these

lines, we show that the objective of the audit selection algorithm shapes the composition

of audited issues, with substantial downstream implications for audit costs and detected

underreporting. In this way, our results highlight an important connection between racial

audit disparities and ongoing policy debates about the proper level of IRS funding (e.g.,

Boning et al., 2023).

Distinct from the objective of the audit selection algorithm, we also explore whether

the architecture of the prediction model employed as part of the audit selection process

contributes to the observed disparity. We find evidence that it does: although Black EITC

claimants tend to overclaim refundable credits at higher rates, the observed audit disparity

is larger than what these differences in overclaiming would imply. The confidential nature

of the IRS audit selection process limits our ability in this paper to explore the details

of the actual predictive model used by IRS to allocate EITC audits; however, we provide
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suggestive evidence that differences by race in the predictive power of the available features—

such as proxies for child custody or parental status—may contribute to higher audit rates

for Black taxpayers. Subject to the same caveat, we provide suggestive evidence that it

may be possible to modify the predictive model to lessen the racial audit disparity without

substantially reducing the amount of overclaimed refundable credits detected on audit.

Our results contribute to an empirical literature that studies the distributional effects of

tax policy by race, with seminal contributions by Moran and Whitford (1996) and Brown

(2021), among others.3 However, the unavailability of administrative microdata with

information about race has limited the questions that prior studies could address and the

alternative policies they could evaluate (Bearer-Friend, 2019; Brown, 2021; Dean, 2021).4

We build on this literature by linking imputed race estimates with administrative data on

tax returns and audits. Doing so allows us to produce the most direct evidence to date on

longstanding questions about racial disparities in the administration of the U.S. income

tax.

A second contribution of our paper is to introduce a novel partial identification approach

for conducting algorithmic disparity assessments with respect to a protected class, when

that class is unobserved to the researcher. This challenge arises in a wide range of settings,

including voting rights (Imai and Khanna, 2016), regulatory policy (CFPB, 2014; Anson-

Dwamena et al., 2021; Haas et al., 2019), and industry (Alao et al., 2021; Andrus et al., 2021).

For example, although many U.S. agencies are required by federal law to conduct disparity

assessments of the algorithmic decision tools they employ, protected characteristics like race

are often missing from administrative records (G.A.O., 2020; Exec. Order. 13985, 2021).

3Much of this literature focuses on racial differences in the benefits from substantive tax provisions like
the mortgage interest deduction (Brown, 2009, 2018), the EITC (Brown, 2005; Hardy et al., 2021), and the
Child Tax Credit (Collyer et al., 2019; Goldin and Michelmore, 2022).

4Prior analyses have yielded some suggestive evidence, however. For example, Bloomquist (2019) studies
regional bias in IRS audits using estimated county-level data, and notes that the ten most heavily audited
counties were predominantly comprised of Black taxpayers, whereas the ten least heavily audited counties
were predominantly non-Black. In addition, prior research has linked tax data with Census records on self-
reported race to study primarily non-tax outcomes (e.g., Chetty et al., 2020); however, various legal and
institutional constraints currently limit our ability to apply this approach to our setting.
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Our approach relies on weaker conditions than those required to point-identify differences

in outcomes by unobserved protected class (e.g., Chen et al., 2019; Fong and Tyler, 2021),

while still yielding bounds that may be informative for policy.5

Finally, our results relate to a growing literature studying how the choice of outcome

to be predicted by an algorithm shapes the distributional properties of procedures based

upon that algorithm (Barocas and Selbst, 2016; Kleinberg et al., 2018b; Passi and Barocas,

2019). For example, Obermeyer et al. (2019) link racial disparities in a health care setting

to an algorithm that is trained to predict health care expenditures rather than direct health

outcomes. With respect to tax audits, Black et al. (2022) study how the choice between

regression and classification prediction tasks shapes the distribution of audits by taxpayer

income. Related to this literature, our results highlight how policy decisions to prioritize

certain forms of legal noncompliance over others can shift the distribution of enforcement

burdens.

The paper proceeds as follows. Section 2 provides background on the U.S. tax system

and taxpayer audits. Section 3 describes our empirical strategy. Section 4 describes our

data. Section 5 provides results relating to estimated race probabilities and statistical bias

of our proposed estimators. Section 6 estimates differences in audit rates between Black and

non-Black taxpayers. Section 7 investigates the source of the observed audit disparity. An

Online Appendix contains proofs and additional results.

2 Institutional Background

This section provides background regarding the U.S. individual income tax, taxpayer audits,

and the EITC.

5Kallus et al. (2021) also consider a partial identification approach to estimating disparity when the
protected characteristic must be imputed. Unlike our approach, their bounds cover all joint distributions
consistent with the observed marginals. In our setting, the Kallus et al. bounds are largely uninformative as
to the magnitude or even direction of the audit rate disparity; they cannot rule out Black taxpayers facing
either higher or lower audit rates than non-Black taxpayers. Our approach requires additional structure, but
the payoff to that structure is a significantly more informative estimate when our assumptions hold.
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2.1 The U.S. Income Tax

Most U.S. citizens, as well as some non-citizens, are required to file an income tax return each

year, on which they calculate and report their tax liability based on their income as well as

any deductions or credits for which they qualify. Unmarried taxpayers file individual returns,

whereas most taxpayers who are married file a joint return with their spouse. Taxpayers

with children or other dependents may claim them on their own return to qualify for various

tax benefits. The vast majority (over 95%) of taxpayers prepare and file their returns with

the help of a professional tax preparer or using guided tax preparation software.

2.2 IRS Audits

The IRS is the federal agency responsible for promoting and enforcing compliance with the

tax law. One channel through which it does so is by employing taxpayer audits. Taxpayers

selected for audit are required to provide additional information to the IRS or otherwise

verify the accuracy of the tax liability or refund reported on their tax return. Audits may

occur by mail (“correspondence examinations”) or through in-person (or virtual) meetings

with IRS employees (“field” or “office” examinations). In recent years, approximately 70%

of audits have been conducted through correspondence. Audits of this form tend to focus

on a small number of issues and require a response, with substantiation. If the IRS does not

receive a response by the due date, it will generally disallow the claimed item and issue the

taxpayer with a notice of deficiency. Correspondence audits are substantially cheaper than

other forms of audits for the IRS to conduct. At the same time, correspondence audits can

be particularly burdensome for lower-income households, who may face additional barriers

to understanding the audit notice, acquiring the required documents, or obtaining expert

assistance (G.A.O., 2016; National Taxpayer Advocate, 2021).

If an audit results in an adjustment to the (net) tax reported on a taxpayer’s return,

the taxpayer is responsible for remitting the difference to the IRS and may face additional

penalties, as well as, in rare cases, criminal sanctions. Audits may occur pre- or post-

8



refund; in the former case, refunds are not issued until after the audit is resolved. Hence,

taxpayers who fail to respond to a pre-refund audit typically forego the tax benefits they

claimed on their return. Taxpayers who disagree with the results of an audit may appeal

the determination with the IRS office of appeals and/or in federal court.

At a high level, audits can be categorized into two groups: research and operational.

Research audits are conducted through the National Research Program (NRP), which

consists of a stratified random sample of the tax filing population. NRP audits seek to

estimate the correctness of the whole return via a close to line-by-line examination. In part

because they are so intensive, research audits constitute a small minority of the audits that

the IRS performs each year. For example, about 2% of audited returns for tax year 2014

were selected through NRP.

We refer to audits that are not research audits as “operational audits.” Operational

audits constitute the vast majority of audits that the IRS performs. Tax returns are selected

for an operational audit through a wide variety of processes, the details of which are kept

confidential. These processes can range from simple decision rules to manual examination to

prioritization based on model-estimated risk scores.6 Different audit programs use different

processes to select which returns to audit. For some programs, tax returns are ranked in a

manner that focuses on total noncompliance, aggregated across issues on the return; selected

returns are then “classified” by IRS examiners to identify the most promising potential

noncompliance issues on which to focus. Other audit programs are focused more narrowly

on a particular issues or set of issues; returns audited through such programs are selected

based on criteria that relate to the specific noncompliance issues of focus.7

To facilitate our research, the IRS shared information on operational audit selection

processes with members of our research team; however, IRS policy limits our ability to

6We observe all training data and the full set of taxpayer features for EITC audits – our focus below –
with the exception of audit referrals from whistleblowers or law enforcement (which are present in a very
small share of EITC audits).

7The set of issues upon which an audit focuses may constrain the process through which the audit is
conducted; for example, audits of claimed business deductions may be more amenable to correspondence
audit than audits of unreported business income.

9



disclose information about these processes that would allow taxpayers to manipulate their

risk of selection, such as tax return characteristics that may drive audit selection. The

federal government itself has publicly disclosed some inputs into audit selection, such as the

use of child custody and child birth records to assess whether a taxpayer is eligible to claim

a child for a particular credit (G.A.O., 2015), and has also made clear that certain taxpayer

characteristics are not taken into account, such as race or where the taxpayer lives (Kiel and

Fresques, 2019).

Distinct from formal audits, the IRS operates several programs through which it screens

submitted returns for potential identity theft or makes adjustments to taxpayers’

submitted returns based on information reported to it by third parties, the detection of

math errors (including returns claiming benefits for which the taxpayer does not qualify

based on observable characteristics such as the taxpayer’s age or reported income), or other

factors. In other cases, the IRS will flag a potential compliance issue on a submitted return

through a “soft notice” or other process for the taxpayer to resolve the issue without

undergoing a formal audit, such as certain situations in which multiple taxpayers claim the

same child for the same year. Thus, many of the returns with “smoking gun” evidence of

non-compliance are addressed outside of the formal audit process.

2.3 The Earned Income Tax Credit

The Earned Income Tax Credit (EITC) is a tax credit designed to support low- and middle-

income taxpayers with earnings from work. The credit is refundable, meaning that taxpayers

receive a payment or “refund” from the government if it brings their tax liability for the year

below zero. Today, the EITC constitutes the largest cash-based safety net program in the

United States, benefiting approximately 31 million households at an annual budgetary cost

of $64 billion (IRS, 2023a).

The amount of EITC for which a taxpayer qualifies is based on the taxpayer’s income and

family size. The credit amount initially increases with income for lower-income taxpayers,
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plateaus, and then decreases with income once a taxpayer’s income surpasses a specified

threshold. The maximum EITC amount varies based on the number of children a taxpayer

claims; in 2014 (the year that most of our analysis focuses upon), the maximum EITC

ranged from $496 for taxpayers without children to $6,143 for taxpayers with three or more

children, and was available to taxpayers with combined incomes of up to $52,247 if married,

or $46,997 if single. Taxpayers without income from work do not qualify for any EITC

amount. Approximately 19% of taxpayers claimed the EITC in 2014, with an average credit

of $2,122 among claimants (IRS, 2016).

To claim a child for the EITC, the child must satisfy several eligibility tests with respect

to the taxpayer. In particular, the taxpayer must be related to the child through one of a

specified set of relationships (e.g., the child’s parent, stepparent, grandparent, aunt, uncle,

or sibling) and must reside with the child for over half of the tax year. In addition, the

child must generally be below the age of 19, or below the age of 24 if the child is a full-time

student. In cases in which two or more taxpayers qualify to claim a single child, a series of

“tie-breaker” rules govern which claim takes priority.

Non-compliance with the EITC rules has been a persistent subject of policy concern.

Estimates of the EITC improper payment rate hover around 25% (U.S. Treasury

Department, 2022), which many observers attribute to the complicated rules governing

eligibility for the credit (Holtzblatt and McCubbin, 2004; National Taxpayer Advocate,

2019b). Federal law requiring agencies to measure improper payments effectively imposes a

minimal number of research audits of EITC returns that IRS must conduct, but such rules

do not directly constrain IRS’s ability to adjust the number of EITC returns selected for

operational audit (OMB, 2021). In addition to the EITC, the federal government

designates two other refundable credits — the American Opportunity Tax Credit and

Additional Child Tax Credit — as high-priority programs that are susceptible to significant

improper payments.

In recent years, approximately 40% or more of individual taxpayer audits have been
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focused on returns claiming the EITC (Congressional Research Service, 2022).8 EITC returns

are selected for audit through a variety of enforcement programs; as such, EITC claimants

may be audited in a manner that is narrowly focused on their eligibility for the EITC

(e.g., their eligibility to claim a particular dependent) or in a manner that investigates

other potential forms of noncompliance (e.g., the accuracy of their reported income or their

eligibility to claim a business deduction). The vast majority (94% in 2014) of audits of EITC

claimants are correspondence examinations and approximately two-thirds occur pre-refund

(see Appendix Table A.1).

Approximately three-quarters of audited EITC returns in 2014 were selected through

the Dependent Database (DDb) program, which flags returns based on a set of rules and

heuristics as well as various proprietary risk scores. The features that are used to calculate

these proprietary risk scores are drawn from taxpayers’ filed returns as well as other

administrative data about taxpayers or their children available to IRS.9 For DDb audits,

the selection step of the process is automated without manual review by human examiners

(IRS, 2011).

3 Empirical Framework

In this section, we provide results relating to the identification of disparities in an outcome

(like audits) with respect to a characteristic (like race) that cannot be directly observed by

the researcher.

8The high EITC audit rate originates from a 1997 deal between House Republicans and the Clinton
administration to preserve EITC funding in exchange for heightened enforcement (Johnston, 2000).

9These administrative data sources include state-provided data on child custody determinations that is
compiled by the Department of Health and Human Services, child birth records from the Social Security
Administration, and prisoner data from the Bureau of Justice Statistics.
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3.1 Basic Notation

Tax returns are indexed by i, and have observable characteristics Xi. We use Bi ∈ {0, 1}

to indicate whether the primary filer on tax return i is Black, and Yi ∈ {0, 1} to indicate

whether the return is audited. The audit rate for Black taxpayers is Y B = E[Y |B = 1], and

the audit rate for non-Black taxpayers is Y NB = E[Y |B = 0].

Our goal is to estimate the audit disparity with respect to Black taxpayers, D, which we

define as the difference in audit rates between Black and non-Black taxpayers:

D = Y B − Y NB = E[Y |B = 1]− E[Y |B = 0] (Audit Disparity)

An important barrier to studying differences in audit rates by race is that neither we nor

the IRS observe taxpayer race. To overcome this challenge, we first estimate the probability

that a taxpayer is Black using a subset of characteristics we do observe, and second, use the

resulting race probabilities, along with administrative data on audits, to estimate differences

in audit rates by race. That is, our approach is to:

1. Estimate bi = Pr[Bi = 1|Zi], where Zi ⊆ Xi is a subset of i’s observable characteristics.

2. Use estimated bi and observed Yi to estimate D.

In the remainder of this section, we describe these two steps in additional detail.

3.2 Imputing Race

To impute race, we apply Bayesian Improved Surname Geocoding, which uses name and

geolocation to probabilistically infer race (Imai and Khanna, 2016). This method has been

widely applied in academic studies and is recommended when race is missing by the National

Academy of Medicine (Nerenz et al., 2009). Recent work has shown that first names are more

informative than surnames for identifying Black individuals (Voicu, 2018), so we incorporate

first name information as well, applying Bayesian Improved First Name Surname Geocoding
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(BIFSG). The method is “naive” in the sense that it assumes that first name, surname, and

geography are independent after conditioning on race:

Pr[F, S,G|B] = Pr[F |B] Pr[S|B] Pr[G|B]

where F is first name, S is surname, and G is geography. Using Bayes’ rule, this assumption

implies

Pr[B = 1|F, S,G] =
Pr[F |B = 1] Pr[S|B = 1] Pr[G|B = 1] Pr[B = 1]

1∑
j=0

Pr[F |B = j] Pr[S|B = j] Pr[G|B = j] Pr[B = j]

, (1)

and similarly for Pr[B = 0|F, S,G]. See Appendix B.1 for a formal derivation. Estimating

these terms by name and geography yields individual-level race probabilities. Because audits

occur at the level of the tax return, we estimate a single race probability per return, focusing

on the primary filer in cases of joint returns by married spouses.

The independence assumption underlying BIFSG is strong, and is likely violated in

practice (e.g., Greengard and Gelman, 2023). Still, prior research has found that the

method performs well across a range of settings. Below, we validate the performance of

BIFSG race probabilities as an input to our disparity estimators using a subset of tax

records matched to non-IRS administrative data containing taxpayer race. We also verify

the robustness of our results to alternative imputation methods, including an approach

that sidesteps the independence assumption by predicting race solely on the basis of

geographic information.

3.3 Estimating Disparity using Imputed Race

After estimating the probability that each taxpayer is Black, we next consider how to use

those estimated probabilities to identify the difference in audit rates by race. We consider

two estimators: the probabilistic disparity estimator and the linear disparity estimator. We
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characterize the bias of each and provide conditions under which the two estimators bound

the true audit disparity.

The probabilistic estimator calculates average audit rates by race by weighting each

taxpayer’s contribution to the average audit rate by the probability that the taxpayer is or

is not Black. Formally, given estimated race probability bi and audit status Yi, we define the

probabilistic audit rate estimators as

Ŷ B
p =

∑
i biYi∑
i bi

Ŷ NB
p =

∑
i(1− bi)Yi∑
i(1− bi)

where B and NB refer to the estimated audit rates among Black and non-Black taxpayers,

respectively. The probabilistic disparity estimator, D̂p, is the difference in the probabilistic

audit rate estimates for these groups:

D̂p = Ŷ B
p − Ŷ NB

p =

∑
i biYi∑
i bi
−
∑

i(1− bi)Yi∑
i(1− bi)

The second estimator we consider is the linear disparity estimator, D̂l. Consider the

regression of Y on b:

Y = α + βb+ η.

The linear disparity estimator corresponds to the estimated coefficient on b in this regression:

D̂l = β̂ =

∑
i(Yi − Y )(bi − b)∑

i(bi − b)2

where Y and b denote the sample averages of Y and b. The corresponding linear estimators

of Y B and Y NB are given by Ŷ B
l = α̂ + β̂ and Ŷ NB

l = α̂.

The following proposition characterizes the asymptotic bias of the disparity estimators.

Proposition 1. Suppose that b is a taxpayer’s probability of being Black given some
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observable characteristics Z, so that b = Pr[B = 1|Z]. Define Dp as the asymptotic limit of

the probabilistic disparity estimator, D̂p, and Dl as the asymptotic limit of the linear

disparity estimator, D̂l. Then:

1.

Dp = D − E[Cov(Y,B|b)]
Var(B)

(1.1)

2.

Dl = D +
E[Cov(Y, b|B)]

Var(b)
(1.2)

3. Suppose E[Cov(Y,B|b)] ≥ 0 and E[Cov(Y, b|B)] ≥ 0. Then

Dp ≤ D ≤ Dl (1.3)

4. Suppose E[Cov(Y,B|b)] ≤ 0 and E[Cov(Y, b|B)] ≤ 0. Then

Dl ≤ D ≤ Dp (1.4)

Appendix B provides a proof of this proposition, derives similar results for the audit rate

(level) estimators, and characterizes the estimators’ asymptotic distribution.10

For the probabilistic disparity estimator to be consistent (Proposition 1.1), it must be

that any association between race and audits is mediated through predicted race. In our

setting, this condition would be violated if Black taxpayers were selected for audit at different

10In some applications, we consider estimates of the conditional audit disparity with respect to a subset
of taxpayer characteristics x ∈ X: E[Y |B = 1, x ∈ X] − E[Y |B = 0, x ∈ X]. Proposition 1 extends
naturally to such applications, with the key covariance terms replaced by E[Cov(Y, b|B, x ∈ X) |x ∈ X] and
E[Cov(Y,B|b, x ∈ X) |x ∈ X], respectively. In other applications, we consider weighted versions of these
estimators. We discuss both of these cases in Appendix B.
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rates than non-Black taxpayers with identical names and living in identical neighborhoods.11

The linear disparity estimator requires a different assumption for consistency, namely

that there be no residual association between predicted race and audits after conditioning

on the taxpayer’s actual race (Proposition 1.2). This exclusion restriction would be violated if

some of the information used to predict race—e.g., name—is associated with audits through

channels other than race, such as socioeconomic status.

Propositions 1.3 and 1.4 highlight a useful implication of Proposition 1.1 and 1.2: the

linear and probabilistic disparity estimators asymptotically bound the true disparity when

E[Cov(Y, b|B)] and E[Cov(Y,B|b)] share the same sign.12 In our setting, using geography

and name to predict race, both of these covariance terms are likely to be positive. For

example, there are well-documented differences in marital patterns by race, with rates of

marriage among Black households below those of other groups (Aughinbaugh et al., 2013).

In addition, unmarried taxpayers may be associated with higher rates of EITC audit risk due

to the residency and relationship tests that govern the EITC qualifying child rules (Leibel

et al., 2020). Hence, to the extent that race predictions derived from name and geography

do not fully capture racial differences in household structure, it is likely that some residual

correlation between audits and race would remain, so that E[Cov(Y,B|b)] > 0. At the

same time, some research shows that Black Americans with more distinctively Black names

have lower socioeconomic outcomes (Fryer and Levitt, 2004; Cook et al., 2016). To the

extent that audit rates are declining in income for some portions of the income distribution

(Black et al., 2022), this suggests that, even after conditioning on race, taxpayers with higher

predicted probabilities of being Black may be audited at higher rates than taxpayers with

lower predicted probabilities of being Black, suggesting E[Cov(Y, b|B)] > 0. Below, we

11Proposition 1.1 is related to a result in Chen et al. (2019) and Kallus et al. (2021), which substitutes
E[Cov(Y,B|Z)] for E[Cov(Y,B|b)] in our expression, similar to conditioning on combinations of covariates in
lieu of the propensity score. The difference is significant in practice, since it may not be practical to calculate
Cov(Y,B|Z) when Z takes on many values, such as in the common circumstance in which race is imputed
from name and geography.

12Proposition 3 in Appendix B establishes that the Black and non-Black audit rate levels are similarly
bounded by the linear and probabilistic estimators under the same conditions.
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provide empirical support for these conditions using an auxiliary data set in which race is

observed for a subset of taxpayers.

Finally, Proposition 1 requires that the individual race probability estimates are perfectly

calibrated, b = Pr[B = 1|Z] for each Z; in Appendix B, we derive the bias of the disparity

estimators when this assumption fails (see Proposition 2). One method for researchers to

assess the calibration of the individual race probabilities is by calculating those probabilities

for a subset of the data for which individual-level race information is available. To the extent

the race probabilities are found to be miscalibrated, Proposition 2 shows that a simple linear

correction using the available race labels can remove much of the resulting bias (see Appendix

B.5 for details). Below, we implement this approach to assess and re-calibrate our BIFSG

estimates.

4 Data

This section describes the IRS data relating to audits and other tax variables as well as the

data we use to impute taxpayer race.

4.1 Tax Data

We begin with comprehensive, administrative, and anonymized IRS data from approximately

148 million individual income tax returns with valid social security numbers for 2014. We

primarily focus on tax year 2014 because it is the most recent year for which the vast majority

of audits were complete and available to us at the time of analysis. For each return, we

observe the amount and sources of reported income, deductions, and credits claimed. We

also observe information returns for each taxpayer, such as employer-reported wages on

Form W-2, and other administrative records, such as Social Security Administration data

on gender and year of birth.

Among the returns in our data, there were 780,627 operational audits, constituting 0.53%
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of returns filed for the year. We also use data on the research audits conducted under the

NRP, which, as described in Section 2, are selected using a stratified random sample of

taxpayers. Between 2010 and 2014, there were between approximately 13,500 and 15,500

NRP audits per year. To increase the precision of our analyses that use NRP data, we pool

the 71,878 returns selected for NRP audit between 2010 and 2014.

For each filed return, we observe whether the return was selected for audit.13 In addition,

among audited returns, we observe the amount, if any, of the IRS-imposed adjustment to the

originally filed return. Throughout, we report quantities in 2014 dollars, inflation-adjusting

the NRP returns from prior years.

4.2 Race Data

As described above, the IRS does not collect data on taxpayer race, either directly via tax

returns or indirectly via merging tax data with administrative data on race from other

agencies. Therefore, we rely on a BIFSG approach to estimate the probability that a

taxpayer self-reports as Black based on the first name, last name, and location of residence

reported on the taxpayer’s return. The taxpayer’s location was measured at the level of the

Census Block Group, the smallest geographic unit with racial composition reported by the

Census, which typically contain 600-3,000 individuals. Data on the joint distribution of

first names and race were obtained from Loan Application Registers under the Home

Mortgage Disclosure Act from 2007-2010, following Tzioumis (2018); data on the joint

distribution of last names and race were obtained from the 2010 Decennial Census

Surname File (U.S. Census Bureau, 2021); and data on the racial make-up of Census block

groups from the American Community Survey 5-year estimates (2010-2014).14 Information

13More precisely, we observe whether an audit for the return was completed prior to 2023. Nearly all
audits are completed within six years of a return being filed.

14For purposes of training and validating BIFSG, we follow the racial and ethnic classifications provided
in the first name and surname files; this entails treating individuals who report their ethnicity to be Hispanic
as non-Black, and treating individuals who report themselves to be multi-racial as non-Black. Note that
because of how the Census-derived inputs to BIFSG are measured, the method is technically trained to
predict the householder’s report of the taxpayer’s race rather than the taxpayer’s own self-report. The steps
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regarding the availability of these characteristics in our sample is described in Appendix

Table A.2. We are able to estimate race probabilities based on all three attributes (first

name, last name, and geolocation) for 73% of tax year 2014 returns. For the remaining

returns, we use the available subset of these attributes to impute race.

To assess the validity of our estimated race probabilities and the statistical bias of our

audit disparity estimators, we obtained data on self-reported race for a subset of our

sample by matching taxpayers to publicly available voter registration records from North

Carolina. North Carolina required all registered voters to report race until 1993, after

which reporting became optional. Taxpayer and voter records were matched using name

and address, which resulted in a 47% unique match rate and ∼2.5M matched records.15 In

some of the calibration exercises using this data, we re-weight North Carolina taxpayers to

match the overall U.S. population on observable demographic characteristics. Appendix C

provides additional details regarding the data match and the construction of these weights.

5 Race Estimate Calibration and Statistical Bias

Assessment

This section presents results relating to the calibration of our taxpayer race estimates and

statistical bias of the audit disparity estimators on which we rely.

5.1 Taxpayer Race Estimates

As described above, we use BIFSG to estimate the probability that a taxpayer is Black based

on the taxpayer’s first name, last name, and geography. Figure 1 summarizes the results

of this exercise. The left panel of the figure presents the distribution of estimated race

of this analysis requiring non-anonymized taxpayer information were conducted by Treasury economists,
with the (anonymized) results provided to the other members of our research team.

15Matching took place in a fire-walled environment, separately from the main analysis, under the direction
of the Treasury Office of Tax Analysis. Information relating to voting and political party were excluded from
all analyses.
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probabilities. The distribution is bi-modal, with 4.4% of taxpayers having 90% or higher

predicted probability of being Black and 77.0% of taxpayers having 10% or lower predicted

probability of being Black. The mean prediction is 12.2%, which corresponds closely to the

12.2% of the overall U.S. population that was estimated to be Black by the U.S. Census in

2014 (ACS, 2014).16

The right panel of Figure 1 assesses the calibration of the estimated race probabilities.

It uses the matched North Carolina data to compare the true probability that a taxpayer

identifies as Black with the BIFSG-predicted probability that the taxpayer does so. The

figure shows that the predicted race probabilities are generally monotonic in true

self-reported race and generally track the 45-degree line. We observe a similar pattern for

the sub-population of taxpayers claiming the EITC, although here we observe some

evidence that BIFSG may under-estimate the probability a taxpayer is Black; we explore

several re-calibration methods below to address this issue. Overall, to the extent our

matched North Carolina sample is representative of the population, this analysis suggests

that the BIFSG-derived race estimates constitute a reasonably accurate approach for

estimating taxpayer race in this setting (see Appendix Table A.3 and Appendix Figure A.1

for additional detail). Below, we consider several robustness checks that employ alternative

methods for calculating race probability estimates and obtain qualitatively similar results.

5.2 Assessing Bias of the Audit Disparity Estimators

In this section we use the North Carolina data to shed light on the statistical bias of the

audit disparity estimators described above.

To visualize the parameters shaping the bias of the disparity estimates from Proposition

1, Figure 2 bins the taxpayers from the North Carolina data set based on their estimated

probability of being Black, and plots the fraction of Black and non-Black taxpayers audited

16The relatively small share of individuals estimated to be Black with very high probability may reflect a
limitation of the BIFSG methodology, which outputs a probability near one only for a taxpayer living in a
very high Black-share neighborhood and with very distinctively Black first and last names. We investigate
the robustness of our results to alternative race imputation methods below.
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within each bin. The figure shows a positive residual correlation between audit probability

and being Black after conditioning on the estimated race probability. From Proposition

1.1, this implies that the probabilistic disparity estimate is downward-biased, i.e.,

E[Cov(Y,B|b)] > 0. At the same time, the figure suggests an upward-sloping audit rate in

predicted race, for both Black and non-Black taxpayers, after conditioning on self-reported

race, or E[Cov(Y, b|B)] > 0. From Proposition 1.2, this implies that the linear disparity

estimator is upward-biased.

Appendix Table A.4 reports a more formal test for the sign of the key covariance terms. To

estimate E[Cov(Y, b|B)], we use the North Carolina data to directly calculate the covariance

between audits and predicted race probabilities separately for Black and non-Black taxpayers.

We aggregate these estimated covariances into an estimate of E[Cov(Y, b|B)] by weighting

each race-specific covariance by the estimated proportion of all taxpayers that are Black

or non-Black, respectively. In similar fashion, we estimate E[Cov(Y,B|b)] by calculating

the sample covariance between audits and self-reported race separately for each estimated

race probability percentile, and then aggregate based on the share of taxpayers in each

race probability percentile. For both E[Cov(Y, b|B)] and E[Cov(Y,B|b)], we reject the null

hypothesis that the parameter is less than or equal to 0 with p < 0.01.

We obtain similar results when we re-weight the North Carolina data to match the U.S.

population on a range of observable characteristics (Column 2 of Appendix Table A.4) and

when we restrict the analysis to EITC claimants (Columns 3 and 4). In contrast, for the non-

EITC population (Columns 5 and 6), we are unable to sign the second of these covariance

terms with statistical significance.

We interpret the results in this subsection to support the hypothesis that

E[Cov(Y,B|b)] > 0 and E[Cov(Y, b|B)] > 0 for EITC taxpayers and the overall population,

and therefore, that the probabilistic and linear disparity estimators bound the true audit

rate disparity for these populations.
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Figure 1: Distribution and Calibration of Estimated Race Probabilities

Notes: Left: Nationwide histogram of BIFSG-predicted probability that a taxpayer is Black (non-Hispanic).
The mean prediction is 12.2%. Right: The figure shows the calibration of the BIFSG imputations for the
taxpayers in the matched North Carolina data set. Taxpayers are split into groups based on their predicted
probability of being Black (discretized into 100 bins 1 percentage point wide). The predicted probability of
being Black is on the x-axis; the y-axis represents the true proportion of each group that is Black according
to self-reported race observed in the North Carolina matched sample, re-weighted to be representative of
the overall United States (see Appendix C for details). A perfectly calibrated predictor would fall exactly
on the 45-degree line, shown as the black dotted line. The figure shows overall calibration in blue as well as
calibration among EITC claimants (dark green) and non-EITC claimants (light green).

6 Audit Disparity Results

In this section, we report our estimates of the difference in audit rates between Black and

non-Black taxpayers. We begin with the overall population of U.S. taxpayers before turning

to EITC claimants.

Figure 3 presents our main findings concerning racial audit disparities for the population

of U.S. taxpayers. The left panel plots the mean audit rate against the binned estimated

probability that a taxpayer is Black. The upward-sloping relationship shown in the figure

suggests that Black taxpayers are audited at a higher rate than non-Black taxpayers.

The right panel of Figure 3 depicts the estimated audit rates among Black and

non-Black taxpayers, respectively, obtained from the probabilistic and linear estimators.

Both estimators imply that Black taxpayers were audited at a higher rate than non-Black

taxpayers. In particular, the probabilistic estimator implies a racial audit disparity of 0.81

percentage points: 1.24% of Black taxpayers were audited, compared to 0.43% of non-Black

taxpayers. These audit rates are precisely estimated: the 95% confidence interval on the
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Figure 2: Audit Rate by Predicted and Self-Reported Race

Notes: The figure shows the relationship between audit incidence (y axis) and BIFSG-predicted probability
that a taxpayer is Black (x axis) for taxpayers filing returns for tax year 2014. Audit rates are plotted
separately for Black and non-Black taxpayers in the North Carolina matched sample. Black and non-Black
taxpayers are each grouped into 100 equal-sized bins, with Black taxpayers indicated by dark purple x’s and
non-Black taxpayers indicated by light purple circles. The average vertical distance between the x’s and
circles (illustrated by the dark gray arrows) provides an estimate of the sign of E[Cov(Y,B|b)]. The average
slope of the group-specific best-fit lines (illustrated by the light gray arrows) provides an estimate of the sign
of E[Cov(Y, b|B)].

probabilistic disparity estimate ranges from 0.81 to 0.82 percentage points.17 As expected,

the linear estimator implies an even larger racial audit disparity, of 1.34 percentage points,

and is also precisely estimated. Because the conditions for Proposition 1.3 appear satisfied

in our setting, we interpret the probabilistic and linear disparity estimates as bounds on

the true racial audit disparity. Thus, our results suggest that Black taxpayers were audited

17This confidence interval reflects sampling uncertainty in the outcome model, in the sense that even the
universe of 2014 taxpayers may not perfectly reflect the underlying data generating process, but abstracts
from uncertainty in the construction of the BIFSG-based probability estimates. We obtain slightly less precise
disparity estimates after accounting for this source of uncertainty, following the dual-bootstrap method
proposed by Lu et al. (2024) (Appendix Table A.10 and Appendix Figure A.12).
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at between 2.9 and 4.7 times the rate of non-Black taxpayers.18

Figure 4 plots estimated audit rates by income and race. Black taxpayers appear more

heavily audited throughout the income distribution.19 Notably, the difference in audit rates

appears largest for taxpayers with incomes that potentially qualify for the EITC. To more

directly explore the role of the EITC in the observed racial audit disparity, we investigate

differences in audit rates by EITC claim status as well as differences in EITC claiming

by race. The right panel of Appendix Figure A.5 shows that the audit rate among EITC

claimants (of any race) is more than 4 times higher than among non-EITC claimants (1.45

vs. 0.31 percent). In addition, the left panel of the figure shows that the EITC claim rate

is increasing in the probability that a taxpayer is Black. Hence, one possibility is that the

observed difference in audit rates could be due to EITC claimants being audited at higher

rates and Black taxpayers being over-represented among that group.

To assess this hypothesis, we estimate audit disparities by race separately for EITC

claimants and non-claimants. If differences in EITC claiming rates by race account for

the racial disparity, we would expect the difference in audit rates by race to be relatively

small within the population of EITC claimants. However, Figure 5 shows this is not the

case. Instead, the estimated disparity in audit rates between Black and non-Black EITC

claimants is substantially larger in percentage point terms (between 1.96 and 2.90 p.p.) than

the estimated disparity for the full population (between 0.81 pp and 1.34 p.p.). In contrast,

we estimate significantly smaller racial audit disparities among taxpayers not claiming the

EITC (between 0.10 and 0.18 p.p.).20

18We obtain comparable results from using a linear program to calculate maximum and minimum values
of disparity that are consistent with the Proposition 1.3 assumptions and the observed joint distribution of
b and Y ; see Appendix B.9.

19For ease of exposition, we focus on the probabilistic estimate of the audit rate; Appendix Figure A.2
shows a similar pattern using the linear estimator. As discussed in Appendix B.8, interpreting the estimators
as bounds on a conditional audit disparity requires that the Proposition 1 conditions hold at the subgroup-
level. Appendix Figure A.4 reports estimates of the relevant covariance terms by income bin from the NC
data. For most bins, the Proposition 1.3 conditions appear satisfied, although the pattern is more consistent
for the probabilistic estimator. For higher income taxpayers, the linear disparity estimator may not constitute
an upper bound.

20These disparities are precisely estimated; refer to Table 1 for standard errors. As discussed in Section
5, we lack empirical evidence that the linear disparity estimator yields an upper bound on the racial audit
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Figure 3: Audit Rates by Race

Notes: The figure shows the relationship between audits and race among taxpayers filing returns for tax
year 2014. Left: Binned scatterplot of audit rate by BIFSG-predicted probability that a taxpayer is Black.
Taxpayers have been grouped into 100 equal-sized bins. Right: Estimated audit rates among Black and non-
Black taxpayers, calculated using the probabilistic audit rate estimator and the linear audit rate estimator
with BIFSG-predicted probabilities. Error bars show the 95% confidence interval based on the distribution
of estimates from 100 bootstrapped samples.

We can formally decompose the overall audit disparity into three components: (1) racial

differences in the audit rate among EITC claimants; (2) racial differences in the audit rate

among EITC non-claimants; and (3) racial differences in the rate at which taxpayers claim

the EITC, scaled by differences in the audit rate for EITC versus non-EITC returns:

Y B − Y NB =
(
Y B
C − YC

)
CB −

(
Y NB
C − YC

)
CNB︸ ︷︷ ︸

(1)

+
(
Y B
NC − YNC

)
(1− CB)−

(
Y NB
NC − YNC

)
(1− CNB)︸ ︷︷ ︸

(2)

+ (CB − CNB) (YC − YNC)︸ ︷︷ ︸
(3)

where CB and CNB denote the respective probabilities that Black and non-Black taxpayers

claim the EITC; Y B
C , Y NB

C , and YC denote the respective audit rates for Black, non-Black,

and all EITC claimants; and similarly for Y B
NC , Y NB

NC , and YNC with respect to EITC non-

claimants. We estimate that racial differences in the audit rate within EITC claimants

disparity for EITC non-claimants. In our linked North Carolina data set containing self-reported race, the
true racial audit disparity for this group is slightly larger than, but similar in magnitude to, the disparity
obtained from the linear disparity estimator (see Appendix Table A.7).
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Figure 4: Audit Rates by Income and Race

Notes: The figure shows the estimated audit rate by income among Black and non-Black taxpayers filing
returns for tax year 2014. Income is measured according to the adjusted gross income (AGI) reported on
the taxpayer’s return (i.e., prior to audit adjustments). Binned audit rates by race are determined using the
probabilistic estimator; Appendix Figure A.2 reports the corresponding analysis with the linear estimator.
The sample is limited to taxpayers reporting non-negative AGI. Taxpayers have been grouped into 20 equal-
sized bins, based on their AGI. The shaded area around each line shows the 95% confidence interval based
on the distribution of estimates from 100 bootstrapped samples. To facilitate presentation, the x-axis is
limited to bins with mean reported AGI under $200,000; a version of the figure with all income percentiles
is presented in Appendix Figure A.3.

contribute between 70% and 73% of the total disparity, with the remainder primarily due

to racial differences in the rate that taxpayers claim the EITC (20% to 21%) and a smaller

portion due to racial differences in the audit rate among taxpayers not claiming the EITC

(7% to 8%).21

We next explore the type of audits from which the disparity arises. Table 1 shows that

audit disparities appear to be largely driven by differences in the selection of correspondence

21Appendix D provides additional detail, as well as other potential decompositions. The relative
importance of these three components is sensitive to the decomposition considered and the choice of reference
group, but a consistent finding is that differences in audit rates among EITC claimants are an important
contributor to overall disparity—generating at least 32% and up to 83% of the total difference in audit rates.
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Figure 5: Audit Rates by Race and EITC Claiming

Notes: The figure shows the relationship between audits and race among taxpayers filing returns for tax year
2014, broken out by whether a taxpayer claims the EITC in that year. Left: Binned scatterplot of audit
rate by BIFSG-predicted probability Black by EITC claim status, with EITC claimants and non-claimants
each grouped into 100 equal-sized bins based on their estimated probability of being Black. EITC claimants
are represented by dark green dots and non-claimants by light gray x’s. Right: Estimated audit rate by
race and EITC claim status, calculated using the probabilistic audit rate estimator and the linear audit rate
estimator with BIFSG-predicted probabilities. Error bars show the 95% confidence interval based on the
distribution of estimates from 100 bootstrapped samples.

audits, whereas Black and non-Black taxpayers appear to be selected for field and office

audits at roughly similar rates.22 We observe disparities in both pre-refund and post-refund

audits, although the magnitude is larger in the former category than in the latter even

once we limit consideration to correspondence audits. Although audit disparities are largely

concentrated among EITC claimants, correspondence audits appear to drive the smaller

disparity we observe among EITC non-claimants as well. Among EITC claimants, 78.5% of

the observed audit disparity is attributable to audits conducted through the DDb program

(Appendix Table A.11).

We next explore heterogeneity in audit disparities within distinct groups of EITC

claimants. Figure 6 reveals significant absolute and relative disparities by race among

unmarried EITC claimants, particularly unmarried men. Strikingly, among unmarried

EITC claimants with dependents, the audit rate for Black men is over 4 percentage points

22The financial and time costs of being audited differ across these audit categories, as do the average
amounts of back taxes, penalties, and interest that are imposed. Appendix Tables A.8 and A.9 provide
back-of-the-envelope estimates for how audit burdens vary by race, accounting for these factors.
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Table 1: Updated Estimated Audit Rate Disparity

Audit Timing Audit Type
Any Pre Post Correspondence Field/

Audit Refund Refund Office
(1) (2) (3) (4) (5)

Panel A: Full Population
Probabilistic 0.813 0.569 0.244 0.804 0.010

(0.003) (0.002) (0.002) (0.003) (0.001)
Linear 1.345 0.941 0.403 1.328 0.016

(0.004) (0.003) (0.002) (0.004) (0.001)
Mean Audit Rate 0.526 0.243 0.283 0.433 0.094
N (Millions) 148.3 148.3 148.3 148.3 148.3

Panel B: EITC Population
Probabilistic 1.950 1.475 0.475 1.943 0.007

(0.008) (0.007) (0.004) (0.008) (0.001)
Linear 2.885 2.182 0.703 2.875 0.010

(0.009) (0.008) (0.005) (0.009) (0.002)
Mean Audit Rate 1.443 0.956 0.487 1.356 0.087
N (Millions) 28.3 28.3 28.3 28.3 28.3

Panel C: Non-EITC Population
Probabilistic 0.102 0.005 0.097 0.088 0.013

(0.002) (0.001) (0.002) (0.002) (0.001)
Linear 0.180 0.009 0.171 0.156 0.024

(0.003) (0.001) (0.002) (0.002) (0.001)
Mean Audit Rate 0.310 0.075 0.235 0.215 0.096
N (Millions) 120.0 120.0 120.0 120.0 120.0

Notes: The table reports probabilistic and linear estimates of the difference in audit rates between Black
and non-Black taxpayers filing income tax returns for tax year 2014. Units are percentage points (0-100).
The category of audit considered varies across columns; for example, the results in column (4) show the
estimated difference in the rate that Black versus non-Black taxpayers are selected for a correspondence
audit. Panel A includes all taxpayers, whereas Panels B and C restrict the analysis to EITC claimants and
non-claimants, respectively. Standard errors, reported in parentheses, are calculated from the asymptotic
distributions described in Appendix B.3. See Appendix Tables A.5 and A.6 for estimates of audit rate levels
by race.

larger than the audit rate for non-Black men, and both are an order of magnitude larger

than the audit rate for the overall U.S. population. In contrast, we observe smaller racial

audit disparities among joint filers, unmarried women, and unmarried men who do not

claim dependents, although the ratio of audit rates among Black to non-Black taxpayers
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Figure 6: Audit Rate Disparities by EITC Subgroup

Notes: The figure shows the estimated audit rate among the specified subgroups of Black and non-Black
EITC claimants. Conditional audit rates by race are calculated using the probabilistic audit rate estimator
applied to BIFSG-predicted probabilities that a taxpayer is Black. Panel (1) splits EITC claimants by
single vs joint filers; (2) splits single EITC claimants by taxpayer gender; and (3) splits single men claiming
the EITC by whether they claim dependents. A similar analysis, corresponding to the linear estimator, is
presented in Appendix Figure A.6

remains substantial among these groups.23

We conduct a number of analyses to assess the robustness of our results to alternative

approaches for estimating taxpayer race, reported in Appendix Table A.12. First, recall that

27% of the taxpayers in our sample are missing one or more of the variables used to impute

race; Column 1 re-estimates the racial audit disparity after excluding this group. Second,

as an alternative to BIFSG, in Column 2 we re-estimate predicted race using additional

individual characteristics and relaxing the naive Bayes independence assumption with Gibbs

sampling (see Appendix B.6 for details). Third, our BIFSG race probability estimates are

derived from samples that are designed to be representative of the overall U.S. population,

23Appendix Figure A.7 reports estimates of the conditional covariance terms from Proposition 1.3 for each
subgroup in Figure 6. In each case, the terms are estimated to have the expected sign, with the exception
of the term associated with joint filers claiming the EITC. Hence, the linear estimator may not identify an
upper bound on disparity for that group.
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not the subset of the population that files taxes or claims the EITC. As discussed in Section

3, such mis-calibration can shape the bias of our disparity estimators. In Appendix B, we

formally derive this bias and use the result to re-calibrate our race probability estimates,

treating the North Carolina data as ground truth (Columns 3 and 4).24 Fourth, we can

avoid imposing BIFSG’s conditional independence assumption if race is imputed based on

geography alone rather than on geography and name. Column 5 replicates our main results

using this simpler proxy.25 Across columns, the results are largely unchanged from our

baseline approach.

A different potential concern with our analysis is that the matched North Carolina data

that we use to validate our identifying assumptions may not be representative of the national

population, even after re-weighting. To assess this possibility, we matched our sample to

voter registration data in six other states in which race is recorded and estimated the key

covariance terms from Proposition 1. Across states, we obtain substantially similar results

(Appendix Figure A.13).26

Finally, our results thus far have focused on returns for tax year 2014. To confirm the

patterns we observe are not limited to that year, we estimate disparity among all taxpayers

(Appendix Figure A.14) and among EITC claimants (Appendix Figure A.15) for tax years

2010, 2012, 2016, and 2018. In each case, we obtain comparable results to those from 2014.

24Appendix Figures A.8 and A.9 contain results from the analogous exercise applied to the income bins
and demographic groups reported in Figures 4 and 6.

25For additional detail on the geography-based estimates, see Appendix Figures A.10 and A.11 and
Appendix Table A.13

26A limitation of the matched data from states other than North Carolina, and the reason we do not rely
on them for our main analysis, is that they are drawn from voting records for 2023; as expected, this leads
to a much lower match rate. Separately, a recent working paper independently confirms the existence of the
audit rate disparity in a matched national sample of residents in certain tax-subsidized apartments (Derby
et al., 2024).
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7 What Causes the Racial Audit Disparity Among

EITC Claimants?

Because the racial audit disparity appears concentrated among EITC claimants, our

remaining analyses focus on this population of taxpayers. As discussed above, we are

confident that the disparity for this group is not due to disparate treatment in audit

selection because the vast majority of EITC returns are selected for audit based on

automated processes, and these processes do not include race as an input. In this section,

we explore how group-level differences in taxpayer characteristics, as well as choices related

to the design of the audit selection algorithm, might contribute to the observed

disparity.To simplify exposition, in this section we rely primarily on the probabilistic

estimator; we obtain qualitatively similar results using the linear disparity estimator

(reported in Appendix A).

7.1 Differences in Underreporting

We first investigate whether the observed audit disparity can be explained by differences in

the distribution of underreporting between Black and non-Black EITC claimants. By

underreporting, we mean the difference between a taxpayer’s correct income tax obligations

for a tax year (which may be negative in the case of a taxpayer qualifying for refundable

credits) and the tax obligations reported on the taxpayer’s return. For example,

underreporting may arise from reporting too little income, too many deductions, or from

claiming a credit for which the taxpayer does not qualify. Underreporting may be

intentional or inadvertent, and may be due to decisions by either the taxpayer or a tax

preparer.
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7.1.1 Differences in Actual Underreporting

A challenge in studying whether the observed disparity is due to racial differences in the

distribution of underreporting is that we observe underreporting only among those taxpayers

who were selected for audit. We can circumvent this obstacle by combining non-random

operational audits with data from randomly selected NRP audits. That is, using Bayes rule,

we can express the audit rate for taxpayers of race j and underreporting amount k as:

Pr[Y = 1|B = j,K = k] = Pr(K = k|Y = 1, B = j)
Pr(Y = 1|B = j)

Pr(K = k|B = j)
.

From this equation, we can estimate the racial audit disparity at a given level of

underreporting using: the estimated audit rates by race for EITC claimants from Figure 5

for Pr(Y = 1|B = j); the NRP data to estimate Pr(K = k|B = j); and the detected

underreporting from the operational audit results to estimate Pr(K = k|Y = 1, B = j).27

The results of this analysis are presented in Figure 7, with EITC claimants binned

according to their underreported taxes. The figure shows that the distribution of

underreporting for Black EITC claimants tends to be concentrated at higher values than

for non-Black EITC claimants. However, within each underreporting bin, the estimated

audit rate for Black taxpayers exceeds that of non-Black taxpayers, and for many bins, the

difference is substantial. Figure 7 therefore provides evidence that differences in audit rates

remain when comparing Black and non-Black taxpayers with similar levels of

underreporting.28

27With respect to the last term, operational audits may not detect all of a taxpayer’s underreporting
because, unlike the NRP, operational audits do not assess each issue on the return. In practice, this concern
is lessened by the fact that the issues worked by operational audits tend to be those where underreporting
is suspected. Conversely, although they are intensive, even NRP audits may miss some underreporting, and
differential mis-measurement of underreporting by race could distort our results. For differences between
NRP and operational audit scope to affect this analysis, those differences would have to vary by race. In
addition, the factors that have been found to induce inaccuracies in NRP audit results are concentrated
at the top of the income distribution (Guyton et al., 2021); hence, we do not expect this concern to be
important for the EITC population – our focus here. See Appendix B.7 for further details.

28A limitation of this analysis is that the relatively small degree of overlap between the EITC NRP sample
and the matched NC data set limits our ability to re-calibrate the disparity estimates by underreporting bin,
as we did with the subgroup disparity estimates presented in Appendix Figures A.8 and A.9.
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Figure 7: Racial Audit Disparity Among EITC Claimants by Underreported Taxes

Notes: The figure shows the estimated audit rates for Black and non-Black EITC claimants, respectively, by
under-reported taxes. Taxpayers are binned into 11 categories: those with less than $1 of underreporting,
and 10 equal deciles of taxpayers with positive underreporting. Underreporting deciles are defined based
on the distribution of underreporting among EITC claimants, as measured by NRP audits. Bin labels on
the x-axis reflect the upper dollar limit of each underreporting bin (rounded for confidentiality). Estimated
audit rates by race are calculated using the probabilistic estimator. All analyses account for NRP sampling
weights. Brackets reflect the estimated 95% confidence interval, derived from bootstrapped standard errors
(N=100). The bars show the estimated share of Black and non-Black taxpayers, respectively, that fall into
each underreporting bin. A similar analysis, corresponding to the linear estimator, is presented in Appendix
Figure A.16.
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Figure 7 highlights the relationship between underreporting and audits throughout the

underreporting distribution; in contrast, our next analysis zooms in on the extreme right tail

of the underreporting distribution. The motivation for doing so is that the IRS selects less

than 1.5% of EITC returns for audit; it could be that Black taxpayers are over-represented

among EITC claimants with the highest underreporting. If so, selecting from this population

could generate the higher observed audit rate for that group.

To explore this possibility, we simulate an “oracle” selection algorithm, which prioritizes

returns for audit according to the actual dollar amount of underreporting that would be

detected if the return were audited.29 We treat the set of NRP-audited returns—for which

we know true underreporting—to be the population, and pretend that we must select some

subset of returns from this population to audit. To implement the oracle, we rank each

return in this population based on its under-reported taxes. Then, in descending order of

this ranking, we select returns for audit until some pre-specified audit rate has been reached.

For each audit rate that we consider, we calculate (1) the sum of detected underreporting

over the audited taxpayers, and (2) the racial audit disparity that would be induced by this

selection process.30

The results of this analysis are shown by the line labeled “Total Underreporting Oracle”

in Figure 8. As a benchmark, the Figure also reports total detected underreporting and

disparity from audits of tax year 2014 returns claiming the EITC, indicated by the dashed

red lines and labeled “Status Quo”. At each audit rate considered, the underreporting oracle

selects Black taxpayers at a lower rate than the status quo, and, more strikingly, at a lower

rate than non-Black taxpayers. Thus, although Figure 7 shows that the distribution of

underreporting for Black EITC claimants tends to be concentrated at higher values than

29Because the actual amount of underreporting on a return cannot be known before an audit is conducted,
such an algorithm is not feasible for the IRS to implement; we consider it as a benchmark before turning to
predicted underreporting below.

30Throughout, we use “detected underreporting” as shorthand for total recommended adjustments from
audit, not accounting for appeals or uncollected tax debts. We report annualized detected underreporting,
accounting for NRP sample weights, and adjusting for the fact that our NRP data pools multiple tax years;
see Appendix E for details.
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for non-Black EITC claimants, these results suggest that the EITC claimants with the very

largest underreporting are disproportionately non-Black.

Figure 9 illustrates this contrast more directly. In Section 6, we estimated that the status

quo audit rate for non-Black EITC claimants was 1.04% compared to 3.00% for Black EITC

claimants. In contrast, if EITC claimants were selected for audit according to their true

underreporting, the audit rate for non-Black EITC claimants would be 1.63% compared to

0.74% for Black EITC claimants. We interpret this result, in conjunction with the different

audit rates by race within underreporting bins in Figure 7, as evidence that the observed

audit disparity cannot be entirely explained by group-level differences in underreporting by

race.

7.1.2 Differences in Predicted Underreporting

In practice, the actual amount of a taxpayer’s underreporting is unknown at the time that

auditing decisions are made. We now ask whether the observed audit disparity is due to the

IRS relying on predicted, rather than actual, underreporting in selecting which returns to

audit.

To study this question, we train a random forest model to predict taxpayer underreporting

(in dollars) based on features that the tax authority can observe at the time of the audit

decision. The model is trained on NRP returns claiming the EITC, and largely incorporates

the same features available to the DIF and DDb programs to select audits of EITC claimants

— information reported on tax returns supplemented with additional administrative data

available to the IRS.31 We then simulate selecting taxpayers in descending order of the

model’s predictions, until some specified audit rate has been reached. In other words, the

approach is the same as the underreporting oracle, except that returns are selected for audit

on the basis of predicted, rather than actual, underreporting.

The dark purple line in Figure 8 shows detected underreporting and disparity induced by

31Additional detail on the predictive model is provided in Appendix E.
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the predicted underreporting algorithm. Unsurprisingly, selecting audits based on predicted

underreporting yields significantly less detected underreporting than the oracle at any given

audit rate. However, like the underreporting oracle, the underreporting prediction algorithm

selects Black taxpayers for audit at lower rates than non-Black taxpayers at each audit rate

we consider. At the status quo audit rate, selecting EITC claimants for audit based on

predicted underreporting would yield an audit rate of 0.45% for Black taxpayers and 1.71%

for non-Black taxpayers. Hence, the fact that the IRS must select audits based on predicted

rather than actual noncompliance does not, in itself, appear to explain the observed audit

disparity.

7.2 Algorithmic Objective: Refundable Credit Overclaims

In this subsection, we explore the possibility that the observed audit disparity arises because

the IRS selects among EITC returns for audit based on some objective other than maximizing

the detection of underreported taxes. In particular, we consider the effect on disparity of

allocating audits based on (1) the amount of underreporting attributable to overclaimed

refundable credits, rather than (2) the total amount of underreported taxes (from whatever

source).

To do so, we compare the audit selection algorithms described in the prior subsection

that focus on total underreporting with algorithms that focus exclusively on refundable

credit overclaims. Specifically, we consider two new algorithms (both of which are depicted

in Figure 8). The first is a refundable credit oracle, which ranks returns by the sum of

actual underreporting (in dollars) attributable to the three refundable credits designated

by OMB as high-priority programs susceptible to significant improper payments: the

EITC, the Additional Child Tax Credit, and the American Opportunity Tax Credit. As

with the total underreporting oracle, the refundable credit oracle is not feasible to

implement in practice because the actual amount of overclaimed refundable credits cannot

be known with certainty before the audit occurs, but serves as a useful benchmark. The
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Figure 8: Detected Underreporting and Disparity by Algorithm

Notes: The figure shows estimated disparity (y-axis) and annualized detected underreporting (x-axis) under
alternative algorithms for selecting audits of EITC claimants and under alternative audit rates (0.1% to 3%).
For each algorithm, returns claiming EITC in the NRP sample are first ranked and then selected for audit
in descending order of the ranking until the specified audit rate is reached. The ranking varies by algorithm
and is based on: total underreporting (dark blue line), predicted total underreporting (dark purple line),
underreporting due to overclaimed refundable credits (light blue line), and predicted underreporting due to
overclaimed refundable credits (light purple line). The point labeled “Status quo” shows estimated disparity
and total underreporting from the 1.45% of EITC returns selected for audit from the population of tax year
2014 returns. The labeled points along each line correspond to the audit rate specified in the label; the
audit rate corresponding to the status quo EITC audit rate (1.45%) is denoted by a larger dot. Disparity is
calculated using the probabilistic disparity estimator; see Appendix Figure A.17 for results using the linear
disparity estimator. Shaded regions around each line correspond to 95% confidence intervals for disparity
calculated based on the distribution of estimates from 100 bootstrapped samples. Annualized detected
underreporting is the sum of detected underreporting (positive or negative) among returns selected for audit
under the specified algorithm, scaled to reflect our use of five years of NRP data. All analyses incorporate
NRP sampling weights. The two prediction algorithms are based on random forest regression models. See
Appendix E for additional detail.
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second new algorithm is based on predicted refundable credit overclaims; it ranks returns

by the output of a random forest regressor trained to predict the sum of underreporting

attributable to the same three refundable credits. After ranking, both algorithms select

returns for audit in descending rank order until a specified audit rate is reached. In other

words, the two refundable credit algorithms mirror the two total underreporting algorithms

described above; the only difference is that the ranking used to selected audits is based on

overclaimed refundable credits—actual overclaims in the case of the oracle and predicted

overclaims in the case of the prediction algorithm—rather than total underreporting.

As shown in Figure 8, the refundable credit algorithms detect substantially less

underreporting than the algorithms focused directly on that objective, indicating that

refundable credit overclaims are not the only important source of underreporting among

EITC claimants. With respect to disparity, both refundable credit algorithms yield

opposite-signed results compared to the algorithms focused on total underreporting: they

select Black taxpayers at higher rates than non-Black taxpayers. As highlighted in Figure

9, selecting EITC claimants for audit based on actual refundable credit overclaims while

holding the overall audit rate of EITC claimants fixed at the status quo level would lead to

an audit rate of 2.31% for Black EITC claimants, compared to 1.23% for non-Black EITC

claimants. Similarly, selecting audits according to predicted refundable credit overclaims

would lead to an audit rate of 2.84% for Black EITC claimants, compared to 1.09% for

non-Black EITC claimants. We interpret these results as evidence that targeting the

detection of overclaimed refundable credits leads to a larger share of Black taxpayers being

selected for audit compared to targeting the detection of total underreporting.

Does the objective of the audit selection algorithm actually contribute to the audit

disparity we document in Section 6? Several pieces of evidence suggest that it does. First,

public governmental documents describe the goal of the DDb audit program — the IRS’s

primary EITC audit selection tool during our sample period — to be the identification of
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Figure 9: Group-Specific Audit Rates by Algorithm

Notes: The figure reports estimated audit rates for Black and non-Black EITC claimants that would be
induced by the algorithms considered in Figure 8 under an assumed audit rate of 1.45%. The population
of tax returns available for audit is based on the NRP sample of taxpayers claiming the EITC; see notes
to Figure 8 for additional detail. Status quo refers to the estimated audit rates by race for tax year 2014
returns claiming the EITC, reported in Figure 5. Audit rates by race are estimated using the probabilistic
estimator; see Appendix Figure A.18 for results using the linear estimator.
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taxpayers who do not meet refundable credit eligibility requirements (G.A.O., 2015).32

Second, the results in Figure 8 suggest that the predicted refundable credit algorithm

serves as a good proxy for the amalgamation of (confidential) IRS programs and algorithms

through which EITC audit selection occurs. In particular, the Figure shows that when we

select audits based on our predictions of refundable credit overclaiming, where our

predictions are based on largely the same features and training data that are available to

IRS, we obtain a similar disparity as we observe among the returns actually selected by

IRS for audit. Finally, as shown in Appendix Figure A.19, operational audits of EITC

returns are strongly associated with predicted refundable credit overclaims; in contrast we

observe a much lower association between operational audits and predicted total

underreporting. For these reasons, we interpret our results to support the conclusion that

the IRS’s choice of algorithmic objective is an important contributor to the observed

disparity in EITC audit rates.

The next subsection unpacks this conclusion, exploring why the audit selection objective

shapes the distribution of audits by race.

7.2.1 Why Algorithmic Objective Shapes Audit Disparity

To understand why the objective of the audit selection algorithm shapes the distribution of

audits of EITC claimants by race, we explore racial differences in the distribution of various

forms of tax non-compliance. To do so, we draw on the richness of the NRP data to identify

specific types of errors present on EITC claimants’ returns, and consider the prevalence of

these errors among EITC claimants that would be selected under each of the audit selection

algorithms considered in Figure 8. The results are presented in Table 2. As expected, returns

selected by the refundable credit oracle tend to have higher refundable credit overclaims than

those selected by the total underreporting oracle ($8,191 vs $3,909 on average), but smaller

total adjustments to the taxpayer’s claimed refund or balance due ($9,595 vs $22,578 on

32Our main results are not limited to DDb-selected audits but Appendix Table A.11 confirms the presence
of a disparity for this subset of audited returns.
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average).

Table 2: Audit-Selected Tax Returns by Algorithm

Total
Underreporting

Oracle

Refundable
Credit
Oracle

Total
Underreporting

Prediction

Refundable
Credit

Prediction

Any Underreporting (%) 100.0 100.0 90.2 89.1

Mean Underreporting ($) 22,578 9,595 10,164 5,952

Any Refundable Credit Overclaiming (%) 91.4 100.0 81.8 85.5

Mean Refundable Credit Overclaiming ($) 3,909 8,191 2,174 5,144

Dependent Error Rate (%) 27.1 79.8 3.6 33.1

Head of Household Error Rate (%) 17.7 71.3 4.3 61.8

Any Business Income Underreporting (%) 85.7 27.0 83.9 31.4

Probabilistic Disparity (p.p.) -0.9 1.1 -1.3 1.8

Linear Disparity (p.p.) -1.3 1.7 -1.9 2.6

Notes: The table reports characteristics of the tax returns that would be selected for audit by each of the
algorithms considered in Figure 8 under an assumed audit rate of 1.45%. The population of tax returns
available for audit is based on the NRP sample of taxpayers claiming the EITC; see notes to Figure 8 for
additional detail. Noncompliance is measured based on NRP audit adjustments. “Dependent Error Rate”
refers to the share of tax returns that had one or more dependents living with the taxpayer reduced upon
audit. “Head of Household Error Rate” refers to the share of tax returns filing as head of household but found
ineligible to do so upon audit. “Any Business Income Underreporting” refers to the share of tax returns with
positive underreporting of Schedule C Net Income. The final two rows report estimated disparity; units are
percentage points (0-100).

More striking is the different profile of taxpayer errors pursued by the different audit

selection algorithms. The vast majority (80%) of returns selected by the refundable credit

oracle contained a dependent error – that is, the audit determined that at least one of

the dependents claimed on the return was not eligible to be claimed by the taxpayer –

compared to only 27% of returns selected by the underreporting oracle. In contrast, 86%

of returns selected by the underreporting oracle underreported income from a taxpayer’s
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business, compared to only 27% of returns selected by the refundable credit oracle.33 This

pattern arises because eligibility for many refundable credits is linked to children; hence, the

detection of erroneously claimed dependents tends to be associated with large reductions

in refundable credits. At the same time, the contribution of refundable credit overclaims

to total underreporting is necessarily bounded by the maximum credit amount, whereas

detecting underreported income can lead to arbitrarily large increases in tax liability. Hence,

the largest adjustments to total tax – i.e., those prioritized by the underreporting oracle –

primarily stem from returns with large amounts of underreported income.

We next explore whether the type of error on which an algorithm focuses shapes the racial

distribution of taxpayers selected for audit. We find evidence that it does. In particular, we

estimate that erroneously claimed dependents are more common among Black taxpayers than

non-Black taxpayers (Table 3). As a result, audit selection processes that are (implicitly)

trained to detect dependent mistakes tend to select Black taxpayers at higher rates.34

In contrast, the bottom rows of Table 3 suggest that Black taxpayers are less likely to

be selected by audit algorithms focused on total underreporting because they are

disproportionately under-represented among those taxpayers with the largest amounts of

underreported business income. That is, among EITC claimants are a group of taxpayers

who have high (actual) incomes but who underreport their incomes to such a degree that

they appear eligible for the EITC. Auditing the business income and deductions claimed by

taxpayers in this group yields large upward adjustments to tax liability, which is why they

are prioritized by algorithms that focus on total underreporting. Because taxpayers in this

group are disproportionately non-Black, audit algorithms focused on total underreporting

tend to select Black taxpayers at lower rates.

33The two prediction algorithms differ from one another in a similar manner.
34It is beyond the scope of this paper to explore why child-claiming errors vary by race, but one factor that

likely contributes is the lower marriage rate among Black Americans in conjunction with credit eligibility
rules that prevent cohabitating individuals from claiming the child of an unmarried partner, even if they
contribute to the child’s support (Maag et al., 2016; Goldin and Jurow Kleiman, 2021). Along these lines,
Michelmore and Pilkauskas (2022) find that Black children are more likely to reside in families with complex
or ambiguous tax filing situations.
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Table 3: Types of Tax Noncompliance by Race

Probabilistic Estimate Linear Estimate

Black
Taxpayers

Non-Black
Taxpayers

Black
Taxpayers

Non-Black
Taxpayers

Claims Dependent 73.0 69.4 74.6 69.3

Dependent Error Rate 26.6 16.3 30.8 15.4

Head of Household Error Rate 33.5 19.3 39.1 17.8

Any Business Income 19.0 21.7 17.9 22.0

Any Business Income Underreporting 15.9 18.1 15.0 18.4

Underreported Business Income is Among Top...

10% 1.03 1.97 0.66 2.06

5% 0.40 1.01 0.17 1.07

1% 0.05 0.21 -0.01 0.23

Notes: The table reports estimates of the characteristics of tax returns filed by Black and non-Black
taxpayers. Analyses are based on the NRP sample of taxpayers claiming the EITC. All analyses account
for NRP sampling weights. “Dependent Error Rate” refers to the share of tax returns that had one or more
dependents living with the taxpayer reduced upon audit. “Head of Household Error Rate” refers to the share
of tax returns filing as head of household but found ineligible to do so upon audit. Business Income refers
to net income reported on Schedule C of a tax return. The final three rows report the shares of taxpayers
with business income underreporting within the top 90th, 95th, and 99th percentiles of the distribution of
positive business income underreporting.

7.2.2 Algorithmic Objective and IRS Operational Considerations

Modifying the objective of the IRS audit selection algorithm could have a range of

downstream implications for the agency’s enforcement operations beyond the change in the

identity of the audited taxpayers. One channel through which this could occur is a change

in the composition of the issues upon which audits focus. As discussed in the prior

subsection, switching from an algorithm focused on overclaimed refundable credits to one
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focused on total underreporting is likely to shift the focus of examinations away from

dependent eligibility issues and toward issues related to the proper reporting of business

income and deductions.

What would this change in focus mean from an operational perspective? A likely

consequence would be an increase in per-return auditing costs.35 EITC returns differ from

one another in terms of the number of hours required to conduct an audit as well as the

training and experience required of the auditor. An important driver of this variation is the

presence of business income: on average, EITC returns with substantial business income

cost the agency $369.70 per return to audit, compared with $23.09 for other EITC

returns.36 By increasing the share of audits of EITC claimants that are focused on issues

relating to business income, the change in algorithmic objective would increase average

auditing costs by increasing the examiner resources required to conduct each exam.

To quantify the magnitude of this effect, Appendix Figure A.20 plots audit costs by

algorithm based on the share of returns with substantial business income that each algorithm

selects. Holding the current EITC audit rate fixed, switching from an algorithm focused on

refundable credit overclaims to one focused on total underreporting would increase the share

of audited returns with substantial business income from 3% to 93%, and would raise EITC

examination costs by nearly an order of magnitude (Appendix Table A.15). This result

suggests that switching algorithmic objectives may, in practice, require that the IRS reduce

the total number of EITC returns it audits, at least in the short-term where the amount of

examiner resources available for EITC audits may be relatively fixed.37

35The merits of accounting for auditing costs in selection raises difficult normative considerations that are
outside the scope of this project; for example, it may be unfair (or generate perverse incentives) for the IRS
to avoid auditing those taxpayers most likely to vigorously contest their assessment. Similarly, the cheapest
correspondence audits for the IRS to conduct are those for which a refundable credit is disallowed because
the taxpayer does not respond. However, non-response to an audit does not necessarily signal ineligibility
for a credit, and is more common among Black taxpayers.

36These cost estimates are calculated from operational audits based on the average time logged by IRS
employees dealing directly with the case multiplied by the applicable General Schedule payscale given the
employee level. The classification of returns into those with and without substantial business income follows
the IRS’s internal classification of EITC returns into activity codes 270 and 271 based on whether the return
reports gross business receipts in excess of $25,000 (see Appendix Table A.14).

37To illustrate the potential effects of this type of constraint, Appendix Figure A.21 replicates Figure 8,
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At the same time, Appendix Figure A.20 also shows that the increase in detected

underreporting from the change in algorithmic objective would substantially exceed the

increase in audit costs. Intuitively, EITC returns with business income are more difficult to

audit, but yield much higher adjustments on average when an audit is undertaken. As

such, the qualitative pattern in Figure 8 is largely unchanged when audits are allocated in

a manner that accounts for the higher cost of auditing EITC returns claiming business

income (Appendix Figure A.22). We therefore conclude that although prioritizing total

underreporting would increase per-return audit costs, reforms to reduce disparity need not

conflict with the policy goal of deploying audits to efficiently detect tax noncompliance.38

7.3 Algorithmic Bias in Refundable Credit Prediction

Thus far we have focused on the difference between the disparity induced by the total

underreporting algorithms compared to the disparity induced by the overclaimed

refundable credit algorithms. However, Figure 8 also highlights that the observed status

quo disparity (1.96 p.p.) is substantially larger than the disparity induced by the

refundable credit oracle (1.08 p.p.). This suggests that some of the observed disparity is

attributable to factors beyond the choice of algorithmic objective. In other words, the

status quo disparity is larger than what we would expect to observe even conditioning on

the audit selection objective being the detection of refundable credit overclaims.

Additional evidence for this hypothesis is provided in Appendix Figure A.25, which shows

that racial disparities in audit rates remain when comparing EITC claimants with similar

levels of refundable credit overclaims.

Beyond algorithmic objective, one factor that could contribute to the observed audit

holding fixed the share of audits allocated to returns with substantial business income. Doing so raises
the share of Black taxpayers selected by the total underreporting algorithms, but not to the level of the
refundable credit algorithms or to the status quo disparity.

38The analyses in this subsection assume the operational audits from which the cost estimates were derived
were focused on the same issues as would be selected under the various algorithms considered. We obtain
qualitatively similar results when relying on a more conservative (potentially inflated) measure of auditing
costs, derived from the hours that auditors report spending on NRP audits (which cover nearly all potential
issues on a return); see Appendix Figures A.23 and A.24.
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disparity is if the prediction errors underlying the status quo audit selection algorithm were

unevenly distributed by race. A large literature in algorithmic fairness documents how

data-driven predictive models may exacerbate ground-truth group-level differences in the

outcome being predicted (e.g., Leino et al., 2018; Reich, 2021). Figure 8 provides some

initial evidence that this may be occurring in our setting: the disparity induced by the

refundable credit prediction model (1.75 p.p.) is similar in magnitude to the status quo

disparity and approximately 60% larger than the disparity induced by the refundable credit

oracle. Since the refundable credit model shares the same objective and data as the IRS,

this raises the possibility that the predictive models used by IRS for pursuing refundable

credit overclaims may be amplifying the audit disparity that would emerge due to actual

differences by race in the distribution of refundable credit overclaiming and selection along

those lines.

In Online Appendix F, we investigate the role of differential prediction errors by race in

generating the observed disparity. Beginning with our simulated algorithms, we find that

errors in predicting refundable credit overclaims are unevenly distributed by race in a

manner that may contribute to higher audit rates for Black taxpayers. Turning to IRS

operational models, we document uneven errors in the risk measure used by the IRS’s DDb

model to predict the likelihood that a child has been incorrectly claimed. We also

investigate missingness of parental information on the birth certificate data that IRS uses

to help determine whether the children claimed on tax returns meet the required eligibility

criteria. We find that whereas birth certificates are missing maternal information at

roughly equal rates by race, the birth certificates of children claimed on the returns of

Black taxpayers are substantially more likely to be missing information about the identity

of the father. Finally, we provide suggestive evidence that there may be opportunities to

reduce audit disparities without substantially degrading accuracy by adjusting the features

used to form predictions about overclaimed refundable credits.39

39The Online Appendix explores a number of additional factors apart from prediction errors that could
potentially also contribute to the observed audit disparity. As detailed in that appendix, we find no evidence
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8 Conclusion

In this paper, we found that Black taxpayers are audited at a higher rate than non-Black

taxpayers, and that this is primarily due to differences in the audit rate between Black

and non-Black EITC claimants. In addition, we found that the audit selection objective

for EITC returns contributes to this observed disparity, in conjunction with differences by

race in the types of errors that EITC claimants tend to make. In particular, we found that

designing audit selection algorithms to maximize the detection of overclaimed refundable

credits leads to Black EITC claimants being selected at higher rates, whereas designing such

algorithms to maximize the detection of total underreporting (from any source) yields the

opposite pattern. We interpret our results to suggest that policymakers seeking to reduce

the observed audit disparity should consider reorienting audit selection (at least in part)

around the goal of maximizing the detection of total underreporting rather than prioritizing

noncompliance from refundable credit overclaims. More generally, while the proper focus of

tax enforcement has been debated for decades, our findings shed new light on how competing

enforcement priorities shape the distribution of audits by race.

We emphasize that implementing a change in audit selection objectives is not as simple

as swapping one predictive model for another. In particular, we found that modifying the

algorithmic objective to focus on total underreporting would have important downstream

effects on the composition of audited EITC returns – shifting audits away from issues of

dependent eligibility and toward issues relating to the accuracy of taxable business income.

Audits in the latter category require more resources — both auditor time and expertise

— compared to most audits of EITC returns today. Although we found that the increase

in detected underreporting would exceed the increase in examiner costs, implementing this

that the observed disparity is substantially driven by racial differences in the distribution of EITC claimants’
reported income, household composition, or use of a tax preparer. We also provide evidence that the observed
disparity is not driven by racial differences in the distribution of high-information (“smoking gun”) signals
of non-compliance, or by the use of “regression” models trained to maximize dollars of detected refundable
credit overclaims as opposed to “classification” models trained to maximize the probability that audited
returns overclaim a refundable credit by at least some (specified) amount.
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type of change in the short-term would likely require that the IRS conduct fewer audits of

EITC returns while devoting more resources per audit. Longer term, the IRS may be able to

reduce the cost of auditing the issues identified by algorithms focused on total underreporting

by conducting a greater share of such audits by correspondence (e.g., mailing requests for

documentation of claimed business deductions). The IRS recently announced that it plans

to study this possibility (IRS, 2023b).

Although the IRS is responsible for audit selection, some of the factors we have identified

as contributing to the observed audit disparity are shaped by forces outside the IRS’s control.

For example, Congress sets the rules governing credit eligibility — which may contribute to

more mistakes among Black taxpayers due to racial differences in family structure — and

IRS funding — which shapes the ability of the agency to allocate resources to complex cases.

In contrast, the IRS is not compelled by Congress to prioritize refundable credit overclaims

over other forms of tax non-compliance.

We note several limitations to our work. First, we have focused our investigation on audit

disparities for Black taxpayers, which has been the subject of significant scholarly and policy

interest. Investigating audit disparities for other racial and ethnic groups is an important

avenue for future work, with potentially differing causes and opportunities for mitigation.40

Similarly, although we have focused on audit disparities among EITC claimants, our analysis

also suggests (smaller) disparities among higher income taxpayers, for whom we cannot rule

out the possibility of disparate treatment (since audit selection of higher income taxpayers

may not be fully automated).

Second, we have focused on audit selection algorithms designed to detect

underreporting, but policymakers may prioritize other objectives as well, such as deterring

non-compliant behavior, avoiding audits of compliant taxpayers, transparency, and

promoting a fair distribution of audited returns by income. Relatedly, our analysis of

counterfactual audit algorithms does not account for the full set of constraints facing tax

40See Derby et al. (2024) for a discussion of these issues and some evidence concerning audit disparities
with respect to other racial and ethnic groups.
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authorities like the IRS, such as the types of compliance issues that can be explored

through correspondence audit, or differences in audit response rates or dollars collected

depending on whether the audit is pre- versus post-refund. A more complete optimal

policy analysis would require accounting for these additional considerations.

Finally, audit selection constitutes only one dimension in which tax administration may

differently affect taxpayers by race. Disparities may also exist in how the audit is conducted,

and with respect to such processes as collections, appeals, settlements, and guidance (Bearer-

Friend, 2021; Book, 2021). The approach described in this paper can serve as a foundation

to explore disparities in these areas as well.
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A Additional Tables and Figures

Figure A.1: Distribution of Race Imputations for Known Black and Non-Black Taxpayers

Notes: Left: The figure shows the distribution of BIFSG-predicted probabilities that a taxpayer is Black
(non-Hispanic) for non-Black taxpayers in our matched North Carolina sample. Right: The figure shows
the distribution of BIFSG-predicted probabilities that a taxpayer is Black (non-Hispanic) for Black (non-
Hispanic) taxpayers in our matched North Carolina sample.

Appendix-2



Figure A.2: Audit Rate Disparity by Income (Linear Estimator)

Notes: The figure shows the estimated audit rate by income among Black and non-Black taxpayers filing for
tax year 2014 using the linear estimator. Income is measured according to the Adjusted Gross Income (AGI)
reported on the taxpayer’s return (i.e., prior to audit adjustments). The sample is limited to taxpayers
reporting non-negative AGI. Taxpayers are grouped into 20 equal-sized bins. The shaded area around each
line shows the 95% confidence interval based on the distribution of estimates from 100 bootstrapped samples.
. To facilitate presentation, the x-axis is limited to bins with mean reported AGI under $200,000; a version
of the figure with all income percentiles is presented in Appendix Figure A.3.

Appendix-3



Figure A.3: Audit Rate Disparity by Income (All Income Percentiles)

Notes: Left: The figure shows the probabilistic estimate of audit rate by income percentile among Black and
non-Black taxpayers filing returns for tax year 2014. Income is measured according to the adjusted gross
income (AGI) reported on the taxpayer’s return (i.e., prior to audit adjustments). The sample is limited
to taxpayers reporting non-negative AGI. Taxpayers have been grouped into 100 equal-sized bins, based on
their AGI. Right: The figure shows the corresponding analysis to the left panel, but estimating binned audit
rates using the linear estimator instead of the probabilistic estimator.
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Figure A.4: Covariance Condition Estimates for Income Bins

Notes: The figure displays the estimated covariance between audits and self-reported race, conditional on
estimated race, as well as the estimated covariance between audits and estimated race, conditional on self-
reported race, for each income bin reported in Figure 4. The estimates are calculated from the matched
sample of North Carolina taxpayers, using the weights described in Appendix C. Brackets denote 95%
confidence intervals.
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Figure A.5: Audit Rates by EITC Claim Status

Notes: The figure shows the relationship between audits and EITC claim status among taxpayers (of any
race) filing returns for tax year 2014. Left: Binned scatterplot of EITC claim rate by BIFSG-predicted
probability that a taxpayer is Black. Taxpayers have been grouped into 100 equal-sized bins. Right: Audit
rates among EITC claimants and non-EITC claimants.
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Figure A.6: Audit Rate Disparities by EITC Subgroup (Linear Estimator)

Notes: The figure shows the estimated audit rate among the specified subgroups of Black and non-Black
taxpayers. Conditional audit rates by race are calculated using the linear audit rate estimator applied to
BIFSG-predicted probabilities that a taxpayer is Black. Panel (1) splits EITC claimants by single vs joint
filers; (2) splits single EITC claimants by taxpayer gender; and (3) splits single men claiming the EITC by
whether they claim dependents.
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Figure A.7: Covariance Condition Estimates for EITC Subgroups

Notes: The figure displays the estimated covariance between audits and self-reported race, conditional on
estimated race, as well as the estimated covariance between audits and estimated race, conditional on self-
reported race, for each income bin reported in Figure 6. The estimates are calculated from the matched
sample of North Carolina taxpayers, using the weights described in Appendix C. Brackets denote 95%
confidence intervals.
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Figure A.8: Disparity Estimates Within Income Bins Using Re-Calibrated BIFSG
Probabilities

Notes: The figure reports linear and probabilistic audit rate disparity estimates in each of the income
bins considered in Figure 4 using BIFSG scores recalibrated by the ground truth sample of North Carolina
taxpayers in each bin. See Appendix Section B.5 for details on obtaining the recalibrated proxy. The
recalibration exercise incorporates the North Carolina weights described in Appendix C.
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Figure A.9: Disparity Estimates Within EITC Subgroups Using Re-Calibrated BIFSG
Probabilities

Notes: The figure shows probablistic and linear audit rate disparity estimates corresponding to each of the
subgroups considered in Figure 6 using BIFSG scores recalibrated by the ground truth sample of North
Carolina taxpayers in each bin. See Appendix Section B.5 for details on obtaining the recalibrated proxy.
The recalibration exercise incorporates the North Carolina weights described in Appendix C.
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Figure A.10: Distribution and Calibration of Geography-Based Race Imputations

Notes: The figure replicates Figure 1 using estimated race probabilities based only on the location of a
taxpayer’s residence; the probability that a taxpayer is Black is set equal to the fraction of their CBG that is
composed of Black residents. Left: Histogram of geography-predicted probabilities that a taxpayer is Black.
The mean prediction is 11.8%. Right: The figure shows the calibration of the geographic predictions in the
matched North Carolina dataset. Taxpayers are split into groups based on their predicted probability of
being Black (discretized into 100 bins 1 percentage point wide). The predicted probability of being Black is
on the x-axis; the y-axis represents the true proportion of each group that is Black according to the ground-
truth race observed in the North Carolina matched sample, re-weighted to be representative of the overall
United States (see Appendix C for details). A perfectly calibrated predictor would fall on the 45-degree line,
shown as the black dotted line. The figure shows overall calibration in blue as well as calibration among
EITC claimants (dark green) and non-EITC claimants (light green).
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Figure A.11: Audit Rate by Geography-Based Race Imputation and Self-Reported Race

Notes: The figure replicates Figure 2 using estimated race probabilities based only on the location of a
taxpayer’s residence; the probability that a taxpayer is Black is set equal to the fraction of their CBG that is
composed of Black residents. The figure shows the relationship between audit incidence and BIG-predicted
probability that a taxpayer is Black for taxpayers filing returns for tax year 2014. Audit rates are plotted
separately for Black and non-Black taxpayers in the North Carolina matched sample. Black and non-Black
taxpayers are each grouped into 100 equal-sized bins, with Black taxpayers indicated by dark purple x’s and
non-Black taxpayers indicated by light purple circles.
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Figure A.12: Distribution of Disparity Estimates from Dual-Bootstrap

Notes: The figure shows the distribution of probabilistic (left panel) and linear (right panel) disparity
estimates produced by our implementation of the Lu et al. (2024) dual-bootstrap procedure. To implement
the procedure, we resampled first names and geographic information, but did not resample surnames (since
the Census surname data we use corresponds to the full population rather than a sample) to generate 100
sets of BIFSG posteriors. We then estimate disparity with each set of BIFSG posteriors, resampling our
taxpayer population on each iteration. Units are percentage points (0-100). The dashed line represents the
disparity point estimate presented in Table 1.

Appendix-13



Figure A.13: Residual Covariance Estimates by State

Notes: Left: The figure shows estimates of the covariance between audits (Y ) and self-reported race (B),
conditional on estimated race (b), as well as the estimated covariance between audits and estimated race,
conditional on self-reported race (corresponding to the terms E[Cov(Y,B|b)] and E[Cov(Y, b|B)] respectively)
for taxpayers that match to 2023 L2-collected voter data in seven states (match rates are displayed in
parentheses): Alabama (37.18%), Florida (30.01%), Georgia (30.94%), Louisiana (38.60%), North Carolina
(16.50%), South Carolina (36.21%), and Tennessee (22.63%). The match procedure we use for these states
is the same as the procedure we use to match our main North Carolina data set, described in Appendix C.
Error bars represent 95% confidence intervals. The displayed estimates and underlying standard errors are
multiplied by 104. The panels show results for the full population, EITC claimants, and EITC non-claimants,
respectively.
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Figure A.14: Estimated Audit Rate Disparity by Year

Notes: The figure reports the estimated audit rates among Black and non-Black taxpayers for tax years
2010, 2012, 2014, 2016, and 2018, calculated using the probabilistic audit rate estimator applied to BIFSG-
predicted probabilities (calculated using the data sources described in Section 4.2). “Ratio” refers to the
ratio of the estimated Black audit rate to the estimated non-Black audit rate.
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Figure A.15: Estimated Audit Rate Disparity Among EITC Claimants by Year

Notes: The figure reports the estimated audit rates among Black and non-Black EITC claimants for tax
years 2010, 2012, 2014, 2016, and 2018, calculated using the probabilistic audit rate estimator applied to
BIFSG-predicted probabilities (calculated using the data sources described in Section 4.2). “Ratio” refers
to the ratio of the estimated Black audit rate to the estimated non-Black audit rate.
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Figure A.16: Racial Audit Disparity Among EITC Claimants by Underreported Taxes
(Linear Estimator)

Notes: The figure shows the estimated audit rates for Black and non-Black EITC claimants, respectively, by
under-reported taxes. Taxpayers are binned into 11 categories: those with less than $1 of under-reporting,
and 10 equal deciles of taxpayers with positive under-reporting. Underreporting deciles are defined based
on the distribution of underreporting among EITC claimants, as measured by NRP audits. Estimated
audit rates by race are calculated using the linear estimator and the method described in Section 6 of the
main text. All analyses account for NRP sampling weights. Brackets reflect the estimated 95% confidence
interval, derived from bootstrapped standard errors (N=100). The bars show the estimated share of Black
and non-Black taxpayers, respectively, that fall into each under-reporting bin.
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Figure A.17: Detected Underreporting and Disparity by Algorithm (Linear Estimator)

Notes: The figure replicates Figure 8, but with disparity calculated based on the linear disparity estimator.
The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-axis)
and annualized detected underreporting (x-axis) under alternative algorithms for selecting audits of EITC
claimants and under alternative audit rates. The trajectories correspond to the total underreporting
oracle (dark blue), total underreporting prediction (dark purple), refundable credit oracle (light blue), and
refundable credit prediction (light purple) algorithms. The labeled points along each trajectory represent
estimated detected underreporting and disparity for the specified algorithm at the audit rate specified in the
label. For each algorithm, the audit rates considered range from 0.1% to 3%; the audit rate corresponding
to the status quo (1.45%) is denoted by a larger dot. The total underreporting prediction algorithm is
based on a random forest regressor trained to predict total underreporting. The refundable credit prediction
algorithm is based on a random forest regressor trained to predict total adjustments to EITC, CTC, and
AOTC amounts. The total underreporting oracle selects returns in descending order of true underreporting.
The refundable credit oracle selects returns in descending order of true EITC, CTC, and AOTC overclaiming.
Annualized detected underreporting is calculated as the total amount of adjustments (positive or negative)
imposed on returns selected for audit under the specified audit selection algorithm. Detected underreporting
and disparity estimates are constructed using the full set NRP EITC claimants from 2010-14. Details
relating to the predictive models and associated estimates are contained in Appendix E. The point labeled
“Status quo” shows the estimated disparity in audit rates between Black and non-Black taxpayers and
detected underreporting from the 1.45% of EITC returns selected for audit from the population of tax year
2014 returns. All analyses incorporate NRP sampling weights. Bars around each trajectory represent 95%
confidence intervals around disparity estimates; they are calculated based on the distribution of estimates
from 100 bootstrapped samples from the full set of NRP EITC claimants; see Appendix E for details.
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Figure A.18: Group-Specific Audit Rates by Algorithm (Linear)

Notes: The figure replicates Figure 9, but with audit rates calculated using the linear estimator. It reports
estimated audit rates for Black and non-Black EITC claimants that would be induced by the algorithms
considered in Figure A.17 under an assumed audit rate of 1.45%. The population of tax returns available for
audit is based on the NRP sample of taxpayers claiming the EITC; see notes to Figure A.17 for additional
detail. Status quo refers to the estimated audit rates by race for tax year 2014 returns claiming the EITC,
reported in Figure 5.
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Figure A.19: Audit Rates by Prediction Percentiles

Notes: This figure displays the relationship between operational audit rates and predictions from the Total
Underreporting and Refundable Credit Overclaiming Prediction algorithms, applied to the population of
EITC claimants in 2014. For tractability, the versions of the Total Underreporting and Refundable Credit
Overclaiming algorithms applied for the analysis in this figure are simplified in the following sense: We
apply our NRP-based models to non-NRP taxpayers by training models with the forty most important
features from both the total underreporting prediction and refundable credit overclaiming prediction models
respectively and using them to obtain predictions. We validate that these simplified models yield similar
results to the full-featured models in the NRP data set. In the top panel, we divide taxpayers into 100
equally-sized bins separately for each model and compute the audit rate separately for each bin. In the
bottom panel, we divide taxpayers into 400 equally-sized bins separately for each model and filter to the top
20, computing audit rates separately for each bin. In this panel we divide the bin numbers on the x-axis by
4 to report results for each quarter of a percentile from 95 through 100.
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Figure A.20: Detected Underreporting and Cost by Algorithm

Notes: The figure shows the annualized cost (y-axis) and annualized detected underreporting (x-axis) under
alternative algorithms for selecting audits of EITC claimants and under alternative audit rates. Predictive
models are trained and evaluated on the set of NRP EITC claimants from 2010-14; see Appendix E for details.
The left panel displays trajectories for the total underreporting oracle (dark blue) and the refundable credit
oracle (light blue) algorithms. The right panel displays trajectories for the total underreporting prediction
(dark purple) and the refundable credit prediction (light purple) algorithms. The labeled points along each
trajectory represent estimated detected underreporting and cost for the specified algorithm at the audit rate
specified in the label. The audit rates considered range from 0.1% to 3%. The audit rate corresponding to the
status quo (1.45%) is denoted by a larger dot. The total underreporting prediction algorithm is based on a
random forest regressor trained to predict total underreporting. The refundable credit prediction algorithm
is based on a random forest regressor trained to predict total adjustments to EITC, CTC, and AOTC
amounts. The total underreporting oracle selects returns in descending order of true underreporting. The
refundable credit oracle selects returns in descending order of true EITC, CTC, and AOTC overclaiming.
Annualized cost is calculated as the total cost incurred to audit the returns selected under the specified
audit selection algorithm, scaled to reflect our use of five years of NRP data. The cost estimates are
calculated from operational audits based on the average time logged by IRS employees dealing directly with
the case, multiplied by the applicable General Schedule payscale based on the employee level. Returns
without substantial business income (not reporting gross business receipts in excess of $25,000) are classified
into activity code 270 and are assigned a cost of $23.09, the winsorized average cost of tax returns in activity
code 271 in our sample. Returns with substantial business income (reporting gross business receipts in excess
of $25,000) are classified into activity code 271 and are assigned a cost of $369.70, the winsorized average cost
of tax returns in activity code 271 in our sample. Annualized detected underreporting is calculated as the
total detected underreporting (positive or negative) imposed on returns selected for audit under the specified
audit selection algorithm, scaled to reflect our use of five years of NRP data. All analyses incorporate NRP
sampling weights. Bars around each trajectory represent 95% confidence intervals around cost estimates;
they are calculated based on the distribution of estimates from 100 bootstrapped samples from the full set
of NRP EITC claimants; see Appendix E for details.
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Figure A.21: Detected Underreporting and Disparity by Algorithm (Constrained Models)

Notes: The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-
axis) and annualized detected underreporting (x-axis) under alternative algorithms for selecting audits of
EITC claimants and under alternative audit rates, where each algorithm’s allocation of audits between EITC
business and non-business activity codes is constrained to match the status quo allocation. The left panel
shows trajectories corresponding to the total underreporting oracle (dark blue) and the refundable credit
oracle (light blue) algorithms. The right panel shows trajectories corresponding to the total underreporting
prediction (dark purple) and refundable credit prediction (light purple) algorithms. The labeled points along
each trajectory represent estimated detected underreporting and disparity for the specified algorithm at the
audit rate specified in the label. For each algorithm, the audit rates considered range from 0.1% to 3%; the
audit rate corresponding to the status quo (1.45%) is denoted by a larger dot. The total underreporting
prediction algorithm is based on a random forest regressor trained to predict total underreporting. The
refundable credit prediction algorithm is based on a random forest regressor trained to predict total
adjustments to EITC, CTC, and AOTC amounts. The total underreporting oracle selects returns in
descending order of true underreporting. The refundable credit oracle selects returns in descending order of
true EITC, CTC, and AOTC overclaiming. Disparity is calculated from the probabilistic disparity estimator
applied to BIFSG-derived probabilities that a taxpayer is Black. Annualized detected underreporting
is calculated as the total amount of adjustments (positive or negative) imposed on returns selected for
audit under the specified audit selection algorithm. Detected underreporting and disparity estimates are
constructed using the full set NRP EITC claimants from 2010-14. Details relating to the predictive models
and associated estimates are contained in Appendix E. The point labeled “Status quo” shows the estimated
disparity in audit rates between Black and non-Black taxpayers and detected underreporting from the 1.45%
of EITC returns selected for audit from the population of tax year 2014 returns. All analyses incorporate
NRP sampling weights. Bars around each trajectory represent 95% confidence intervals around disparity
estimates; they are calculated based on the distribution of estimates from 100 bootstrapped samples from
the full set of NRP EITC claimants; see Appendix E for details.
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Figure A.22: Allocating Audits Based on Reward Net of Audit Costs

Notes: The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-axis)
and annualized detected underreporting (x-axis) under alternative assumptions about whether returns are
selected for audit based on detected reward, whether total underreporting or refundable credit overclaiming
(gross of audit costs, as in our other analyses), or based on detected reward minus expected audit costs.
Underreporting/refundable credit overclaiming is based on either the oracle or the random forest regressor
prediction algorithm, as specified. Audit costs are measured at the activity code level, using data on the
time spent on audit examination and the salary grade of the examiner, and abstracting from non-salary costs
associated with the enforcement process, such as appeals, litigation, and collections, or fixed costs, such as
overhead. Using this approach, the average cost of auditing an EITC non-business return (activity code
270) is $23.09, whereas the average cost of auditing an EITC business return (activity code 271) is $369.70.
The labeled points along each trajectory represent estimated detected underreporting and disparity for the
specified algorithm at the audit rate specified in the label. Disparity is calculated from the probabilistic
disparity estimator applied to BIFSG-derived probabilities that a taxpayer is Black. For each algorithm,
the audit rates considered range from 0.1% to 3%; the audit rate corresponding to the status quo (1.45%) is
denoted by a larger dot. Annualized detected underreporting is calculated as the total amount of adjustments
(positive or negative) imposed on returns selected for audit under the specified audit selection algorithm.
Detected underreporting and disparity estimates are constructed using the full set NRP EITC claimants
from 2010-14. Details relating to the predictive models and associated estimates are contained in Appendix
E. The point labeled “Status quo” shows the estimated disparity in audit rates between Black and non-
Black taxpayers and detected underreporting from the 1.45% of EITC returns selected for audit from the
population of tax year 2014 returns. All analyses incorporate NRP sampling weights.

Appendix-23



Figure A.23: Detected Underreporting and Cost by Algorithm (NRP-Derived Audit Costs)

Notes: The figure replicates Appendix Figure A.20 using an alternative measure of costs derived from
the number of hours reported by examiners conducting NRP examinations. Audit costs are measured at
the activity code level, with the average cost of auditing an EITC non-business return (activity code 270)
being $263.51 (compared to $23.09 under our original cost measure), and the average cost of auditing
an EITC business return (activity code 271) being $1,110.90 (compared to $369.70 under our original
cost measure). The figure shows the annualized cost (y-axis) and annualized detected underreporting
(x-axis) under alternative algorithms for selecting audits of EITC claimants and under alternative audit
rates. Predictive models are trained and evaluated on the set of NRP EITC claimants from 2010-14; see
Appendix E for details. The left panel displays trajectories for the total underreporting oracle (dark blue)
and the refundable credit oracle (light blue). The right panel displays trajectories for the total underreporting
prediction model (dark purple), and the refundable credit prediction model (light purple). The labeled points
along each trajectory represent estimated detected underreporting and cost for the specified algorithm at
the audit rate specified in the label. The audit rates considered range from 0.1% to 3%. The audit rate
corresponding to the status quo (1.45%) is denoted by a larger dot. The total underreporting prediction
algorithm is based on a random forest regressor trained to predict total underreporting. The refundable
credit prediction algorithm is based on a random forest regressor trained to predict total adjustments to
EITC, CTC, and AOTC amounts. The total underreporting oracle selects returns in descending order of
true underreporting. The refundable credit oracle selects returns in descending order of true EITC, CTC,
and AOTC overclaiming. Annualized cost is calculated as the total cost incurred to audit the returns selected
under the specified audit selection algorithm, scaled to reflect our use of five years of NRP data. Annualized
detected underreporting is calculated as the total detected underreporting (positive or negative) imposed on
returns selected for audit under the specified audit selection algorithm, scaled to reflect our use of five years
of NRP data. All analyses incorporate NRP sampling weights. Bars around each trajectory represent 95%
confidence intervals around cost estimates; they are calculated based on the distribution of estimates from
100 bootstrapped samples from the full set of NRP EITC claimants; see Appendix E for details.
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Figure A.24: Allocating Audits Based on Reward Net of Audit Costs (NRP-Derived Audit
Costs)

Notes: The figure replicates Appendix Figure A.22 using an alternative measure of costs derived from the
number of hours reported by examiners conducting NRP examinations. Audit costs are measured at the
activity code level, with the average cost of auditing an EITC non-business return (activity code 270) being
$263.51 (compared to $23.09 under our original cost measure), and the average cost of auditing an EITC
business return (activity code 271) being $1,110.90 (compared to $369.70 under our original cost measure).
The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-axis)
and annualized detected underreporting (x-axis) under alternative assumptions about whether returns are
selected for audit based on detected reward, whether total underreporting or refundable credit overclaiming
(gross of audit costs, as in our other analyses), or based on detected reward minus expected audit costs.
Underreporting/refundable credit overclaiming is based on either the oracle or the random forest regressor
prediction algorithm, as specified. The labeled points along each trajectory represent estimated detected
underreporting and disparity for the specified algorithm at the audit rate specified in the label. Disparity is
calculated from the probabilistic disparity estimator applied to BIFSG-derived probabilities that a taxpayer
is Black. For each algorithm, the audit rates considered range from 0.1% to 3%; the audit rate corresponding
to the status quo (1.45%) is denoted by a larger dot. Annualized detected underreporting is calculated as
the total amount of adjustments (positive or negative) imposed on returns selected for audit under the
specified audit selection algorithm. Detected underreporting and disparity estimates are constructed using
the full set NRP EITC claimants from 2010-14. Details relating to the predictive models and associated
estimates are contained in Appendix E. The point labeled “Status quo” shows the estimated disparity in
audit rates between Black and non-Black taxpayers and detected underreporting from the 1.45% of EITC
returns selected for audit from the population of tax year 2014 returns. All analyses incorporate NRP
sampling weights.
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Figure A.25: Racial Audit Disparity Among EITC Claimants by Overclaimed Refundable
Credits

Notes: The figure shows two analogs of Figure 7. Each panel group taxpayers into bins along the x-axis
based on refundable credit overclaiming. For the left panel, the y-axis reflects any type of audit; for the
right panel, the y-axis reflects DDb audits only. For the left panel, audit-imposed adjustments to refundable
credits are used to measure a taxpayer’s overclaimed refundable credits, conditional on being selected for
operational audit, by race. For the right panel, total audit adjustments from DDb audits are used as a proxy
for a taxpayer’s overclaimed refundable credits, conditional on being selected for operational audit, by race.
In both panels, taxpayers are binned into 11 categories: those with less than $1 of overclaimed refundable
credits, and 10 equal deciles of taxpayers with positive overclaimed refundable credits. Overclaiming deciles
are defined based on the distribution of overclaiming among EITC claimants, as measured by NRP audits.
Bin labels on the x-axis reflect the upper dollar limit of each overclaiming bin (rounded for confidentiality).
Estimated audit rates by race are calculated using the probabilistic estimator. All analyses account for
NRP sampling weights. Brackets reflect the estimated 95% confidence interval, derived from bootstrapped
standard errors (N=100). The bars show the estimated share of Black and non-Black taxpayers, respectively,
that fall into each overclaiming bin. A similar analysis, corresponding to the linear estimator, is presented
in Appendix Figure A.26.
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Figure A.26: Racial Audit Disparity Among EITC Claimants by Overclaimed Refundable
Credits (Linear Estimator)

Notes: The figure replicates the analysis in Figure A.25, using the linear estimator to calculate audit rates
by race.
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Table A.1: EITC Audit Frequency by Timing and Type

Correspondence Field/Office All Audit Types
Pre-Refund 270,940 0 270,940

(66.4%) (0%) (66.4%)

Post-Refund 112,689 24,361 137,050
(27.6%) (6.0%) (33.6%)

All Audit Times 383,629 24,361 407,990
(94.0%) (6.0%) (100%)

Notes: The table reports the frequency of audits of 2014 tax returns claiming the EITC by audit timing
(whether the audit occurred pre- or post-refund) and by audit type (whether the audit was conducted by
correspondence or as a field or office examination). Percentages (reported in parentheses) reflect the share
of all audits of the specified taxpayer population that fall into the specified audit category.
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Table A.2: Coverage of BIFSG Features Among 2014 Taxpayers

Case Count First Name Last Name CBG Share of Total

1 107,624,714 X X X 72.6%
2 10,087,515 X X 6.8%
3 10,455,708 X X 7.1%
4 14,981,324 X X 10.1%
5 2,572,849 X 1.7%
6 1,431,541 X 1.0%
7 903,311 X 0.6%
8 248,356 0.2%
Total 148,305,318 100%

Notes: The table shows the availability of the data used to calculate race probabilities for primary filers
on tax year 2014 returns. The distribution of race by first name is tabulated from mortgage applications,
following Tzioumis (2018); it is missing for names not among the 4,250 most common names in that data.
The distribution of race by last names is tabulated from 2010 Census data and includes the 162,253 most
common surnames. The distribution of race by Census Block Group (CBG) is tabulated from the Census
2014 5-Year American Community Survey and covers all CBGs. CBG data is missing for taxpayers who
cannot be reliably geo-coded to a specific CBG. In our main analysis, taxpayers in row 8 are assigned a
BIFSG-predicted probability Black based on the national average share of the population that is Black.
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Table A.3: Calibration Metrics for BIFSG Predictions.

Full Population EITC Population
Metric Imputed Recalibrated Imputed Recalibrated

(1) (2) (3) (4)

Area Under ROC Cruve 0.9048 0.9048 0.9038 0.9038

Panel A: 50% Threshold
False Positive 0.0880 0.0632 0.1119 0.1181
True Positive 0.6804 0.6066 0.7237 0.7377
False Negative 0.3196 0.3934 0.2763 0.2623
True Negative 0.9120 0.9368 0.8881 0.8819
Precision 0.6529 0.7002 0.8002 0.7946
Recall 0.6804 0.6066 0.7237 0.7377
Accuracy 0.8667 0.8722 0.8252 0.8268

Panel B: 75% Threshold
False Positive 0.0338 0.0112 0.0504 0.0504
True Positive 0.4740 0.2822 0.5169 0.5170
False Negative 0.5260 0.7178 0.4831 0.4830
True Negative 0.9662 0.9888 0.9496 0.9496
Precision 0.7733 0.8598 0.8641 0.8641
Recall 0.4740 0.2822 0.5169 0.5170
Accuracy 0.8699 0.8506 0.7842 0.7842

Panel C: 90% Threshold
False Positive 0.0114 - 0.0216 0.0191
True Positive 0.2855 - 0.3180 0.2946
False Negative 0.7145 - 0.6820 0.7054
True Negative 0.9886 - 0.9784 0.9809
Precision 0.8588 - 0.9013 0.9053
Recall 0.2855 - 0.3180 0.2946
Accuracy 0.8511 - 0.7259 0.7184

Notes: The table characterizes the predictive power of BIFSG in the task of predicting whether a taxpayer
self-reports as Black as measured in the North Carolina data. A positive label refers to the individual self-
reporting as Black and a negative label refers to the individual self-reporting as non-Black. We can then
characterize performance using standard metrics from the machine learning literature. We use columns to
demarcate different versions of the final predictions and comparing against different populations: Columns 1
and 3 correspond to the standard BIFSG score, while Columns 2 and 4 correspond to the re-calibrated BIFSG
score (described in Section B.5); and Columns 1 and 2 are evaluations against the full population, while in
Columns 3 and 4 are evaluations against only the EITC claimant population. We use rows to demarcate
each error metric. The first error metric we consider, the Area Under the Receiver Operator Characteristic
(ROC) curve, requires as input only the probabilistic predictions and labels; the other metrics, which are
classification-based, require discrete label choices. We thus convert BIFSG scores into predicted labels of
Black/non-Black via thresholding, i.e. labeling all observations with predicted probability Black of t or
greater as Black and all others as non-Black. We consider thresholds at 50%, 75%, and 90%, demarcated by
Panels A-C.
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Table A.4: Residual Covariance Estimates

Full Population EITC Non-EITC

E[cov(Y,B)|b] 5.76∗∗∗ 5.05∗∗∗ 14.68∗∗∗ 13.39∗∗∗ 1.65∗∗∗ 1.20∗∗∗

(0.20) (0.23) (0.81) (1.03) (0.14) (0.14)
E[cov(Y,b)|B] 2.03∗∗∗ 2.28∗∗∗ 8.76∗∗∗ 9.62∗∗∗ 0.00 -0.28

(0.14) (0.24) (0.65) (0.97) (0.10) (0.18)
Weighted No Yes No Yes No Yes
N 1,613,130 277,064 1,336,062

Notes: The table displays the estimated covariance between audits and self-reported race, conditional on
estimated race, as well as the estimated covariance between audits and estimated race, conditional on self-
reported race. The estimates are for the matched sample of North Carolina taxpayers for the full population
(columns 1 and 2), EITC claimants (columns 3 and 4), and non-EITC claimants (columns 5 and 6). Columns
2, 4, and 6 are re-weighted to be representative of the U.S. population, using the weights described in
Appendix C. Standard errors are displayed in parentheses. The displayed estimates and standard errors are
multiplied by 104. Stars correspond to p-values derived from two-sided hypothesis tests. ∗ : P < .10;∗∗ : P <
.05;∗∗∗ : P < .01.
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Table A.5: Estimated Audit Rate by Race (Probabilistic)

Audit Timing Audit Type
Any Pre Post Correspondence Field/

Audit Refund Refund Office
(1) (2) (3) (4) (5)

Panel A: Full Population
Black 1.241 0.743 0.497 1.139 0.103

(0.003) (0.002) (0.002) (0.003) (0.001)
Non-Black 0.427 0.174 0.253 0.335 0.093

(0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
N (Millions) 148.3 148.3 148.3 148.3 148.3

Panel B: EITC Population
Black 2.989 2.126 0.863 2.897 0.092

(0.006) (0.005) (0.003) (0.006) (0.001)
Non-Black 1.039 0.651 0.389 0.954 0.085

(0.002) (0.001) (0.001) (0.002) (0.001)
N (Millions) 28.3 28.3 28.3 28.3 28.3

Panel C: Non-EITC Population
Black 0.401 0.080 0.322 0.294 0.108

(0.002) (0.001) (0.001) (0.001) (0.001)
Non-Black 0.300 0.074 0.225 0.206 0.094

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
N (Millions) 120.0 120.0 120.0 120.0 120.0

Notes: The table reports estimates of the audit rate (in group-specific levels, not differences between groups)
for Black and non-Black taxpayers filing income tax returns for tax year 2014. Units are percentage points
(0-100). All estimates are based on the probabilistic audit rate estimator. The category of audit considered
varies across columns; for example, the results in column (4) show the estimated rate at which Black and
non-Black taxpayers are selected for correspondence audit. Panel A includes all taxpayers, whereas Panels
B and C restrict the analysis to EITC claimants and non-claimants, respectively. Standard errors, reported
in parentheses, correspond to the standard deviation of the distribution of estimates from 100 bootstrapped
samples.
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Table A.6: Estimated Audit Rate by Race (Linear)

Audit Timing Audit Type
Any Pre Post Correspondence Field/

Audit Refund Refund Office
(1) (2) (3) (4) (5)

Panel A: Full Population
Black 1.707 1.070 0.637 1.599 0.108

(0.004) (0.003) (0.002) (0.004) (0.001)
Non-Black 0.363 0.129 0.234 0.271 0.092

(0.001) (< 0.001) (< 0.001) (0.001) (< 0.001)
N (Millions) 148.3 148.3 148.3 148.3 148.3

Panel B: EITC Population
Black 3.732 2.688 1.044 3.637 0.095

(0.009) (0.007) (0.005) (0.009) (0.001)
Non-Black 0.846 0.505 0.342 0.762 0.085

(0.002) (0.002) (0.001) (0.002) (0.001)
N (Millions) 28.3 28.3 28.3 28.3 28.3

Panel C: Non-EITC Population
Black 0.471 0.083 0.388 0.355 0.117

(0.003) (0.001) (0.002) (0.002) (0.001)
Non-Black 0.292 0.074 0.218 0.199 0.093

(< 0.001) (< 0.001) (< 0.001) (< 0.001) (< 0.001)
N (Millions) 120.0 120.0 120.0 120.0 120.0

Notes: The table replicates Appendix Table A.5, but using the linear audit rate estimator instead of the
probabilistic audit rate estimator.

Table A.7: Ground-Truth Disparities in Matched North Carolina Sample

Estimator Full Population EITC Non-EITC
(1) (2) (3)

Unweighted 0.835 1.849 0.204
Re-weighted 1.284 2.393 0.265
N 1,613,124 277,064 1,336,060

Notes: The table shows audit rate disparities within the matched North Carolina sample, where we observe
self-reported race. Units are percentage points (0-100). The Black/non-Black audit disparity is shown for
the full population (column 1), EITC claimants (column 2), and non-EITC claimants (column 3). The first
row computes audit rate disparities directly using the data, while the second row re-weights the data to be
representative of the full population using the North Carolina weights described in Appendix C.
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Table A.8: Audit Burden Disparity Estimates (Probabilistic)

Correspondence Office Field Overall
Audit Rate (pp) 0.43 0.06 0.03 0.53
Share of Total Audits 0.82 0.12 0.06 1.00
Taxpayer Hours 30 38 34 31.18
Taxpayer Compliance Cost 643 1,717 4,431 1,002.98
Penalties and Interest 320.71 1,580.77 6,434.52 846.77
Assessed Taxes 5,252.56 7,130.46 24,960.56 6,694.85
Disparity (Audit Rate, pp) 0.80 0.02 -0.01 0.66
Disparity (Hours) 0.241 0.008 -0.004 0.199
Disparity (Compliance Cost) 5.17 0.36 -0.50 4.26
Disparity (Penalties and Interest) 2.58 0.34 -0.73 2.11
Disparity (Assessed Taxes) 42.20 1.51 -2.83 34.68

Notes: The table reports quantities for estimating differences by race in the consequences to taxpayers of
being selected for an audit. All results are presented separately by type of audit (Columns 1-3), as well
as aggregated based on the share of 2014 audits in each category (Column 4). The first six rows report
summary audit statistics. The audit rate (row 1) is the percent of taxpayers that receive the type of audit in
question. Taxpayer hours (row 3) and compliance costs (row 4) are taken from estimates reported in Guyton
& Hodge (2014). Hours refers to the total hours the taxpayer spends responding to the audit. Compliance
cost refers to the sum of out-of-pocket compliance costs and monetized hours spent responding to the audit
(accounting for income differences in the cost of taxpayer time), inflation-adjusted from 2009 dollars to 2014
dollars. Penalties and interest (row 5) are net of IRS abatements. The bottom five rows report the estimated
disparity in each outcome in rows two through six. The audit rate disparity is our main outcome of interest
in the rest of the paper, here calculated using the probabilistic disparity estimator. For columns 1-3, the
estimated disparity for other variables is calculated by multiplying the audit rate disparity by the average
value of that outcome for the corresponding type of audit. For example, the estimated disparity in hours
from a correspondence audit is the product of the correspondence audit disparity (0.80) and average taxpayer
hours per correspondence audit (30). The disparity results in column 4 are obtained by taking the weighted
average of the disparity results in columns 1-3, using the weights in row 2. These estimates assume that
within-audit category, the components of audit burden do not vary by race. In addition, these estimates do
not incorporate factors known to be important to taxpayers such as the non-financial stress of experiencing
an audit, delays in receiving anticipated refunds, or reductions in refundable credits claims in future years.
For context, taxpayers (whether audited or not) spend an average of 0.16 hours complying with audits
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Table A.9: Audit Burden Disparity Estimates (Linear)

Correspondence Office Field Overall
Audit Rate (pp) 0.43 0.06 0.03 0.53
Share of Total Audits 0.82 0.12 0.06 1.00
Taxpayer Hours 30 38 34 31.18
Taxpayer Compliance Cost 643 1,717 4,431 1,002.98
Penalties and Interest 320.71 1,580.77 6,434.52 846.77
Assessed Taxes 5,252.56 7,130.46 24,960.56 6,694.85
Disparity (Audit Rate, pp) 1.33 0.04 -0.02 1.09
Disparity (Hours) 0.398 0.013 -0.006 0.329
Disparity (Compliance Cost) 8.54 0.60 -0.83 7.04
Disparity (Penalties and Interest) 4.26 0.55 -1.20 3.49
Disparity (Assessed Taxes) 69.77 2.50 -4.67 57.34

Notes: The table replicates Table A.8, but using the linear disparity estimator instead of the probabilistic
disparity estimator to calculate the audit rate disparity.

Table A.10: Dual-Bootstrap Confidence Intervals

Estimator Full Population EITC Non-EITC
(1) (2) (3)

Linear 1.345 2.885 0.180
95% CI (1.169, 1.461) (2.633, 2.991) (0.138, 0.230)

Probabilistic 0.813 1.950 0.102
95% CI (0.729, 0.909) (1.846, 2.031) (0.080, 0.135)

N 148,305,318 28,338,472 119,966,846

Notes: The table reports the linear and probabilistic disparity estimates along with 95% confidence intervals
obtained via our implementation of the Lu et al. (2024) dual-bootstrap procedure. To implement the
procedure, we resampled first names and geographic information, but did not resample surnames (since
the Census surname data we use corresponds to the full population rather than a sample) to generate 100
sets of BIFSG posteriors. We then compute our outcomes of interest with each set of BIFSG posteriors,
resampling our taxpayer population on each iteration. Units are percentage points (0-100). Confidence
intervals were obtained based on the distribution of estimates obtained by this procedure (see Appendix
Figure A.12).
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Table A.11: DDb vs. Non-DDb Audit Disparity Estimates Among EITC Claimants

Estimator
DDb Audit
Disparity

Non-DDb Audit
Disparity

Share of Disparity
Attributable to DDb

(1) (2) (3)

Linear 2.265 0.620 78.5
(0.008) (0.005)

Probabilistic 1.531 0.419 78.5
(0.007) (0.004)

Mean 1.071 0.372
N 28,338,472 28,338,472

Notes: Columns 1 and 2 report the estimated audit rate disparities for DDb and non-DDb audits among
EITC claimants. Column 3 is calculated as the ratio of the DDb audit disparity in Column 1 to the total
audit disparity (the sum of Columns 1 and 2), multiplied by 100. Units are percentage points (0-100). The
“Mean” row is the share of the EITC claimant population that is selected for the specified category of audit.
In our data, 74.31% of the audits of EITC claimants are selected through the DDb program.
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Table A.12: Audit Disparity Robustness Checks

BIFSG Gibbs Re-calibrated Re-calibrated Geography-
Unweighted Weighted Only

(1) (2) (3) (4) (5)

Panel A: Full Population
Linear 1.27 1.55 1.623 1.543 1.738

(0.005) (0.04) (0.005) (0.004) (0.005)
Probabilistic 0.811 1.02 0.774 0.735 0.696

(0.004) (0.03) (0.003) (0.003) (0.003)
N 107,624,714 1,390,219 148,305,318 148,305,318 134,671,876

Panel B: EITC Population
Linear 3.00 2.82 3.48 3.31 3.500

(0.01) (0.08) (0.01) (0.01) (0.01)
Probabilistic 2.14 2.03 1.842 1.816 1.623

(0.01) (0.07) (0.008) (0.008) (0.008)
N 19,357,514 283,055 28,338,472 28,338,472 25,768,606

Panel C: Non-EITC Population
Linear 0.172 0.165 0.217 0.206 0.352

(0.003) (0.03) (0.003) (0.003) (0.004)
Probabilistic 0.104 0.100 0.097 0.091 0.128

(0.002) (0.02) (0.002) (0.002) (0.002)
N 88,267,200 1,107,164 119,966,846 119,966,846 108,903,270

Notes: The table shows the estimated audit rate disparity from the linear and probabilistic disparity
estimators, under various modifications to our baseline approach. Units are percentage points (0-100).
standard errors, reported in parentheses, are calculated from the asymptotic distributions described in
Appendix B.3. Column 1 restricts the analysis to the subset of taxpayers for which each of first name,
last name, and census block group are available. Column 2 predicts taxpayer race using the Gibbs
sampling approach described in Appendix B.6. Column 3 predicts taxpayer race after re-calibrating the
race probability estimates using the North Carolina data, as described in Appendix C. Column 4 replicates
Column 3, but re-weights the data to be representative of the full population using the North Carolina weights
described in Appendix C. Column 5 predicts taxpayer race using only taxpayers’ geographic location. Panel
A shows results for the full population; Panel B for the EITC population; and Panel C for the non-EITC
population. Each displayed disparity estimate is in terms of percentage points and is statistically different
from zero (p < .01).
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Table A.13: Residual Covariance Estimates (Geography-Only)

Full Population EITC Non-EITC

E[cov(Y,B)|b] 7.52∗∗∗ 8.51∗∗∗ 22.58∗∗∗ 24.87∗∗∗ 1.98∗∗∗ 1.64∗∗∗

(0.23) (0.38) (0.94) (1.41) (0.16) (0.28)
E[cov(Y,b)|B] 2.16∗∗∗ 2.73∗∗∗ 8.49∗∗∗ 7.79∗∗∗ 0.08 0.53∗∗

(0.12) (0.24) (0.57) (0.79) (0.08) (0.24)
Weighted No Yes No Yes No Yes
N 1,612,713 277,005 1,335,708

Notes: The table displays the estimated covariance between audits and self-reported race, conditional on
geography-only estimated race, as well as the estimated covariance between audits and estimated race,
conditional on self- reported race. The estimates are for the matched sample of North Carolina taxpayers
for the full population (columns 1 and 2), EITC claimants (columns 3 and 4), and non-EITC claimants
(columns 5 and 6). Columns 2, 4, and 6 are re-weighted to be representative of the U.S. population, using
the weights described in Appendix C. Standard errors are displayed in parentheses. The displayed estimates
and standard errors are multiplied by 104. Stars correspond to p-values derived from two-sided hypothesis
tests. ∗ : P < .10;∗∗ : P < .05;∗∗∗ : P < .01.

Table A.14: Audits of EITC Claimants by Presence of Business Income

No Substantial
Business Income

Substantial
Business Income

Share of EITC Claimants 0.94 0.07
Share of Audits of EITC Claimants 0.96 0.04
Audit Rate (pp) 1.46 0.96
Disparity (Probabilistic, pp) 1.98 0.70
Disparity (Linear, pp) 2.93 1.15
Black Audit Rate (Probabilistic, pp) 3.02 1.58
Black Audit Rate (Linear, pp) 3.76 1.99
Non-Black Audit Rate (Probabilistic, pp) 1.04 0.89
Non-Black Audit Rate (Linear, pp) 0.84 0.84
N 26,330,090 1,853,037

Notes: The table reports descriptive statistics and estimated audit disparity for EITC claimants, based on
whether they report substantial business income on their return. Substantial business income is defined
based on the IRS’s definitions for activity codes 270 and 271, which partition the set of EITC claimants with
total positive income below $200,000. Activity code 271 includes those taxpayers who report substantial
business income (i.e., schedule C or schedule F gross receipts in excess of $25,000); activity code 270 includes
the remainder. A very small share of EITC claimants are classified into activity codes other than 270 or
271 because they report total positive income above $200,000; we exclude them for purposes of this analysis.
Disparity estimates are presented for both the probabilistic disparity estimator and linear disparity estimator
applied to BIFSG-derived probabilities that a taxpayer is Black. Audit rates by race present group-specific
levels (rather than differences between groups) for Black and non-Black taxpayers filing income tax returns
for tax year 2014.
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Table A.15: Audit Cost and Revenue by Model

Prediction Models Oracles

Refundable
Credit

Overclaiming

Total
Underreporting

Refundable
Credit

Overclaiming

Total
Underreporting

Share with Substantial Business Income 0.028 0.927 0.091 0.655

Cost (Operational, $ Millions) 13 134 23 99

Cost (NRP, $ Millions) 113 408 138 324

Detected Underreporting ($ Millions) 2,299 4,109 3,976 8,855

Notes: The table reports information about the performance of the alternative audit selection algorithms
considered in Figure 8 at the status quo (1.45%) audit rate for EITC returns. The first row refers to the share
of selected returns that fall into activity code 271 (gross business receipts above $25,000). Cost refers to the
estimated cost to the IRS of conducting the selected audits; it is calculated based on the share of selected
returns in activity codes 270 and 271, and the average audit cost per return in those respective categories.
The second row reports costs calculated from the average hours reported by IRS examiners dealing directly
with the case multiplied by the applicable General Schedule payscale given the employee level. The third
row instead calculates costs similarly but based on the number of hours reported by examiners in the much
more intensive and comprehensive NRP exams. Costs are annualized to reflect our use of five years of NRP
data. Detected underreporting refers to the total amount of underreporting (positive or negative) discovered
on returns selected for audit under the specified audit selection algorithm, and is annualized to reflect our
use of five years of NRP data.

Appendix-39



B Additional Results Relating to Disparity Estimation

In this section, we provide additional theoretical results relating to our estimation of disparity
from BIFSG-derived race probability estimates.

Contents
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B.1 Results Relating to BIFSG Estimator

To derive Equation (1), use Bayes rule to write:

Pr[B|F, S,G] =
Pr[F, S,G|B] Pr[B]

Pr[F, S,G]

=
Pr[F |B] Pr[S|B] Pr[G|B] Pr[B]

Pr[F, S,G]

where the second equation follows from the “naive” conditional independence assumption
underlying the approach. Equation (1) then follows by dividing Pr[B = 1|F, S,G] by Pr[B =
0|F, S,G], and using the fact that Pr[B = 1|F, S,G] + Pr[B = 0|F, S,G] = 1.

In the Census data we use to estimate BIFSG scores, we observe Pr[B|S] rather than
Pr[S|B], and we cannot back out Pr[B|S] due to censoring of uncommon surnames. Hence,
the actual BIFSG scores we estimate are derived from

Pr[B|F, S,G] =
Pr[F |B] Pr[B|S] Pr[G|B] Pr[S]

Pr[F, S,G]

Dividing Pr[B = 1|F, S,G] by Pr[B = 0|F, S,G] leads the (unobserved) Pr[S] terms to
cancel, and following the same procedure as above we obtain:

Pr[B = 1|F, S,G] =
Pr[F |B = 1] Pr[B = 1|S] Pr[G|B = 1]∑1
j=0 Pr[F |B = j] Pr[B = j|S] Pr[G|B = j]

which we use to estimate taxpayer-level race probabilities.
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B.2 Proof of Proposition 1 and Related Results

Recall Proposition 1:

Proposition 1. Suppose that b is a taxpayer’s probability of being Black given some
observable characteristics Z, so that b = Pr[B = 1|Z]. Define Dp as the asymptotic limit of

the probabilistic disparity estimator, D̂p, and Dl as the asymptotic limit of the linear

disparity estimator, D̂l. Then:

1.

Dp = D − E[Cov(Y,B|b)]
Var(B)

(1.1)

2.

Dl = D +
E[Cov(Y, b|B)]

Var(b)
(1.2)

3. Suppose E[Cov(Y,B|b)] ≥ 0 and E[Cov(Y, b|B)] ≥ 0. Then

Dp ≤ D ≤ Dl (1.3)

4. Suppose E[Cov(Y,B|b)] ≤ 0 and E[Cov(Y, b|B)] ≤ 0. Then

Dl ≤ D ≤ Dp (1.4)

Proposition 1 follows from the more general Proposition 2, given below. Before stating
and proving it, we state and prove a lemma showing that Dp = Dl · Var(b)

E[b](1−E[b])
(under the

mild condition that b be almost surely nontrivial; in practice, observations for which b is 0
or 1, i.e. ground truth is available, can be analyzed separately).

Lemma 1. Suppose that 0 < b < 1 almost surely, and that E|Y | is finite. Then as sample
size grows, the probabilistic estimator converges almost surely to:

Dp = Dl ·
Var(b)

E[b](1− E[b])

Proof. We can write Dp as:

Dp =

∑
i biYi∑
i bi
−
∑

i(1− bi)Yi∑
i 1− bi

=
1
n

∑
i biYi

1
n

∑
i bi
−

1
n

∑
i(1− bi)Yi

1
n

∑
i(1− bi)

For both the numerator and denominator, the strong law of large numbers holds (since E|Y |
is finite and, since 0 < b < 1, E|bY | also is also finite), so the numerator and denominator of
each of the two terms converge almost surely to their expectations. Since 0 < b < 1 almost
surely, the continuous mapping theorem gives that the ratio of the terms converges to the
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ratio of their limits. That is:[ 1
n

∑
i biYi

1
n

∑
i bi
−

1
n

∑
i(1− bi)Yi

1
n

∑
i(1− bi)

]
a.s.−→

n→∞

[
E[bY ]

E[b]
− E[(1− b)Y ]

E[1− b]

]
Now, simply combining fractions, we note:

E[bY ]

E[b]
− E[(1− b)Y ]

E[1− b]
=

E[bY ]− E[b]E[bY ]− E[b]E[Y ] + E[b]E[bY ]

E[b](1− E[b])

=
E[bY ]− E[b]E[Y ]

E[b](1− E[b])

=
Cov(Y, b)

E[b](1− E[b])

Finally, we recall that Dl = Cov(Y,b)
Var(b)

by construction; substituting in Cov(Y, b) = DlVar(b)
yields the result.

Proposition 2. Suppose that b is a (potentially imperfectly calibrated) estimate of the
probability that a taxpayer is Black, based on some observable characteristics Z. Let ε =
B − b denote the error in a taxpayer’s predicted race. Define Dp as the asymptotic limit

of the probabilistic disparity estimator, D̂p, and Dl as the asymptotic limit of the linear

disparity estimator, D̂l. Define µ = Cov(E[η|b],E[ε|b]), where η denotes the residual from
the linear projection of Y on b.

Then:

1.

Dl = D

(
1 +

Cov(b, ε)

Var(b)

)
+

E[Cov(Y, b|B)]

Var(b)

2.

Dp =
D · Var(B)−Dl · Cov(b, ε)

E[b](1− E[b])
− E[Cov(Y,B|b)] + µ

E[b](1− E[b])

Proof of Proposition 2. Consider the linear projections of Y on b and of Y on B:

Y = α + βb+ η

Y = α′ + γB + ν

By construction, Cov(b, η) = Cov(B, ν) = 0. In addition, E[ν] = 0, so

γ = E[Y |B = 1]− E[Y |B = 0] = D

Appendix-42



Also, by construction:

γ Var(B) = Cov(Y,B)

and similarly,

β Var(b) = Cov(Y, b)

Using the law of total covariance, we can write:

Cov(Y, b) = E[Cov(Y, b|B)] + Cov(E[Y |B], E[b|B])

The latter term can be expanded as:

Cov(E[Y |B], E[b|B]) = Cov(E[α′ + γB + ν|B], E[B − ε|B])

= Cov(α′ + γB + E[ν|B], B − E[ε|B])

= γVar(B)− γCov(B,E[ε|B]) + Cov(E[ν|B], B)− Cov(E[ν|B], E[ε|B])

= γVar(B)− γCov(B,E[ε|B])

where the last equality follows from the fact that since B is binary, Cov(B, ν) = 0 =⇒
E[ν|B] = 0 for all B.

Next, note that

Cov(B,E[ε|B]) = E[BE[ε|B]]− E[B]E[E[ε|B]]

= E[E[B ε|B]]− E[B]E[E[ε|B]]

= E[B ε]− E[B]E[ε]

= Cov(B, ε)

= Cov(b+ ε, ε)

= Cov(b, ε) + Var(ε)

Combining these results, we have:

β Var(b) = Cov(Y, b)

= E[Cov(Y, b|B)] + Cov(E[Y |B], E[b|B])

= E[Cov(Y, b|B)] + γ Var(B)− γ Var(ε)− γCov(b, ε)

From the definition of ε, we have:

Var(B) = Var(b) + Var(ε) + 2Cov(b, ε) =⇒ Var(B)− Cov(b, ε)− Var(ε) = Var(b) + Cov(b, ε)

Thus

β Var(b) = γ[Var(b) + Cov(b, ε)] + E[Cov(Y, b|B)]

and dividing through by Var(b) yields part 1 of the proposition.
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To prove part 2 of the proposition, again use the law of total covariance:

Cov(Y,B) = E[Cov(Y,B|b)] + Cov (E[Y |b] , E[B|b])

Expanding the second term of the right-hand side of the equation, we have

Cov (E[Y |b] , E[B|b]) = Cov (E[α + β b+ η|b] , E[b+ ε|b])
= Cov (α + β b+ E[η|b] , b+ E[ε|b])
= β Var(b) + βCov(b, E[ε|b]) + Cov(E[η|b], b) + Cov(E[η|b] , E[ε|b])

Note that:

Cov(b, E[ε|b]) = E[bE[ε|b]]− E[b]E[E[ε|b]]
= E[E[b ε|b]]− E[b]E[E[ε|b]]
= E[b ε]− E[b]E[ε]

= Cov(b, ε)

By the same logic:

Cov(E[η|b], b) = Cov(η, b) = 0

Define µ := Cov(E[η|b] , E[ε|b]). Then collecting results, we have

γ Var(B) = Cov(Y,B)

= E[Cov(Y,B|b)] + Cov (E[Y |b] , E[B|b])
= E[Cov(Y,B|b)] + β Var(b) + βCov(b, ε) + µ

Rearranging, and recalling that Dp = β Var(b)
E[b](1−E[b])

from Lemma 1 yields the result.

Now, we prove Proposition 1 as a consequence of Proposition 2.

Proof of Proposition 1. If b = Pr[B = 1|Z] = E[B|Z], it follows from the definition of ε that

E[ε|Z] = E[B|Z]− E[b|Z]

= E[B|Z]− E[E[B|Z]|Z]

= E[B|Z]− E[B|Z]

= 0
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Hence, we can write

Cov(b, ε) = E[b ε]− E[b]E[ε]

= E[b ε]

= E[E[b ε|Z]]

= E[bE[ε|Z]]

= E[b 0]

= 0,

where the third equality follows from the law of iterated expectations, and the fourth from
the fact that b is a function of Z.

Substituting the fact that Cov(b, ε) = 0 into Proposition 2.1, and noting that since
E[b] = E[E[B|Z]] = E[B],

E[b](1− E[b]) = E[B](1− E[B]) = Var(B).

yields Proposition 1.2.
Proposition 1.1 follows by again substituting in Cov(b, ε) = 0 and noting that E[ε|b] = 0

because:

E[ε|b] = E[E[ε|b, Z]|b]
= E[E[ε|Z]|b]
= E[0|b]
= 0,

where the second equality follows from the fact that b is a function of Z.
Finally, once the forms of Dl and Dp are established, Proposition 1.3 and 1.4 follow

directly when the respective assumptions on the signs of E[Cov(Y, b|B)] and E[Cov(Y,B|b)]
are met.

The following Proposition extends Proposition 1 to the case in which the estimand of
interest is the level of the outcome by group, rather than the difference in the levels of the
outcome across groups. In particular, Proposition 3 characterizes the bias of the linear and
probabilistic approaches for estimating the audit rate by race (not the audit rate disparity).

Proposition 3. (Statistical Bias of Level Estimators). Suppose b = Pr[B|Z]. Consider the
following estimators:

Ŷ B
p :=

∑
biYi∑
bi

and Ŷ NB
p :=

∑
(1− bi)Yi∑
(1− bi)

Ŷ B
l := α̂ + β̂ and Ŷ NB

l := α̂,

where α̂ and β̂ are the intercept and slope, respectively, from the regression of Y on b. Let
Y B
p ,Y NB

p , Y B
l , Y NB

l be the respective limits the estimators described above converge to.
Then:
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1. Y B
l and Y NB

l have the following biases relative to the true audit rates Y B and Y NB:

Y B
l − Y B = (1− E[B])

E[Cov(Y, b|B)]

Var(b)
and Y NB

l − Y NB = −E[B]
E[Cov(Y, b|B)]

Var(b)

2. Y B
p and Y NB

p have the following biases relative to the true audit rates Y B and Y NB:

Y B
p − Y B = −E[Cov(Y,B|b)]

E[B]
and Y NB

p − Y NB =
E[Cov(Y,B|b)]

1− E[B]

3. Suppose E[Cov(Y, b|B)] = 0. Then:

Y B
l = Y B and Y NB

l = Y NB

4. Suppose E[Cov(Y,B|b)] = 0. Then:

Y B
p = Y B and Y NB

p = Y NB

Proof. Notice that 3) and 4) follow directly from 1) and 2). For 1): By construction, we
have

Y = α + γB + ν

From this, we know Y NB = α and Y B = α + γ.
Taking expectations, and rearranging:

Y NB = α = E[Y ]− γ E[B]

In contrast, our sample estimate of Y NB from the linear estimator, Ŷ NB
l , is given by:

Ŷ NB
l = α̂ = Y − β̂ b

which converges to

Y NB
l = E[Y ]−DlE[b] = E[Y ]−Dl E[B],

since E[b] = E[B] (because E[b] = EZ [Pr[B = 1|Z]] = E[B]).

From Proposition 1, we know Dl = γ + E[Cov(Y,b|B)]
Var(b)

Substituting this into the above, we have:

Y NB
l = E[Y ]− γ E[B]− E[B]

E[Cov(Y, b|B)]

Var(b)

= Y NB − E[B]
E[Cov(Y, b|B)]

Var(b)
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Turning to Y B
l , we have

Ŷ B
l = α̂ + β̂

which converges to

Y B
l = Y NB

l +Dl

=

(
α− E[B]

E[Cov(Y, b|B)]

Var(b)

)
+Dl

= α− E[B]
E[Cov(Y, b|B)]

Var(b)
+ γ +

E[Cov(Y, b|B)]

Var(b)

= α + γ + (1− E[B])
E[Cov(Y, b|B)]

Var(b)

= Y B + (1− E[B])
E[Cov(Y, b|B)]

Var(b)

We prove 2) in a very similar manner as the related statement is in Chen et al. (2019):
Note that:

Y B = E[Y |B = 1] =
E[Y B]

E[B]
=

E[E[Y B|b]]
E[B]

On the other hand,

Ŷ B
p =

1
n

∑
biYi

1
n

∑
bi
−→ E[Y b]

E[b]
:= Y B

p

since the law of large numbers applies to the numerator and the denominator separately
(and the boundedness away from the end of the interval guarantees that the limits of the
ratio converges to the ratio of the limits).

But E[b] = EZ [Pr[B = 1|Z]] = E[B], and
E[Y b] = E[E[Y b|b]] = E[bE[Y |b]] = E[E[B|b]E[Y |b]], so:

Y B
p − Y B =

E [E[Y |b]E[B|b]]
E[B]

− E[E[Y B|b]]
E[B]

= −E[Cov(Y,B|b)]
E[B]

where the second equality follows from the definition of conditional covariance. This
establishes the result for Y B

p . To see the analogous result for Y NB
p , let A = 1 − B and

a = b, and observe that −E[Cov(Y,A|a)] = E[Cov(Y,B|b)]. The result then follows in the
same manner as above.
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B.3 Inference in Finite Samples

This section characterizes the asymptotic distributions of the linear and probabilistic
estimators.

B.3.1 Standard Errors of Disparity Estimators

Call D̂n
l and D̂n

p the empirically-constructed linear and probabilistic estimators using a

sample size of n observations. (Dl and Dp as written above are what D̂n
l and D̂n

p converge
to as n→∞.)

Lemma 2. For any fixed dataset, we relate D̂n
p and D̂n

l as:

D̂n
p = D̂n

l ·
1
n

∑
i b

2
i − b̄2

b̄(1− b̄)

And asymptotically,

D̂n
p → D̂n

l ·
Var(b)

E[b](1− E[b])
.

Proof. Notice that:

D̂n
p =

∑
biYi∑
bi
−
∑

(1− bi)Yi∑
1− bi

=
1
n

∑
biYi

1
n

∑
bi
−

1
n

∑
(1− bi)Yi

1
n

∑
(1− bi)

=
1
n

∑
biYi

b̄
−

1
n

∑
(1− bi)Yi
1− b̄

where we use ·̄ to indicate the sample average. We can then write:

1
n

∑
biYi

1
n

∑
bi
−

1
n

∑
(1− bi)Yi

1
n

∑
(1− bi)

−
1
n

∑
biYi

b̄
−

1
n

∑
(1− bi)Yi
1− b̄

=
1
n

∑
biYi − b̄

n

∑
biYi − b̄

n

∑
Yi + b̄

n

∑
biYi

b̄(1− b̄)

=
1
n

∑
biYi − b̄ȳ

b̄(1− b̄)

Now consider the regression estimator. By definition:

Dn
l =

∑
(bi − b̄)(yi − ȳ)∑

(bi − b̄)2
=

∑
biyi − b̄

∑
yi − ȳ

∑
bi + nb̄ȳ∑

(bi − b̄)2
=

1
n

∑
biYi − b̄ȳ

1
n

∑
(bi − b̄)2

But notice the numerator in both terms are the same. That is:

D̂n
p =

1
n

∑
(bi − b̄)2

b̄(1− b̄)
D̂n

l = CnD̂
n
l
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where Cn =
1
n

∑
(bi−b̄)2

b̄(1−b̄) .

But now recall Slutsky’s theorem, which says that if An, Bn are random variables and
Bn → c for some constant c, then AnBn → Anc. In particular,

Cn −→
Var(b)

E[b](1− E[b])
.

The second half of the lemma follows.

The asymptotic distribution of D̂n
l is well understood, as it is the OLS estimator.

Given the relationship between D̂n
p and D̂n

l shown above, it is mechanically true that D̂n
p

will, under the same conditions, be distributed normally as well. Formally:

Proposition 4. The asymptotic distribution of Dp
n is given by:

D̂n
p −Dp√

V n
l

Var(b)
E[b](1−E[b])

−→ N (0, 1)

where Dp = Cov(Y,b)
E[b](1−E[b])

and V n
l is the variance of D̂n

l .

B.4 Incorporating Sampling Weights into Disparity Estimation

In some of our analyses, we use data which is re-weighted to be representative of the full
population of U.S. taxpayers. D̂l can be naturally extended to incorporate sample weights
via weighted regression. How to extend the probabilistic estimator, however, may be less
obvious. We propose the following as the weighted probabilistic estimator D̂p,w:

Ŷ B
p,w =

∑
i ωibiYi∑
i ωibi

, Ŷ NB
p =

∑
i ωi(1− bi)Yi∑
i ωi(1− bi)

, D̂p,w := Ŷ B
p,w − Ŷ NB

p,w

where ωi is a sample weight for observation i. (Notice that as with Dp, replacing Yi with
any other random variable gives an estimator for disparity in said random variable.) This
estimator is closely related to the Horwitz-Thompson family of estimators; see Robinson
(1982); Berger (1998); Delevoye & Sävje (2020) for prior results regarding convergence and
consistency.

What is the purpose of the weighted estimator? The intention behind it is to use the
data we have to estimate what Dp would be given a different dataset or distribution. If D̂p,w

provides this fidelity, then it is the ‘correct’ weighted analogue. We show here that D̂p,w is
the ‘correct’ weighted analogue in a sense we make formal below.

We will distinguish between two cases. In the first, we have access to a subset of a
finite population of individuals, and are given replicate weights. The replicate weight for
observation i corresponds to the number of individuals in the full population that i represents.
In other words, we have some dataset of observations D := {Xi}ni=1, but the full dataset

which we do not have access to has observations D ′ :=
⋃

i{Xi}wi
j=1. The hope is that D̂p,w

estimated on D corresponds to D̂p estimated on D ′.
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Proposition 5. Suppose we are in the case of replicate weights and D and D ′ are as above.
Let D̂p,w|D be estimated over D and D̂p|D ′ be what would be estimated over D ′. Then:

D̂p,w|D = D̂p|D ′

Proof. This follows simply from the linearity of the numerator and denominator of Ŷ B
p,w and

Ŷ NB
p,w . Take Ŷ B

p,w:

Ŷ B
p,w|D =

∑
iwibiYi∑
iwibi

=

∑
i

∑wi

j=1 biYi∑
i

∑wi

j=1 bi
= Ŷ B

p |D ′.

Ŷ NB
p,w follows similarly and thus too D̂p,w.

Notice that the case of replicate weights corresponds to our analyses in which we use
NRP to estimate quantities over the population.

The second case is more general: weights may be not be integers corresponding the
number of people represented in some larger dataset, but rather changes of measure
intended to capture some other distribution. (For instance, weighting for non-response
attempts to map the data from responders to the overall population.) In this setting, we
are agnostic to how the weights are generated; instead, we merely assume that they
successfully accomplish re-weighting at the level of the sample mean. We make this precise
in the following proposition:

Proposition 6. Suppose we have data drawn from a distribution D; this data includes both
a quantity of interest, Yi, as well as sample weights ωi that map D to some other distribution
D′ in the following sense:

1

n

n∑
i=1

ωiQi
n→∞−→ ED′ [Q]],

for any random variable Q. Then:

D̂n
p,w|D

n→∞−→ Dp|D′.

Proof. Consider Ŷ B
p,w. Let Q := bY . Then by assumption:

1

n

[
n∑

i=1

ωibiYi

]
n→∞−→ ED′ [bY ]

Similarly,

1

n

n∑
i=1

ωibi
n→∞−→ ED′ [b]
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But we have that:

Ŷ B,n
p,w =

∑
i ωibiYi∑
i ωibi

=
1
n

∑
i ωibiYi

1
n

∑
i ωibi

n→∞−→ ED′ [bY ]

ED′ [b]

Proceeding similarly with Ŷ NB,n
p,w and taking the difference, we obtain:

D̂n
p,w

n→∞−→ ED′ [bY ]

ED′ [b]
− ED′ [(1− b)Y ]

ED′ [1− b]
= Dp|D′

Notice that the choice of unit weights, i.e. ωi = 1 satisfies the assumption of the theorem
and recovers the original convergence results. For another example, suppose we have groups
A and B in equal number throughout the population, but in our data we obtain twice as
many observations from group B as group A. Then it is easy to verify that the choice of

weights ωi =

{
2/3 i ∈ A
3/4 i ∈ B

would satisfy the assumptions, and thus this choice of weights

would allow us to recover Dp in the population from our data.

B.5 Estimating Disparity from a Recalibrated Race Probability
Estimate

In general, our estimate of Pr[Bi = 1|Zi] may be drawn from a population that differs
from the population of interest; for example, among EITC claimants, Pr[Bi = 1|Zi] may be
different than the equivalent quantity for the population as a whole. (This is reflected in
the imperfect calibration visible in Figure 2.) Proposition 2 shows that systematic deviation
like this can bias our estimates. However, given access to a recalibrated b∗, (i.e. the linear
projection of B on to the space of b and a constant, based on a subset of data with ground
truth race labels), we can use this re-calibrated proxy to obtain similar results as those in
Proposition 1 by applying Proposition 2.

To see this, suppose access to such a b∗ and note that by construction, Cov(b∗, ε∗) = 0, so
Proposition 2 applies. Moreover, E[b∗] = E[B], so E[b∗](1−E[b∗]) = E[B](1−E[B]) = Var(B).
So designating D∗l and D∗p as the linear and probabilistic estimators, respectively, applied to
b∗, as well as η∗ and ε∗ for the analogues of η and ε, Proposition 2 indicates that:

D∗l = D +
E[Cov(Y, b∗|B)]

σ2
b∗

(2)

and

D∗p = D − E[Cov(Y,B|b∗)] + Cov(E[η∗|b∗],E[ε∗|b∗]
Var(B)

. (3)

These equations are similar to those of Proposition 1, but there are two potential
challenges to overcome before applying the recalibrated proxies in the same manner as our
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initial probability estimates. The first potential challenge is that it might be more difficult
to reason about the sign of the covariances between outcome and re-calibrated proxy than
the original proxy, since this recalibrated proxy could differ in its conditional relationship
to Y given B and vice versa.

The following Lemma addresses this issue; it shows that the main covariance terms
E[Cov(Y,B|b∗)] and E[Cov(Y, b∗|B)] will have the same signs as their non-recalibrated
counterparts, under the minor condition that Cov(B, b) > 0.

Lemma 3 (). Suppose that b is a (possibly mis-calibrated) estimate of the probability that
a taxpayer is Black based on some observable characteristics Z and b∗ is the re-calibrated
proxy which can be written as an orthogonal projection:

B = µ+ ρb+ ϕ,

i.e.

b∗(b) = µ+ ρb.

Suppose further that Cov(B, b) > 0. Then

sign(E[Cov(Y,B|b)]) = sign(E[Cov(Y,B|b∗)])
sign(E[Cov(Y, b|B)]) = sign(E[Cov(Y, b∗|B)])

Proof. We note that

Cov(Y, b∗|B) = Cov(Y, µ+ ρb|B) = ρCov(Y, b|B)

and

Cov(Y,B|b∗) = Cov(Y,B|b).

Then the signs of E[Cov(Y,B|b)] and E[Cov(Y,B|b∗)] are identical, while the signs of
E[Cov(Y, b|B)] and E[Cov(Y, b∗|B)] will agree if ρ ≥ 0. Since ρ is the coefficient on b in said
regression, it is given by Cov(B, b)/Var(b), which is positive if and only if Cov(B, b) > 0.

The second potential difficulty in applying the recalibrated proxy is that the additional
covariance term that appears in the expression for Dp’s asymptotic bias,
Cov(E[ε∗|b∗] , E[η∗|b∗]), may also be difficult to reason about on the basis of theory. To
interpret this term, note that when E[B|b] is a linear function of b, then (asymptotically)
recalibrating via linear regression will recover the true conditional expectation function. By
construction in that case, E[ε∗|b∗] will be 0, since b∗ is the CEF. Thus, under linearity, the
nuisance covariance term would be 0. Of course, we do not expect exact linearity to hold,
but we will see in the recalibration exercise below that the CEF is close to linear, so that
our estimate of Cov(E[η∗|b∗], E[ε∗|b∗]) is close to 0 and certainly negligible compared to the
other terms.
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The upshot of the results in this subsection is that if we expect the covariance conditions
to hold with our original proxy, we can also expect them to hold for our recalibrated proxy.
This in turn allows us to treat disparity estimates arrived at using the recalibrated proxies
in the same manner as estimates obtained using the original proxies. We now turn to our
empirical approach.

Empirical Approach We now describe we apply the aforementioned strategy to
re-calibrate the BIFSG-predicted probability Black in the North Carolina dataset. We
consider North Carolina as a whole as well as EITC and non-EITC specific approaches.

First, we calculate ρ̂ as the coefficient from regressing an indicator for whether a taxpayer
self reports as Black on the BIFSG-predicted probability that a taxpayer is Black. That is,
we run the regression:

B = α0 + ρb+ ϕ,

with ρ̂ estimated once via ordinary least squares and separately via weighted least squares
using the North Carolina weights. We also repeat both estimations separately for EITC
taxpayers and non-EITC taxpayers. (The additional weighted/non-weighted and EITC/non-
EITC calculations will be repeated throughout; where required, weighted estimates will be
computed using the estimators described in B.4 above.) These estimates are reported in the
first line of Table B.1.

Next, we assign each individual

b∗i := α̂0 + ρ̂bi,

and

ε∗i = Bi − b∗i ;

we then estimate Ĉov(b, ε∗) in the straightforward manner of using sample unweighted and
weighted averages and product of b and ε∗, again separating out by EITC status. These
estimates are reported in the second line of Table B.1.

The next four lines of Table B.1 are computed in a similar manner. That is, we compute
the covariance within a given realization of the conditioning variable (e.g. for the set of
non-Black taxpayers, B = 0) and then weight these estimates by the estimated share of
taxpayers they represent. Importantly, we discretize both b∗i and bi by rounding to the
nearest percentage point in order to create realizations to average over; this approach may
introduce some arbitrariness to the analysis, but avoids making parametric assumptions.

Next, we run the regression:

Y = α∗ + β∗b∗ + η∗

and interpret the estimated β̂∗; that is, β̂∗ is the linear estimator of disparity as applied to
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the re-calibrated b∗. We then obtain

η̂∗i = Yi − α̂∗ − β̂∗b∗i .

We use this to compute the next line of Table B.1 in the following manner: first, we estimate
E[η∗|b∗] and E[ε∗|b∗] by computing the sample averages of η∗ and ε∗ within each discretized
b∗ category. We then assign each individual their respective sample averages based on their
value of b∗i , and then compute the overall covariance estimate over the population using these
features.

The next three lines of Table B.1 are computed straightforwardly - i.e. D̂ is based on the
ground truth,while D̂∗l and D̂∗p are computed according to the formulas in equations 2 and
3 above and the appropriate values from previously computed rows of Table B.1.

Table B.1: Estimates from the Re-calibration Exercise

Value Overall EITC Non-EITC
NC Reweighted NC NC Reweighted NC NC Reweighted NC
(1) (2) (3) (4) (5) (6)

ρ̂ 0.828 0.872 0.923 0.964 0.767 0.802

Ĉov(b, ε) -0.000 -0.000 -0.000 -0.000 0.000 -0.000

Ê[Cov(Y, b|B)] 0.000 0.000 0.001 0.001 0.000 -0.000

Ê[Cov(Y,B|b)] 0.001 0.001 0.001 0.001 0.000 0.000

Ê[Cov(Y, b∗|B)] 0.000 0.000 0.001 0.001 0.000 -0.000

Ê[Cov(Y,B|b∗)] 0.001 0.001 0.001 0.001 0.000 0.000

Ĉov(Ê[η∗|b∗], Ê[ε∗|b∗]) 0.000 0.000 -0.000 -0.000 0.000 0.000

D̂∗l 0.011 0.016 0.026 0.031 0.002 0.002

D̂ 0.008 0.012 0.018 0.024 0.002 0.002

D̂∗p 0.005 0.007 0.012 0.017 0.001 0.001
Notes: The table details the estimates for the disparities and covariance terms obtained from re-calibration,
for the North Carolina dataset (both unweighted (odd columns) and re-weighted (even columns). The
estimates are calculated for the overall population (columns 1 and 2), the EITC population (columns 3 and
4), and the non-EITC population (columns 5 and 6).

B.6 Gibbs Sampling

In addition to taxpayers’ first name, surname, and geographic location, the IRS has access
to additional information that may correlate to race. In principle, leveraging such
additional information could lead to better estimates of race probabilities and thus of
disparity. Additionally, it is possible that a finer breakdown of self-identified race and
ethnicity could contain additional information that may affect our disparity estimates.
Hence, as an additional robustness check, we leverage income (bucketed into 14 categories)
and marital status, abbreviated “MARS” (Single, Married Filling Jointly, or Other) to
obtain more accurate race/ethnicity estimates (at the more granular level of Hispanic,
non-Hispanic White, non-Hispanic Black, and Other).

To our knowledge, there are no readily available marginal distributions of race/Hispanic
probabilities conditional on income or marital status (and said distributions may differ
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among taxpayers than the general population); hence, we use Gibbs sampling to obtain
approximate probabilities from the IRS’ data and BIFSG. Gibbs sampling is a Bayesian
algorithm that reduces the problem of sampling from complicated joint distributions to
sampling from simpler marginal ones; in this section, we describe in detail this procedure
and how we apply it to our setting.

As a starting point, we take the conditional distribution of race and Hispanic origin
(RH) given first name, surname, and geography (F, S, and G, respectively, and,
collectively, FSG), implied by BIFSG to be correct. We model the joint distribution of
(RH,FSG,X), where X represents (income,MARS), as a decomposable model with
generating components {[RH,F ][RH,S][RH,G][RH,X]}. (In other words, we make a
similar naive Bayes assumption as in BIFSG, but treating X as a unit and allowing a more
general relationship between income and MARS.) Given this model, we can write the
conditional distribution of RH given (X,FSG) as

Pr(RH|X,FSG) = Multi

(
n,Cθ(i,j)

Pr(RH|G)

Pr(RH)

Pr(RH|F )

Pr(RH)

Pr(RH|S)

Pr(RH)

)
where θi,j is a vector of probabilities for the RH categories, given (X1 = i,X2 = j); that
is, θi,j = Pr(RH|X1 = i,X2 = j). Note also that Multi(n,p) represents the multinomial
distribution with n draws and class probabilities p, and C is a normalizing constant.

We estimate the parameters in the model with a Bayesian procedure, so we need a prior
on the unknown parameter θ(i,j). We set that to the Dirichlet prior with vector parameter
α0 = (1, . . . , 1), denoted θ(i,j) ∼ Dir(α0). This value for α0 was chosen to contribute a small
amount of information to the model while ensuring that the posterior is well-behaved. Denote
the unobserved vector of counts in the RH categories as ni,j for (X1 = i,X2 = j). Given the
form of the model, ni,j|X ∼ Multi(n,θi,j), the Dirichlet distribution was chosen because it
is the conjugate prior for the multinomial distribution and θ(i,j)|ni,j ∼ Dir(α0 + ni,j). Now
we have the full conditional distributions for the unobserved variables in the model.

Pr (RH|X,F = f, S = s,G = g) = Multi

(
n,Cθ(i,j)

Pr(RH|g)

Pr(RH)

Pr(RH|f)

Pr(RH)

Pr(RH|s)
Pr(RH)

)
(4)

and

Pr
(
θ(i,j)|ni,j

)
= Dir(α0 + ni,j),

which make a Gibbs sampling algorithm available for estimation.
An outline of the Gibbs Sampling algorithm used here is provided below. Note the

superscript (b) indexes the iteration number; it is not an exponent.

• Initialization

– For each record, indexed by m, generate RH
(0)
m from

Pr(RHm|fm, sm, gm) ∼ multi

(
1, C

Pr(RH|gm)

Pr(RH)

Pr(RH|fm)

Pr(RH)

Pr(RH|sm)

Pr(RH)

)
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where again Multi(n,p) represents the multinomial distribution with size n and
probability p and C is a normalizing constant.

– Tabulate n
(0)
i,j =

∑
Xm=(i,j) RH

(0)
m

• Main Loop

– for b = 1, ..., B + b0:

∗ generate θ
(b)
i,j ∼ Dir

(
1,α0 + n

(b−1)
i,j

)
for each i, j

∗ generate RH
(b)
m as

RH(b)
m ∼ Multi

(
1, Cθ(i,j)

(b)
m

Pr(RH|gm)

Pr(RH)

Pr(RH|fm)

Pr(RH)

Pr(RH|sm)

Pr(RH)

)
∗ tabulate n

(b)
i,j =

∑
Xm=(i,j) RH

(b)
m

This generates a sequence of values (θ
(b)
i,j , b = 1, ..., B + b0). Here, b0 is called the burn-in

time. If the initial values, where b = 0, are far from the center of the posterior distribution,
it may take several iterations for the sequence to move toward the mode of the posterior. It
can be shown that, after a long enough burn-in time b0, the set {θ(b)

i,j , b = 1, ...B+ b0} will be
a sample from the target distribution, that is, the posterior distribution of θi,j, conditioned
on the data. (Technical conditions for this are given in e.g. Geman & Geman (1984).) Then
if B is large,

E(θi,j|Data) ≈ 1

B

B+b0∑
b0

θ
(b)
i,j

The new probabilities for RH are calculated for each record using Equation 4 above. For
more details on the Gibbs sampling technique, see e.g. Casella & George (1992).

Using these probabilities, we re-compute the linear and probabilistic estimators in the
same manner as described before; the results are given in Column (2) of Table A.12. These
estimates are similar to those calculated with vanilla and re-calibrated BIFSG. Note that
in practice, the algorithm described can be computationally expensive; we thus perform the
entire procedure on a 1% sample of the population.

B.7 Estimating Audit Disparity Conditional on True
Underreporting

In Section 7.1.1 we describe at a high level how we can combine operational audit data, NRP
data, and baseline taxpayer data to estimate the audit rate of taxpayers conditional on a
given (binned) amount of underreporting. Here, we provide additional detail. Note that the
audit rate of taxpayers of group g and underreporting k is simply Pr[Y = 1|B = g,K = k].
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By Bayes’ rule:

Pr[Y = 1|B = g,K = k] =
Pr[K = k|Y = 1, B = g] Pr[Y = 1|B = g]

Pr[K = k|B = g]
.

Each of the quantities on the right-hand side of the equation includes self-reported race as
a conditioning variable. Since we do not have access to self-reported race, we must use our
predicted race probability, like in our estimates, to measure these quantities.

We consider each quantity in turn. Consider first Pr[K = k|B = 1], i.e. the probability
that a taxpayer has non-compliance K given that they are Black. In practice, we bin
taxpayers’ underreporting amounts rather than viewing them as exact figures (as exact
repeated amounts of underreporting are rare). Viewing K = k as membership in the set
of taxpayers whose underreporting is in bin k, we can thus apply either the probabilistic or
linear estimator to obtain this quantity:

P̂r
p
[K = k

∣∣B = 1] :=

∑
i∈NRP bi · 1[Ki = k]∑

i∈NRP bi

P̂r
p
[K = k

∣∣B = 0] :=

∑
i∈NRP(1− bi) · 1[Ki = k]∑

i∈NRP(1− bi)
,

where we limit our summation to NRP to ensure that our estimates are representative of
the overall population, or the linear estimator, by regressing:

1[Ki = k] = αk + βk · bi + ξi

and taking:

P̂r
`
[K = k

∣∣B = 1] := α̂k + β̂k

P̂r
`
[K = k

∣∣B = 0] := α̂k,

where again the regression is run over EITC claimants in NRP. (As before, we can modify
our estimators to take into account sample weights accordingly.)

Next, consider Pr[K = k|Y = 1, B = g]. This quantity is just as Pr[K = k|B = g], but
limited to taxpayers who were audited; thus, we can again apply the probabilistic and linear
estimators, but run them over the operational audit data rather than NRP.

Finally, Pr[Y = 1|B = g] is simply the overall audit probability conditional on race,
which is the main focus of the paper.

Combining the weighted estimators together, we can write:

P̂r
p
[Y = 1|K = k,B = 1] :=

∑
i∈NRP bi·1[Ki=k]∑

i∈NRP bi
·
∑

i biYi∑
i bi∑

i∈OP bi·1[Ki=k]∑
i∈OP bi

and similarly for conditioning on B = 0. We can similarly combine the linear estimates.
Because we have combined the estimators together, Proposition 1 does not directly apply.
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Additionally, estimates are not independent across different underreporting amounts. These
factors make the behavior of this estimator more difficult to analyze. Thus, in order to obtain
confidence intervals we do not attempt to characterize the standard errors analytically, but
instead use the bootstrap. That is, we draw 100 re-samplings (of each dataset) without
replacement, and re-compute the estimates for each subsample. We then take the mean of
these estimates for each bin k to be our estimated audit rates, and add/subtract 1.96 times
standard error to obtain the confidence intervals. We note that, while we do not have a formal
statement about the direction of bias these combined estimators may have and whether
the ground truth need lie between the combined probabilistic and linear estimators, the
probabilistic estimator tends to produce smaller estimates of within-bin audit rate disparities
than the linear estimator does, at least for the bulk of the distribution.

B.8 Conditional Disparity Estimators and Decomposition

We can generalize the disparity estimators straightforwardly to answer the following question:
What is the racial disparity in audits conditional on some covariates? Formally, let X
represent a (possibly vector-valued) feature, taking on values x ∈ X . We define the audit
disparity at x as:

Dx := E[Y |B = 1, X = x]− E[Y |B = 0, X = x].

To obtain estimates for these quantities, we again apply our linear and probabilistic
estimators. That is, we define the probabilistic estimator for audit disparity at x as:

D̂P
x :=

∑
i:Xi=x Yibi∑
i:Xi=x bi

−
∑

i:Xi=x Yi(1− bi)∑
i:Xi=x(1− bi)

,

and the linear estimator for audit disparity at x as the estimated coefficient β̂x in the
regression of Y on b over the set of observations i such that Xi = x. Formally, that is,

D̂l
x =

∑
i:Xi=x(bi − b̄x)(Yi − Ȳx)∑

i:Xi=x(bi − b̄x)2
,

where ·̄x indicates the average taken with respect to observations i having Xi = x.
It is easy to see that, assuming that Pr[Xi = x] > 0, we will have that:

D̂p
x

n→∞−→ Cov(Y, b|X = x)

E[b|X = x](1− E[b|X = x])
≡ Dp

x

by applying the Law of Large Numbers to observations with Xi = x. Similarly, we can
observe that

D̂l
x

n→∞−→ Cov(Y, b|X = x)

Var(b|X = x
≡ Dl

x,
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and that the multiplicative relationship between Dl
x and Dp

x holds with x-specific constants:

Dp
x = Dl

x ·
Var(b|X = x)

E[b|X = x](1− E[b|X = x])
.

Accordingly, we can obtain x-specific covariance conditions for these estimators to write
the following theorem:

Proposition 7 (Conditional Disparity Bounds). Suppose that b is a taxpayer’s probability
of being Black given some observable characteristics Z, so that b = Pr[B = 1|Z,X]. Define

Dp
x as the asymptotic limit of the probabilistic disparity estimator at X = x, D̂p, and Dl

x as

the asymptotic limit of the linear disparity estimator at X = x, D̂l
x. Then:

1.

Dp
x = Dx −

E[Cov(Y,B|b,X)|X = x)]

Var(b|X = x)
(7.1)

2.

Dl
x = Dx +

E[Cov(Y, b|B,X)|X = x)]

Var(B|X = x)
(7.2)

3. Suppose E[Cov(Y,B|b,X)|X = x)] ≥ 0 and E[Cov(Y, b|B,X)|X = x] ≥ 0. Then

Dp
x ≤ D ≤ Dl

x (7.3)

4. Suppose E[Cov(Y,B|b,X)|X = x] ≤ 0 and E[Cov(Y, b|B,X)|X = x] ≤ 0. Then

Dl
x ≤ D ≤ Dp

x (7.4)

Importantly, Proposition 7 requires that b be Pr[B = 1|Z,X]. In other words, if we wish
to apply it, we must not only have an accurate measurement of the probability a taxpayer is
Black given their name and geography, but also including additionally the feature of interest.
Moreover, there is again the possibility of bias and noise, and thus the “at-x” analogue of
Proposition 2; a more general formulation and associated proof follow similarly. Thus, in
applying this result, recalibration within the values taken on by X may be important.

Now, Proposition 7 provides an analogue of our bounds for each x. But we might wish to
summarize Dx, which is a function, into a single number, e.g. by estimating E[Dx]. Again,
it is easy easy to see that

1

n

∑
x

nxD̂
p
x

n→∞−→ E[Dp
x]

1

n

∑
x

nxD̂
l
x

n→∞−→ E[Dl
x],

but can we similarly say something about E[Dl
x] vs E[Dx] vs E[Dp

x]? The following theorem
provides both necessary and sufficient conditions; it boils down to asking that the covariance
conditions hold on average.
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Theorem 1. Let Dp
x, Dl

x, Dx be as above. Let P be an arbitrary distribution over X. Then:

EP [Dp
x] ≤ EP [Dx] ≤ EP [Dl

x]

whenever:

1. (Sufficient, but not necessary:)

E[Cov(Y, b|B,X)] ≥ 0,E[Cov(Y,B|b,X)] ≥ 0 ∀x

2. (Necessary and sufficient):

EP
[
E[Cov(Y, b|B,X)|X = x]

Var(B|X = x)

]
≥ 0,EP

[
E[Cov(Y,B|b,X)|X = x]

Var(b|X = x)

]
≥ 0

The sufficient, but not necessary, condition is easy to reason about because it only requires
an assumption about the sign of covariance terms, but of course less likely to hold given its
strength. By contrast, the necessary condition is more reasonable in that it allows for the
covariance conditions to be negative over some values of X as long as it is positive over
enough of the others; however, ascertaining this requires not merely knowledge of signs, but
quantitative variation.

Proof. As noted, that

Dx = Dl
x −

E[Cov(Y, b|B,X)|X = x]

Var[b|X = x]

and

Dx = Dp
x +

E[Cov(Y,B|b,X)|X = x]

Var[B|X = x]

follows from the same logic, conditioned on the event X = x, as used in the proof of
Proposition 2. Then:

EP [Dl
x] =

∑
x

P(x)Dp
x =

∑
x

[
P(x)

[
Dx +

E[Cov(Y, b|B,X)|X = x]

Var[b|X = x]

]]
= EP [Dx] +

∑
x

P(x)
E[Cov(Y, b|B,X)|X = x]

Var[b|X = x]

= EP [Dx] + EP
[
E[Cov(Y, b|B,X)|X = x]

Var[b|X = x]

]
.

Thus:

E[Cov(Y, b|B,X)|X = x] ≥ 0 ∀X =⇒ EP [Dl
x] ≥ EP [Dx],
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But more weakly, it also holds that:

EP
[
E[Cov(Y, b|B,X)|X = x]

Var[b|X = x]

]
≥ 0 =⇒ EP [Dl

x] ≥ EP [Dx].

Similarly, we can write that:

EP [Dp
x] = EP [Dx]− EP

[
E[Cov(Y,B|b,X)|X = x]

Var[B|X = x]

]
and so again,

E[Cov(Y,B|b,X)|X = x] ≥ 0 ∀X =⇒ ≥ EP [Dp
x] ≤ EP [Dx],

and the weaker version

EP
[
E[Cov(Y,B|b,X)|X = x]

Var[B|X = x]

]
≥ 0 =⇒ EP [Dp

x] ≤ EP [Dx]

also holds.

B.8.1 Using Dx to decompose D into constituent parts

If the distribution over X is the same for both groups, then D = E[Dx], where the expectation
is taken over the population distribution of X, PX . Otherwise, there is a compositional effect ;
that is, unless audit rates are constant for all values in X , groups will have different total
audit rates because individuals tend to have values of X associated with higher audit rates
in one group more than another, even if audit rates are the same for both groups conditional
on every x. Arguably, one might take the point of view that the conditional disparity
(either averaged over PX or some other reference distribution, e.g. PX|B=1 ) is of primary
importance, as it captures the portion of disparity stemming from differences in the outcome
of interest given the same individual features. We do not take the view that the overall
disparity is unimportant for many reasons; for example, even compositional effects can be
related to systemic inequality and may thus have relevant policy implications. But it still
useful to understand how much of disparity is driven by differing audit rates with the same
features rather than compositional effects.

In Proposition 8, we thus decompose disparity into a portion coming from E[Dx] and a
portion coming from the compositional effects. To understand this decomposition, we define
Pg(X) to be the conditional distribution Pr[X = x|B = g] and, as mentioned, PX to be
the unconditional distribution Pr[X = x]. We will use P for an arbitrary distribution over
X. We also define an operator ∆ representing the difference of two probability distributions
weighted by a function of a random variable. In the discrete case, that is:

∆P,P ′(f(x)) :=
∑
x

f(x) [P(x)− P ′(x)] .
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With this notation, we can state and prove the following proposition capturing the
decomposition with respect to an arbitrary “reference” distribution over X:

Proposition 8. Suppose P is an arbitrary distribution over X. Then overall disparity D
can be decomposed with respect to P as:

D = EP [Dx] + ∆P1,P(E[Y |B = 1, X = x])−∆P0,P(E[Y |B = 0, X = x]).

Proof. The law of iterated expectations says that:

E[Y |B = g] = EPgE[Y |B = g,X = x],

so

D := E[Y |B = 1]− E[Y |B = 0]

= EP1 [E[Y |B = 1, X = x]]− EP0 [E[Y |B = 0, X = x]] .

Now, adding and subtracting both EP [E[Y |B = 1, X = x]] and EP (E[Y |B = 0, X = x]]
we get:

D = EP [E[Y |B = 1, X = x]]− EP [E[Y |B = 0, X = x]]

+ EP1 [E[Y |B = 1, X = x]]− EP [E[Y |B = 1, X = x]]

+ EP [E[Y |B = 0, X = x]]− EP0 [E[Y |B = 0, X = x]]

The terms in the first line is simply EP [Dx]. For the second term, note that

EP1 [E[Y |B = 1, X = x]]− EP [E[Y |B = 1, X = x]]

=
∑
x

P1(x)E[Y |B = 1, X = x]−
∑
x

P(x)E[Y |B = 1, X = x]

=
∑
x

E[Y |B = 1, X = x] [P1(x)− P(x)]

= ∆P1,P(E[Y |B = 1, X = x])

and similarly the third simplifies to ∆P,P0(E[Y |B = 0, X = x]).

The most natural choices to use as reference distributions in Proposition 8 are either PX ,
P1, or P0. For the latter two, the form becomes slightly simpler:

Corollary 1. By noting that ∆P,P = 0, we can also write that:

D = EP1 [Dx] + ∆P1,P0(Y |B = 0, X = x)

and

D = EP0 [Dx] + ∆P0,P(Y |B = 1, X = x)

Regardless of the reference distribution, Proposition 7 and Corollary 1 show that overall
disparity can be decomposed into an average conditional disparity, under some distribution,
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and compositional effects that capture the difference of one or both groups’ distribution over
X with respect to that reference distribution.

To apply this decomposition, we must know or estimate the constituent components.
Non-group-specific distributions, e.g. P(X) and E[Y |X], can be simply estimated from the
data in the usual manner, but we must also estimate group-specific distributions over X and
group-specific audit rates given X. We turn to estimation concerns in the following section.

B.8.2 Estimating decomposition-relevant quantities

We focus on the case where X is discrete and has a relatively small number of unique values.
In this case, we need to estimate Dx, E[Yx|B = 1, X = x],E[Yx|B = 0, X = x], P1(x),
P0(x). Once we obtain these estimates, we combine them in a plug-in manner to estimate
the expression in Proposition 8:

D̂ =
∑
x

P̂(x)D̂x +
∑
x

Ê[Y |B = 1, X = x] ·
[
P̂1(x)− P̂(x)

]
+
∑
x

Ê[Y |B = 0, X = x] ·
[
P̂(x)− P̂0(x)

] (5)

As with the overall disparity estimation and related problems, we can obtain these
estimates via either the probabilistic disparity estimator or the linear disparity estimator.
For the probabilistic, we estimate D̂p

x by computing the probabilistic estimator for
individuals with Xi = x; we estimate the audit rate conditional at each x using the levels ;
and we estimate the distribution using the probabilistic estimator over the full dataset with
an indicator for having Xi = x as the outcome of interest. That is:

D̂p
x :=

∑
i:Xi=x biYi∑

i:Xi=x

−
∑

i:Xi=x biYi∑
i:Xi=x

Ê[Y |B = 1, X = x] :=

∑
i:Xi=x biYi∑
i:Xi=x bi

Ê[Y |B = 0, X = x] :=

∑
i:Xi=x(1− bi)Yi∑
i:Xi=x(1− bi)

P̂1(x) :=

∑
i bi1[Xi = x]∑

i bi

P̂0(x) :=

∑
i(1− bi)1[Xi = x]∑

i(1− bi)
.

For the linear, we estimate, two regressions for each value of x ∈ X :

Yi = αx + βxbi

over all i : Xi = x, and

1[Xi = x] = ζx + ξxbi
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over all i. We then construct have:

D̂p
x =: β̂x

Ê[Y |B = 1, X = x] := α̂x + β̂x

Ê[Y |B = 0, X = x] := α̂x

P̂1(x) := ζ̂x + ξ̂x

P̂0(x) := ζ̂x

B.9 Tightening Bounds with a Linear Program

In this subsection we use a linear program to calculate the maximum and minimum values
of disparity that are consistent with the Proposition 1.3 assumptions and the observed joint
distribution of b and Y . To implement this approach, we discretize the b distribution into
n mutually exclusive and equal width bins, labeling them with the sample average b̄i of
taxpayers in the bin. The share of taxpayers in each bin is given by p1, ...pn. As in Proposition
1, we assume race probabilities for each bin are perfectly calibrated, so that P (B = 1|b =
bi) = bi for all i from 1 to n. Along with the marginal distribution of b, we observe the
distribution of audits conditional on b. Denote the audit rate in each bin as Y1, ..Yn, and the
overall audit rate as Y . The audit rate among Black taxpayers in bin i is denoted by Y B

i

and among non-Black taxpayers as Y NB
i . Finally, as in Proposition 1.3, we assume the sign

of the covariance conditions, i.e. that E[Cov(Y, b|B)] ≥ 0 and E[Cov(Y,B|b)] ≥ 0.
We ask: if we can allocate the Yi into Y B

i and Y NB
i for each bin i, what is the maximum

and minimum disparity we could obtain consistent with the results? This is a constrained
optimization problem. Disparity is given by:

Y B − Y NB =
∑
i

Pr[bi|B = 1] · Y B
i −

∑
i

Pr[bi|B = 0] · Y NB
i

Noting that

biY
B
i + (1− bi)Y NB

i = Yi =⇒ Y NB
i =

Yi − biY B
i

1− bi

we can replace the Y NB
i into the objective to get:

∑
i

[
Pr[bi|B = 1]Y B

i − Pr[bi|B = 0]

(
Yi − Y B

i bi
1− bi

)]
and we may as well drop Yi from the objective (since it will not change based on our choice
variables) to get:

f(~Y B) =
∑
i

[
Pr[bi|B = 1]Y B

i +
Pr[bi|B = 0]bi

1− bi
Y B
i

]
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Now by Bayes’ rule, we can write that:

Pr[bi|B = 1] =
Pr[B = 1|bi]pi

Pr[B = 1]
=

bipi
Pr[B = 1]

Pr[bi|B = 0] =
Pr[B = 0|bi]pi

Pr[B = 0]
=

(1− bi)pi
Pr[B = 0]

.

If we substitute these into the objective function, we have:∑
i

[
bipi

Pr[B = 1]
Y B
i +

(1− bi)pi
Pr[B = 0]

biY
B
i

1− bi

]
=
∑
i

Y B
i bipi

[
1

Pr[B = 1]
+

1

Pr[B = 0]

]
The constant multiplier will also not be affected by our decisions, so we can drop it, and our
objectives will be:

max
<Y B

i >

∑
i

piY
B
i bi and min

<Y B
i >

∑
i

piY
B
i bi

These are intuitive - to maximize (minimize) disparity, we allocate as much of the audit rate
as possible to bins of bi that are more likely to contain Black (non-Black) taxpayers, either
because bi or Pr[bi] is higher (lower) than others.

As for constraints: First, we need Y B
i to be in the right range. [0, 1] is a first pass, but

note that this does not guarantee consistency with the data. For instance, if Y B
i is 0, even

Y NB
i = 1 might not be enough to satisfy that the overall audit rate in the bin matches Yi.

So in particular, the lowest that Y B
i could be is max

{
0, Yi−(1−bi)

bi

}
, while the most that it

could be is min
{

1, Yi

bi

}
. These numbers can be calculated from the data, so we will simply

refer to them as upper bound ui and lower bound li.
Second, the first covariance constraint, E[Cov(Y,B|b)] ≥ 0.
We note that:

Cov(Y,B|b) = E[Y B|b]− E[Y |b]E[B|b].

Now, E[Y |b = bi] is simply Yi, and E[B|b = bi] is bi by assumption of perfect calibration.
E[Y B|b = bi] = biY

B
i , since Y B = Y B

i whenever B = 1 and 0 otherwise, and again
Pr[B|b = bi] = bi by perfect calibration.

Then we can write that:

Cov(Y,B|b) = biY
B
i − Yibi =⇒ E[Cov(Y,B|b)] =

∑
i

pibi(Y
B
i − Yi)

Finally, the third condition: we need that E[Cov(Y, b|B)] ≥ 0. Let’s consider just B = 1
first.

E[Y b|B = 1]−E[Y |B = 1]E[b|B = 1] =∑
i

Y B
i bi Pr[bi|B = 1]−

(∑
i

Pr[bi|B = 1]Y B
i

)(∑
i

Pr[bi|B = 1]bi

)
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Define b̄B =
∑

i Pr[bi|B = 1]bi, which has the interpretation of the average probability of
being Black given ground truth race being Black.

Then we can write that the above is:

∑
i

Y B
i bi Pr[bi|B = 1]−

(∑
i

Y B
i Pr[bi|B = 1]

)(∑
i

bi Pr[bi|B = 1]

)
=
∑
i

Y B
i bi Pr[bi|B = 1]−

∑
i

Y B
i Pr[bi|B = 1]b̄B

=
∑
i

Y B
i (bi − b̄B) Pr[bi|B = 1]

Using our Bayes’ rule calculation as above, we can write:

∑
i

Y B
i (bi − b̄B) Pr[bi|B = 1] =

1

Pr[B]

∑
i

Y B
i (bi − b̄B)bipi

For given B = 0, we have that:

∑
i

Y NB
i bi Pr[bi|B = 0]−

(∑
i

Y NB
i Pr[bi|B = 0]

)(∑
i

bi Pr[bi|B = 0]

)
=
∑
i

Y NB
i bi Pr[bi|B = 0]−

∑
i

Y NB
i Pr[bi|B = 0]b̄NB

=
∑
i

Y NB
i (bi − b̄NB) Pr[bi|B = 0]

and again applying Bayes’ rule we can write the above as:

1

1− Pr[B]

∑
i

Y NB
i (bi − b̄NB)(1− bi)pi.

Then the overall constraint is:

Pr[B] · 1

Pr[B]

∑
i

Y B
i · bi · (bi − b̄B) · pi

+ (1− Pr[B])
1

1− Pr[B]

∑
i

Y NB
i (1− bi)(bi − b̄NB)pi

=
∑
i

pi
(
Y B
i bi(bi − b̄B) + Y NB

i (1− bi)(bi − b̄NB)
)
≥ 0

Noting that Y NB
i = (Yi−Y B

i bi)/(1− bi) and factoring out, we can rewrite the last inequality
as: ∑

i

pi
(
Y B
i bi(b̄NB − b̄B) + Yi(bi − b̄NB

)
≥ 0
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Putting these together, our problem is:

Program 1 (Maximum Consistent Disparity).

max
<Y B

i >

∑
i

piY
B
i bi s.t. Y B

i ≤ ui

li ≤ Y B
i

0 ≤
∑
i

pibi(Y
B
i − Yi)

0 ≤
∑
i

pi
(
Y B
i bi(b̄NB − b̄B) + Yi(bi − b̄NB

)
to obtain the maximum disparity consistent with the information, and minimizing the

same (or maximizing the negative) to get the minimum disparity.

B.9.1 Linear Program Results

In Table B.2, we report the information that we observe, including the average probability
Black within each bin, the audit rate within each bin, and the share of taxpayers that fall
into each bin. Using these along with the assumption of calibration, we can compute the
conditional probability of a taxpayer falling into each bin given that they are Black and the
upper and lower bounds on Y B

i . These together constitute the requisite input to Program 1
and its counterpart minimization. To solve these programs, we use the SciPy (Virtanen et
al., 2020) library’s linprog function. The results are given in the following table:

The solutions to the linear programs closely match the disparity estimates obtained by
the probabilistic and linear estimators. Compare Column 1 of Table B.3 to Column 1 of
Panel A of Table A.6 and Column 2 of Table B.3 to Column (1) of Panel A of Table A.5.
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Table B.2: Inputs to Linear Program for Bounding Disparity

Bin Probability Black Fraction in Bin Audit Rate

1 0.0057 0.7130 0.0039
2 0.0722 0.0574 0.0039
3 0.1232 0.0353 0.0047
4 0.1737 0.0233 0.0049
5 0.2241 0.0179 0.0055
6 0.2740 0.0143 0.0060
7 0.3245 0.0119 0.0068
8 0.3743 0.0101 0.0072
9 0.4246 0.0087 0.0077
10 0.4746 0.0079 0.0082
11 0.5248 0.0073 0.0090
12 0.5748 0.0068 0.0095
13 0.6249 0.0065 0.0101
14 0.6750 0.0064 0.0111
15 0.7251 0.0065 0.0118
16 0.7753 0.0068 0.0127
17 0.8255 0.0075 0.0136
18 0.8759 0.0089 0.0149
19 0.9268 0.0123 0.0165
20 0.9820 0.0312 0.0199

Notes: The Table reports statistics used to bound disparity through the linear program described in this
subsection. Taxpayers have been binned into 20 groups based on their estimated probabilities of being Black,
with each group corresponding to the values of b in a 5 percentage point range. Probability Black denotes
the average estimated probability of being Black within the bin. Fraction in Bin denotes the share of the
overall taxpayer population in the specified bin.

Table B.3: Maximum and Minimum EITC Audit Disparity Estimates

Maximum Disparity Minimum Disparity
(1) (2)

Black Audit Rate 1.710 1.241
Non-Black Audit Rate 0.362 0.427
Disparity 1.347 0.813
Audit Rate Ratio 4.7 2.9

Notes: The table reports the results of the Maximium Disparity and Minimum Disparity constrained
optimization problems described in Section B.9. Units are percentage points (0-100).
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C North Carolina Match and Bias Correction

C.1 North Carolina Match

In our North Carolina voter registration data (reflecting the state’s voter registration file as
of the close of 2020), we observe individuals’ first names, last names, zip codes, residential
street addresses, and mailing addresses at time of registration or filing. We match these data
to IRS data using these common features according to the following procedure:

1. First, look for exact match on zip code, first name, last name, and full text of residential
street address. Remove matched records from both datasets and append matched
records to output file.

2. Among unmatched records, look for match on zip code, first four characters of first
and last name, and full text of residential street address (after minor data cleaning).

3. Among unmatched records, look for match on zip code, first character of first name,
first four characters of last name, and full text of residential street address.

4. Among unmatched records, look for match on zip code, first four characters of first
and last name, residential street number, and city.

5. Among unmatched records, look for match on zip code, first character of first name,
first four characters of last name, and full text of mailing address.

Using this procedure, we are able to match 2.5 million taxpayer and voter records, or
approximately 47% of the population of North Carolina taxpayers for tax year 2014. We use
the same procedure to match taxpayers to the 2023 voter registration data from other states
reported in Appendix Figure A.13.

C.2 North Carolina Reweighting

When specified, we use inverse-probability weighting to align the composition of the North
Carolina matched sample with that of the full population of tax returns for 2014. The
weights are generated from a linear probability model whose binary outcome equals one
for records appearing in the IRS-matched North Carolina sample, and whose features are
chosen to reflect observable taxpayer characteristics that we would like to align with their US
means. These are entered as categorical variables and are fully interacted with one another,
resulting in a flexible nonparametric model of the conditional probability of appearing in
the North Carolina data. Features include quintiles (as calculated on the full population)
of the BIFSG-predicted probability that a taxpayer self reports as black; four activity code
groupings41; gender; the presence of dependents; joint/non-joint filing status; and whether
a taxpayer was audited. The weights are then given by the inverse of these conditional
probabilities. The weights were successful in aligning the weighted sample proportions along
all included dimensions to within 0.02% of their U.S. population means.

41Activity codes are grouped as: 270-271 (EITC claimants), 272 (1040 filers without additional schedules
or very high income), 273-278 (filers with Schedule C etc. but not very high income), and 279-281 (filers
with very high ($1M) or more income or high ($ > 250K) with additional schedules).
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D EITC Disparity Decomposition

This appendix provides additional detail regarding the decomposition of the total racial audit
disparity into components associated with the disparity within and between EITC claimants
presented in Section 6.

As in the main text, Y B
C and Y NB

C refer to the average audit rates for Black and non-
Black EITC claimants, respectively; Y B

NC and Y NB
NC refer to the average audit rates for Black

and non-Black EITC non-claimants, respectively; and CB and CNB refer to the respective
probabilities that Black and non-Black taxpayers claim the EITC.

Our preferred decomposition, presented in the main text, is given by:

Y B − Y NB =
(
Y B
C − YC

)
CB −

(
Y NB
C − YC

)
CNB︸ ︷︷ ︸

(1)

+
(
Y B
NC − YNC

)
(1− CB)−

(
Y NB
NC − YNC

)
(1− CNB)︸ ︷︷ ︸

(2)

+ (CB − CNB) (YC − YNC)︸ ︷︷ ︸
(3)

The first component reflects racial differences in the audit rate among EITC claimants:
if Black and non-Black EITC claimants were selected at the same rate, it would imply
Y B
C = Y NB

C = YC , so that both terms in (1) would be zero. Similarly, the second component
reflects racial differences in the audit rate among non-EITC claimants. The third component
reflects compositional differences in the rate at which Black and non-Black taxpayers claim
the EITC as well as differences in the audit rate of EITC versus non-EITC returns. This
component would be zero if Black and non-Black taxpayers claimed the EITC at equal rates,
or if EITC and non-EITC claimants (of any race) were audited at the same rate.

The following table presents estimates of the elements of the decomposition using both
the linear and probabilistic audit rate estimators. These estimates are reported in Section 6
of the main text.42

An appealing feature of the above decomposition is that it weights the contribution of
differences in the EITC and non-EITC audit rate for each racial group based on the share
of that racial group claiming the EITC. On the other hand, to the extent that Black and
non-Black taxpayers claim the EITC at different rates, there is a sense in which the first
two components of the decomposition can be interpreted to reflect compositional differences
in EITC claiming as well as differences in the audit rate. We consider two alternative
decompositions below, which differ from the above in that they weight the within EITC and
within non-EITC components of the disparity based on the EITC claim rates of either Black
or non-Black taxpayers.

Using Black taxpayers as the reference group, we can decompose the total disparity as:

Y B − Y NB = (Y B
C − Y NB

C )CB︸ ︷︷ ︸
(1)

+ (Y B
NC − Y NB

NC ) (1− CB)︸ ︷︷ ︸
(2)

+ (CB − CNB)
(
Y NB
C − Y NB

NC

)︸ ︷︷ ︸
(3)

42In finite samples, the individual components of the decomposition may not exactly sum to the estimated
total disparity. The percentage contributions we report are calculated by dividing each component estimate
by the sum of the three component estimates.
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Here, the first component represents the contribution of the disparity within EITC claimants,
the second represents the contribution of the disparity within EITC non-claimants, and the
third component is the same as with the first decomposition presented, but with the difference
in EITC versus non-EITC audit rates evaluated for Black taxpayers.

Using this decomposition with the estimates reported in Appendix Table D.1 implies
a larger contribution to the overall disparity from the disparity among EITC claimants,
between 78% and 83% depending on whether the probabilistic or linear estimator is used
(see Appendix Table D.2).

Alternatively, using non-Black taxpayers as the reference group, we can decompose the
total disparity as:

Y B − Y NB = (Y B
C − Y NB

C )CNB︸ ︷︷ ︸
(1)

+ (Y B
NC − Y NB

NC ) (1− CNB)︸ ︷︷ ︸
(2)

+ (CB − CNB)
(
Y B
C − Y B

NC

)︸ ︷︷ ︸
(3)

With this decomposition, the estimates reported in Appendix Table D.1 imply a smaller
contribution to the overall disparity from the disparity within EITC claimants, and a
larger contribution from racial differences in EITC claiming (see Appendix Table D.2). The
explanation for this difference is that because non-Black taxpayers claim the EITC at lower
rates, using that group as the reference leads to attaching less weight to the disparity
among EITC claimants.
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Table D.1: Decomposition of Disparity with Resepct to EITC Claiming

Probabilistic Estimate Linear Estimate

EITC Claim Rate Among...

Black Taxpayers 32.43 41.14

Non-Black Taxpayers 17.26 16.06

Audit Rate Among...

EITC Claimants 1.44 1.44

Black EITC Claimants 2.99 3.73

Non-Black EITC Claimants 1.04 0.85

EITC Non-Claimants 0.31 0.31

Black EITC Non-Claimants 0.40 0.47

Non-Black EITC Non-Claimants 0.30 0.29

Disaprity Contribution From...

Within EITC Claimants 70% 72%

Within EITC Non-Claimants 9% 8%

Racial Differences in EITC Claiming 21% 20%

Notes: The table reports linear and probabilistic estimates of the terms used to calculate the decompositions
of disparity described in this appendix section. The final three rows of the table report the contribution of
terms (1), (2), and (3) of the preferred disparity decomposition described at the beginning of this Appendix
section. Units are percentage points (0-100).
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Table D.2: Alternative Disparity Decompositions

Reference Group Estimator
Within-EITC
Contribution

Outside-EITC
Contribution

Differences in
EITC Claiming

Contribution

Black Probabilistic 78% 8% 14%

Black Linear 83% 7% 10%

Non-Black Probabilistic 41% 10% 48%

Non-Black Linear 32% 10% 57%

Notes: The table reports the decomposition of disparity under the alternative decomposition methods
described in this appendix section and under alternative estimation approaches (linear versus probabilistic
estimators). Estimates of the terms used to calculate each component of disparity are reported in Appendix
Table D.1.
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E Taxpayer Noncompliance Prediction Model

The outcomes of interest Y of the taxpayer non-compliance random forest models are the
dollar amount of adjustment in either total tax liability or refundable credit amount following
an audit (for the regression models) and a {0, 1} indicator of whether non-compliance exceeds
$100 (for the classifier models). The inputs to the model are characteristics of the tax return,
denoted X, which include wages and other sources of income, claimed deductions, and flags
for whether dependents claimed on the return may violate IRS dependent rules. These
features do not include race, gender, age, location, or other demographic variables.

To train and evaluate the models, we first subset the NRP data from tax years 2010-14 to
taxpayers claiming the EITC. We then randomly divide the data into 5 folds. We designate
4 of these folds as the training set, and the remaining fold as the test set. We tune the
hyperparameters of each model, including the total number of decision trees in each forest,
the maximum depth of each decision tree, and the maximum number of features available
to each decision tree, using 5-fold cross validation within the training set and random grid
search over the space of hyperparameters we consider. We then fit each tuned model on
the full set of training data to generate a function Ŷ = m(X) which maps features into
predictions, and we apply this model to the test set. We repeat this process 5 times, until
each observation in the NRP data has a predicted label. The train-test splits are the same
for both the regression and classification models. Figure E.1 provides an exposition of the
data flow and model training process.

Figure E.1: Data Flow for Random Forest Models

To obtain estimates of disparity and annualized adjustments at each audit rate, we first
bootstrap from the population of labeled test data, and then sort observations within the
bootstrapped sample by either the magnitude of their predicted noncompliance (for the
regression model) or the predicted likelihood of noncompliance above a $100 threshold (for
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the classification model). Within each sample, annualized adjustments are given by:

Rs =
1

5

2014∑
t=2010

Wt∑nst

i=1wist

nst∑
i=1

(aistwistrist) (6)

The rightmost sum computes the total weighted audit adjustments across observations in
sample s from tax year t, where aist indicates whether individual i in sample s and tax year
t was audited and (wistrist) is the weighted adjustment from the audit in 2014 dollars. The
term to the left of this sum takes the total sample weights from NRP observations in year t
(denoted Wt) over the total sample weight from this year included in sample s, to account
for the fact that each fold only contains a portion of the total population available in each
study year. We then sum across each of the 5 study years and divide by 5 to approximate one
year of annual adjustments in 2014 dollars. Disparity measures are computed within each
sample using both the linear and probabilistic estimators described in Section 3, adjusted to
account for NRP sample weights. We take the mean and standard error of these measures
across the bootstrapped samples to construct our trajectories and 95% confidence intervals.

Oracle adjustments and disparity calculations are analogous to the random forest
calculations, with the exception that the data are sorted using true underlying
noncompliance, rather than predicted amount or likelihood of noncompliance.
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F Additional Factors Potentially Contributing to

Audit Disparity

Section 7 of the main text provided evidence that the observed audit disparity among EITC
claimants stems in part from audit selection algorithms designed to pursue refundable credit
overclaims rather than total underreporting, in conjunction with differences by race in the
prevalence of different types of noncompliance. This appendix section explores additional
factors that may also contribute to the observed racial disparity.

F.1 Prediction Model Errors

Whereas the refundable credit oracle induces a smaller disparity than what we observe in
the operational data, Figure 8 showed that focusing on predicted refundable overclaims –
where the predictions are obtained from a random forest prediction model trained on the
same data that is available to IRS – would lead to a disparity similar to that observed in
the operational data. In this subsection, we attempt to better understand why focusing on
predicted overclaims can exacerbate the disparity that would be implied by actual differences
in refundable credit overclaiming by race.

As a starting point, note that we can express the disparity from a prediction-based
algorithm relative to the disparity that would be induced by an oracle in terms of
differential false positive and false negative rates by race, where a true positive is defined as
a taxpayer’s actual refundable credit overclaiming being in the top share of the refundable
credit overclaiming distribution (see Appendix F.5 for details). Appendix Table F.1 reports
the frequency of these prediction errors by race for our simulated refundable credit
prediction algorithm. Relative to non-Black taxpayers, Black taxpayers experience higher
false positive rates and lower false negative rates. Both of these errors push in the direction
of higher audit rates for Black relative to non-Black taxpayers.

Of course, the distribution of prediction errors in our simulated algorithm might not
translate to the actual audit selection algorithm employed by IRS. Motivated by the
important role of child eligibility errors documented in the prior subsection, we next
consider errors in the actual measure used by IRS to predict which refundable credit claims
are based on ineligible children. This variable is used as part of the DDb audit selection
process and is constructed to reflect the likelihood that a child claimed on a return violates
the required residency or relationship test with respect to the taxpayer. Appendix Table
F.3 links IRS-predicted ineligibility with ground-truth data on child eligibility, as
determined through NRP audits. As with the simulated refundable overclaim algorithm
explored above, this table also shows that the distribution of both false positive and false
negative prediction errors push in the direction of higher audit rates for Black taxpayers.

Which features in the IRS algorithm are responsible for the prediction errors we
observe? To maintain the confidentiality of the audit selection process, IRS policy prevents
us from publicly disclosing which taxpayer characteristics drive audit selection or how its
child eligibility prediction variable is constructed. However, the IRS publicly discloses that
it draws on administrative social security records, including birth certificates, to help
determine whether a taxpayer claiming a child satisfies the required relationship test
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(G.A.O., 2015).43 Appendix Table F.4 investigates missingness of parental information on
the birth certificate data that SSA provides to IRS for EITC claimants; whereas mothers
are missing at roughly equal rates, children claimed on the returns of Black taxpayers are
substantially more likely to be missing information about the identity of their father on
their birth certificate (53.6% vs 36.9%).44 Because of this missingness, this data source is
likely to be less reliable at identifying Black fathers who satisfy the relationship test as
compared to non-Black fathers. Consistent with this hypothesis, Figure 6 showed that the
racial audit disparity is especially large in percentage point terms among unmarried men
claiming children for the EITC.

Finally, it may be that certain model features yield an outsized effect on disparity
relative to their importance for accuracy; adding or subtracting features could differentially
affect the ability of the model to detect overclaiming for Black and non-Black taxpayers,
leading to different shares of each group being selected for audit. In addition, although
dropping features generally leads to (weakly) lower model accuracy, some features may be
important for minimizing overall MSE but less important for accurately ranking the very
top of the overclaiming distribution. To explore this possibility, we identified the top 20
features of the refundable credit overclaiming model in terms of importance and plotted
their unconditional correlations with race; six of these features exhibited markedly uneven
distributions (Appendix Figure F.1). Re-training the refundable overclaiming prediction
model without these six features yielded similar performance at the status quo audit rate
but substantially lower disparity compared to the baseline refundable credit prediction
algorithm (see Appendix Figure F.2).45

The finding that prediction errors are disproportionately concentrated among Black EITC
claimants suggests there may be opportunities for policymakers to reduce disparities by
modifying the predictive algorithm to improve accuracy, even conditional on the objective of
prioritizing the detection of refundable credit overclaims. A full exploration of this possibility
would require divulging more details of the EITC audit selection algorithm than is possible
under IRS policy, however, so we defer additional exploration of this issue to internal IRS
analyses.

F.2 High-Risk Signals

Section 7 explored whether differences by race in the dollar value of predicted noncompliance
contribute to the observed racial audit disparity. A distinct factor that might contribute to
the disparity are differences in informational signals that strongly indicate fraud or other
errors. With respect to EITC eligibility, for example, this might take the form of multiple
taxpayers claiming the same child in the same year (which is not allowed), or a claim by a

43As discussed above, the IRS also draws on administrative child custody data to predict credit eligibility;
prior research has documented substantial inaccuracies in that data, but we lack direct evidence on the
distribution of those inaccuracies by race (see National Taxpayer Advocate, 2018).

44Fathers are more likely to be listed on a child’s birth certificate when the mother is married at the time
of birth, and as discussed above, marriage rates tend to be lower among Black parents.

45We reiterate that because our refundable credit prediction algorithm represents an approximation to
the algorithm underlying actual EITC audit selection, we do not conclude that the IRS could achieve this
outcome by excluding the same six features we identified. Rather, this exercise illustrates how the IRS’s
current approach may not be at the accuracy-disparity frontier.
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childless taxpayer whose age falls outside of the statutorily prescribed range for eligibility.
In such cases, the IRS might choose to prioritize these likely-noncompliant returns for audit,
even above other returns with larger expected (but less certain) adjustments.

For several reasons, it appears unlikely that differences by race in the distribution of these
high-risk signals significantly contributes to the observed audit disparity. First, many of the
apparent errors that fall into this category (such as claimed children with ages outside of the
allowable range) are addressed by the IRS outside of the audit workstream, such as through
automatic “math error” adjustments to the taxpayer’s return, or “Automatic Underreporter”
corrections that address discrepancies between what the taxpayer reports and information
returns that the IRS receives.46 As such, errors detected through these programs would not
be counted as audits in our data. Second, with respect to multiple taxpayers claiming the
same child, our disparity estimates are largely unchanged when we exclude from our analysis
operational audits that are focused on this issue (Appendix Table F.5).

To further investigate the role of highly predictive (and therefore hard-to-ignore) signals
in driving the observed disparity, we consider simple predictive models to identify features,
which, on their own, are highly predictive of non-compliance (“smoking guns”). For each of
the most important features in the underreporting prediction model, we train a minimalistic
model to predict the presence of non-compliance above a $100 threshold using that feature
alone.47 Appendix Figure F.3 summarizes the performance and disparity of each feature, via
these models, on the x-axis and the implied disparity on the y-axis. A “smoking gun” feature
that drives disparity would appear as an outlier in terms of both the x and y axes — that
is, a model that has much higher performance than others but also much higher disparity.
We do not observe a feature that meets this criterion; the apparent outliers in terms of high
disparity are near the center of mass of the performance distribution. We interpret this
analysis as further evidence against the hypothesis that the disparity is primarily driven by
differences in the distribution of high-information signals of noncompliance by race.

F.3 Regression vs Classification Prediction Task

A related possibility involves the IRS selecting audits to maximize the share of returns with
a positive adjustment, rather than total dollars of detected overclaims or underreporting
(Black et al., 2022). To investigate how this change to the audit objective shapes disparity,
we trained random forest classifier models to predict whether an audited return would yield
a positive adjustment of $100 or higher (see Appendix E for details).48 Appendix Figure
F.5 shows this aspect of the prediction model objective yields an ambiguous effect on
disparity, depending on whether the underlying objective is to predict total underreporting

46Children of any age may be claimed for the EITC if they are “permanently and totally disabled”, but
taxpayers claiming these children must indicate on their return that this exception applies to avoid a math
error correction.

47For continuous features (38 of the 40 we consider) we use a two-layer decision tree, and for discrete
features we use a single layer decision tree. A one (two) layer decision tree can segment observations into
two (four) categories; these models are thus extremely simple without imposing monotonicity, and are flexible
in that they consider all potential splits for each layer.

48The classifier threshold of $100 does not necessarily correspond to the dollar amount used to train any
classifier model that the IRS employs. We explore alternative thresholds in Appendix Figure F.4 and find
no systematic relationship between disparity and threshold amount.
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or refundable credit overclaims. That is, the underreporting classifier yields higher
disparity than our baseline underreporting prediction models (which ranks return according
to predicted dollars of underreporting), whereas the overclaims classifier yields lower
disparity than our baseline overclaims prediction models. Thus, although the question of
whether to select audits based on the expected dollars of noncompliance versus the
probability of any non-compliance can shape disparity in some settings, it does not appear
to explain the audit disparity we observe given IRS’s focus on refundable credit overclaims.

F.4 Other Group-Level Differences in Taxpayer Characteristics

Without disparate treatment, the observed audit disparity must arise via group-level
differences in observable characteristics between Black and non-Black taxpayers. Hence,
with sufficient data and model flexibility (i.e., allowing non-linearities and interactions), it
must be the case that controlling for all of the inputs available to IRS would eliminate any
estimated independent effect of race in a model of audit selection. Rather than focus on
which of the observable characteristics driving audit selection induce the disparity, our
main approach has been to investigate how the disparity arises from IRS policy goals and
differences in the distribution of types of noncompliance that the individual features are
predicting.

Still, it may be helpful to understand the role played by several high-salience taxpayer
characteristics in driving the disparity, such as the number of dependents a taxpayer claims
or whether a taxpayer uses a tax preparer to file her return. Towards that end, in
Appendix B.8 we propose a method for estimating the audit disparity after adjusting for
certain observable characteristics between groups, and provide conditions under which we
can interpret these adjusted disparity estimates as bounds (analogous to Proposition 1).
Implementing this approach, we find that the observed disparity remains after adjusting for
potential differences by race in the distribution of taxpayer characteristics related to
income, household composition (i.e., marital status and number of dependents), and tax
preparation method (Appendix Table F.6). These findings appear to undermine some
commonly conjectured candidate sources of group-level differences that could drive the
observed disparity.

F.5 Disparity Decomposition with Respect to Underreporting and
Prediction Errors

This appendix section derives a simple decomposition (that was referred to in Appendix
Section F.1) for an observed disparity in terms of the role of group-level differences in
underreporting and errors in which taxpayers are selected. The decomposition also
provides insight into the difference in disparity induced by an oracle versus the disparity
induced by some other model, such as the refundable credit overclaim prediction model.

Let AO indicate whether someone was selected by the oracle. Let AR indicate whether
someone selected by the other algorithm.
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The rate that a taxpayer from group j is selected by the non-oracle model is given by:

p(AR = 1 |B = j) = P (AR = 1 &AO = 1 |B = j) + P (AR = 1 &AO = 0 |B = j)

= P (AO = 1 |B = j) p(AR = 1 |AO = 1, B = j)

+p(AO = 0 |B = j) p(AR = 1 |AO = 0, B = j)

+ p(AO = 1 |B = j)− p(AO = 1 |B = j)

= p(AO = 1 |B = j)− p(AO = 1 |B = j) (1− p(AR = 1 |AO = 1, B = j))

+ P (AO = 0 |B = j) p(AR = 1 |AO = 0 , B = j)

= p(AO = 1 |B = j)− p(AO = 1 |B = j) p(AR = 0 |AO = 1, B = j)

+ P (AO = 0 |B = j) p(AR = 1 |AO = 0, B = j)

= cj − cj νj + (1− cj) πj

where cj = p(AO = 1 |B = j) is the rate that a taxpayer from group j would be selected by
the oracle; νj = p(AR = 0|AO = 1, B = j) is the false negative rate (i.e., the probability that
a non-compliant taxpayer does not get audited); and πj = p(AR = 1|AO = 0, B = j) is the
false positive rate (i.e., the probability that a compliant taxpayer would be audited, where
“compliant” here refers to whether the taxpayer would be selected by the oracle for audit.

Disparity induced by the oracle is:

DO = p(AO = 1|B = 1)− p(AO = 1|B = 0) = cB − cN

Disparity induced by the other model is:

DR = p(AR = 1|B = 1)− p(AR = 1|B = 0)

= cB − cBνB + (1− cB)πB − (cN − cNνN + (1− cN)πN)

= DO − (cBνB − cNνN) + ((1− cB)πB − (1− cN)πN)

So the ”excess disparity” (relative to oracle) of the other model is:

∆R = DR −DO = ((1− cB)πB − (1− cN)πN)− (cBνB − cNνN)

We can add and subtract terms to obtain:

∆R = cNνN − cBνB + (1− cB)πB − (1− cN)πN

= cNνN − cNνB + cNνB − cBνB
+ (1− cB)πB − (1− cN)πB + (1− cN)πB − (1− cN)πN

= cN (νN − νB) + νB (cN − cB) + πB (cN − cB) + (1− cN) (πB − πN)

= (1− cN) (πB − πN) + cN (νN − νB)−DO (νB + πB) (7)

The three terms correspond to: (1) differences in the false positive rate by group; (2)
differences in the false negative rate by group; and (3) to the extent the oracle would induce
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a disparity, that disparity will be attenuated by the non-oracle model to the extent that the
latter induces accuracy mistakes (of either type).

Finally, adding the oracle disparity to both sides of this equation yields an expression for
the disparity induced by the non-oracle model:

DR = (1− cN) (πB − πN) + cN (νN − νB) +DO (1− νB − πB) (8)

Intuitively, the disparity induced by a non-oracle model deviates from the disparity induced
by the oracle based on average prediction errors (false positives and false negatives) as well
as differences in the prediction errors by race.
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Figures and Tables for Appendix F

Figure F.1: Distributions by Race for the Important Features of the Refundable Credit
Prediction Model

Notes: This figure shows the association between the top 20 most important features in the refundable
credit model and the estimated probability a taxpayer is Black. Associations are calculated by first applying
the linear and probabilistic estimators to each feature and then dividing the output by the standard
deviation of the feature. Standard errors are calculated by dividing the standard error of the linear and
probabilistic estimators (calculated from the asymptotic distributions described in Appendix B.3) by the
standard deviation of the feature. Feature importance scores are computed as the mean decrease in impurity
at each node of the decision tree, averaged over trees in the random forest model.
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Figure F.2: Detected Underreporting and Disparity by Algorithm (Minus Identified Features)

Notes: The figure shows the estimated difference in audit rates between Black and non-Black taxpayers
(y-axis) and annualized detected underreporting (x-axis) under alternative algorithms for selecting audits of
EITC claimants and under alternative audit rates. Predictive models are trained and evaluated on the set of
NRP EITC claimants from 2010-14; see Appendix E for details. The displayed trajectories correspond to the
refundable credit prediction regressor (teal), total refundable credit oracle (orange), and refundable credit
regressor trained without the 6 features most correlated with race among the twenty most important features
of the refundable credit prediction regressor. These correspond to Features 15 through 20 in Appendix Figure
F.1. The labeled points along each trajectory represent estimated detected overclaiming and disparity for
the specified algorithm at the audit rate specified in the label. The audit rates considered range from 0.1% to
3%. The audit rate corresponding to the status quo (1.45%) is denoted by a larger dot. The refundable credit
prediction algorithm is based on a random forest regressor trained to predict overclaiming of adjustments
to EITC, CTC, and AOTC amounts. The refundable credit prediction minus 6 is the same, but is trained
without the 6 features described above. The refundable credit oracle selects returns in descending order of
true EITC, CTC, and AOTC overclaiming. Disparity is calculated using the probabilistic disparity estimator.
Annualized detected underreporting is calculated as the total detected underreporting (positive or negative)
imposed on returns selected for audit under the specified audit selection algorithm, scaled to reflect our use of
five years of NRP data. The point labeled “Status quo” shows estimated disparity and total underreporting
from the 1.45% of EITC returns selected for audit from the population of tax year 2014 returns. All analyses
incorporate NRP sampling weights. Bars around each trajectory represent 95% confidence intervals around
disparity estimates; they are calculated based on the distribution of estimates from 100 bootstrapped samples
from the full set of NRP EITC claimants; see Appendix E for details.
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Figure F.3: Performance and Disparity of Single-Feature Models

Notes: The figure shows performance and disparity obtained by the single-feature decision trees for predicting
total underreporting described in Section 7. Split-points are selected based on the induced impurity of the
resulting segmentation. Five instances of the model are trained, each using a different single held-out fold
for evaluation and the remaining four folds for training. Model performance is evaluated by selecting the
top 1.45% (weighted) EITC NRP returns as ordered by the model predictions. Within each fold, we repeat
the selection process 1000 times and permute returns for tie-breaking purposes, and report the average of
the specified metric. Each point represents a model trained with a given feature; the x-axis represents
performance (right panel: mean non-compliance conditional on selection by the model; left panel: fraction
of the top 1.45% of non-compliant taxpayers discovered) and the y-axis represents disparity (as measured
by the probabilistic estimator).
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Figure F.4: Detected Underreporting and Disparity by Classifier Threshold

Notes: The figure shows the implied difference in audit rates between Black and non-Black taxpayers (y-axis)
and annualized detected underreporting (x-axis) for random forest classification models trained on alternative
dollar thresholds, under the assumption that 1.45% of the EITC population is selected for audit. Each point
corresponds to a different classification model, trained to predict whether or not total adjustments exceed
the specified dollar threshold. Disparity is calculated from the probabilistic disparity estimator applied to
BIFSG-derived probabilities that a taxpayer is Black. Annualized detected underreporting is calculated as the
total amount of adjustments (positive or negative) imposed on returns selected for audit under the specified
audit selection model. Detected underreporting and disparity estimates for all models are constructed using
the full set of NRP EITC observations from 2010-14. Details relating to the predictive models and associated
estimates are contained in Appendix E. The point labeled “Status quo” shows the estimated disparity in
audit rates between Black and non-Black taxpayers and detected underreporting from the 1.45% of EITC
returns selected for audit from the population of tax year 2014 returns. All analyses incorporate NRP
sampling weights.
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Figure F.5: Detected Underreporting and Disparity by Algorithm (Regression vs.
Classification)

Notes: The figure shows the estimated difference in audit rates between Black and non-Black taxpayers
(y-axis) and annualized detected underreporting (x-axis) under alternative algorithms for selecting audits of
EITC claimants and under alternative audit rates. Predictive models are trained and evaluated on the set
of NRP EITC claimants from 2010-14; see Appendix E for details. The displayed trajectories correspond
to the total underreporting classifier (dark green), total underreporting regressor (dark purple), refundable
credit classifier (light green), and refundable credit regressor (light purple) algorithms. The labeled points
along each trajectory represent estimated detected underreporting and disparity for the specified algorithm
at the audit rate specified in the label. The audit rates considered range from 0.1% to 3%. The audit
rate corresponding to the status quo (1.45%) is denoted by a larger dot. The total underreporting classifier
is based on a random forest model trained to predict whether or not underreporting exceeds $100. The
total underreporting regressor is based on a random forest model trained to predict total underreporting.
The refundable credit classifier is based on a random forest model trained to predict whether or not total
adjustments to EITC, CTC, and AOTC amounts exceed $100. The total underreporting regressor is based on
a random forest model trained to predict total adjustments to EITC, CTC, and AOTC amounts. Disparity is
calculated from the probabilistic disparity estimator applied to BIFSG-derived probabilities that a taxpayer
is Black. Annualized detected underreporting is calculated as the total detected underreporting (positive
or negative) imposed on returns selected for audit under the specified audit selection algorithm, scaled to
reflect our use of five years of NRP data. The point labeled “Status quo” shows estimated disparity and
total underreporting from the 1.45% of EITC returns selected for audit from the population of tax year
2014 returns. All analyses incorporate NRP sampling weights. Bars around each trajectory represent 95%
confidence intervals around disparity estimates; they are calculated based on the distribution of estimates
from 100 bootstrapped samples from the full set of NRP EITC claimants; see Appendix E for details.
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Table F.1: Refundable Credit “Excess” Disparity Decomposition (Probabilistic)

Black Non-Black

Oracle Selection Rate 2.309 1.230
False Positive Rate 2.236 0.886
False Negative Rate 71.547 82.282
Excess Disparity Contribution from ...

Scaled Difference in False Positive Rates 1.333
Scaled Difference in False Negative Rates 0.132
Attenuation of Oracle Disparity -0.796

Total Excess Disparity 0.669
Oracle Disparity 1.079
Prediction Model Disparity 1.748

Notes: The table decomposes the excess disparity between the Refundable Credit Prediction Model and the
Refundable Credit Oracle, as observed in Figure 8. All analyses uses NRP EITC claimants 2010-14, and
incorporate NRP sampling weights. Quantities are percentage points (0-100). All estimates are based on
the probabilistic estimator. The first row reports the audit rate by race when the refundable credit oracle
selects 1.45% of EITC claimants. The second row reports the fraction of taxpayers who would be selected by
the refundable credit prediction algorithm among those who would not be selected by the refundable credit
oracle (“false positives”). The third row reports the fraction of taxpayers who would be not be selected by
the refundable credit prediction algorithm among those who would be selected by the refundable credit oracle
(“false negatives”). The next three rows correspond to the three terms in the excess disparity decomposition
(see Equation (7) in Appendix F.5). The fifth row corresponds to the first term in the decomposition,
(1− cN )(πB − πN ). The sixth row corresponds to the second term in the decomposition, cN (νN − νB). The
seventh row corresponds to the third term in the decomposition, DO(νB +πB). The eighth row corresponds
to the “excess” disparity and is the sum of the three previous rows. The ninth row corresponds to the
disparity induced by the Refundable Credit Oracle. The final row corresponds to the disparity induced by
the Refundable Credit Prediction Model and is the sum of the two previous rows. Table F.2 presents an
analog to this analysis using the linear estimator.
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Table F.2: Refundable Credit “Excess” Disparity Decomposition (Linear)

Black Non-Black

Oracle Selection Rate 2.732 1.121
False Positive Rate 2.772 0.750
False Negative Rate 68.927 83.543
Excess Disparity Contribution from ...

Scaled Difference in False Positive Rates 1.999
Scaled Difference in False Negative Rates 0.164
Attenuation of Oracle Disparity -1.155

Total Excess Disparity 1.007
Oracle Disparity 1.611
Prediction Model Disparity 2.611

Notes: The table replicates Appendix Table F.1 using the linear estimator. Specifically, the table decomposes
the excess disparity between the Refundable Credit Prediction Model and the Refundable Credit Oracle,
as observed in Figure 8. All analyses uses NRP EITC claimants 2010-14, and incorporate NRP sampling
weights. Quantities are percentage points (0-100). All estimates are based on the linear estimator. The
first row reports the audit rate by race when the refundable credit oracle selects 1.45% of EITC claimants.
The second row reports the fraction of taxpayers who would be selected by the refundable credit prediction
algorithm among those who would not be selected by the refundable credit oracle (“false positives”). The
third row reports the fraction of taxpayers who would be not be selected by the refundable credit prediction
algorithm among those who would be selected by the refundable credit oracle (“false negatives”). The next
three rows correspond to the three terms in the excess disparity decomposition (see Equation (7) in Appendix
F.5). The fifth row corresponds to the first term in the decomposition, (1 − cN )(πB − πN ). The sixth row
corresponds to the second term in the decomposition, cN (νN − νB). The seventh row corresponds to the
third term in the decomposition, DO(νB +πB). The eighth row corresponds to the “excess” disparity and is
the sum of the three previous rows. The ninth row corresponds to the disparity induced by the Refundable
credit Oracle, and the final row corresponds to the disparity induced by the Refundable Credit Prediction
Model.
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Table F.3: High-Risk Classification in NRP and DDB

Panel A: Black
Not High-Risk (NRP) High-Risk (NRP)

Not High-Risk (DDb) 0.68 0.22
High-Risk (DDb) 0.04 0.07
False Positive Rate 0.05
False Negative Rate 0.76

Panel B: Non-Black
Not High-Risk (NRP) High-Risk (NRP)

Not High-Risk (DDb) 0.79 0.16
High-Risk (DDb) 0.03 0.03
False Positive Rate 0.03
False Negative Rate 0.84

Notes: The table displays the estimated distribution of Black (Panel A) and non-Black (Panel B) taxpayers
for two tests of high-risk classification, one imputed in the Dependent Database, and one determined by
line-by-line audits in NRP. Each cell shows the fraction of the group which was classified as either high risk
or not high-risk according to the test result in DDb and high risk or not high-risk according to the test result
as verified in the NRP. Estimates are computed using the probabilistic estimator and weighted using NRP
weights to be representative of the full taxpayer population of EITC claimants with dependents. We report
results for all taxpayers in our sample that have a non-missing high-risk indicator in the NRP, and in cases
when such a taxpayer does not have a risk-indicator in DDb, we impute not high-risk. The false positive
rate is calculated as the share of Black/non-Black taxpayers that are classified as high-risk by DDb but not
high-risk by NRP, divided by the share of Black/non-Black taxpayers that are classified as not high-risk by
NRP. The false negative rate is calculated as the share of Black/non-Black taxpayers that are classified as
high-risk by NRP but not high-risk by DDb, divided by the share of Black/non-Black taxpayers that are
classified as high-risk by NRP.

Table F.4: Missingness of Parental Social Security Numbers for EITC-Claimed Dependents

Overall Black Non-Black

Missing Mother’s SSN 15.40 15.02 15.51
Missing Father’s SSN 40.56 53.55 36.85

Notes: The table reports the rate of missing parental information on birth certificates for EITC-claimed
children on returns for tax year 2014. Units are percentage points (0-100). Rates are calculated at the
return-level for the overall population (column 1), the population of Black taxpayers (column 2), and the
population of non-Black taxpayers (column 3). The last two columns are calculated using BIFSG estimates
and the probabilistic estimator. Note that taxpayer race in columns 2 and 3 refers to the estimated race of
the taxpayer claiming the child, not the race of the child.
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Table F.5: Disparity Estimates (Excluding Duplicate Child Claim Audits)

Estimator Full Population EITC Non-EITC
(1) (2) (3)

Linear 1.283 2.792 0.165
(0.004) (0.009) (0.003)

Probabilistic 0.776 1.887 0.093
(0.003) (0.008) (0.002)

N 148,305,318 28,338,472 119,966,846

Notes: The table shows estimated audit rate disparities using both the linear and the probabilistic estimators
for audits initiated because the same child was claimed as a dependent on multiple returns. Units are
percentage points (0-100). The Black/non-Black audit disparity is shown for the full population (column 1),
the EITC population (column 2) as well as the non-EITC population (column 3). Standard errors, reported
in parentheses, are calculated from the asymptotic distributions described in Appendix B.3. Each displayed
disparity estimate is in terms of percentage points and is statistically different from zero (p < .01).

Table F.6: Subgroup Disparity Estimates

Estimator Overall Income Category Family Type Preparer Combined

Linear 2.900 2.379 2.413 2.899 2.087
(0.009) (0.009) (0.009) (0.009) (0.008)

Probabilistic 1.960 1.627 1.636 1.963 1.420
(0.008) (0.007) (0.007) (0.008) (0.007)

Notes: The table reports the conditional disparity as described in Section B.8.2. For each feature considered,
we compute the Dp

x and Dl
x by applying the probabilistic and linear estimators, respectively, to the set of

taxpayers whose value of the feature is x. Then we estimate bounds on E[Dx] by averaging Dp
x or Dl

x over x.
The standard error on each bound is the square root of the sum over all subgroups of the standard error of the
disparity estimate within the subgroup squared times the share of taxpayers in that subgroup squared. We
repeat this for: the overall population (as a reference); Income Category, constructed as a cross-product of
total adjusted gross income quintiles and Schedule C Income Status (positive amount, non-positive amount,
or none); Family Type, constructed as a cross-product of family status (married, single male, or single
female) and number of dependents claimed (0, 1, 2, or 3+); Preparer, i.e. whether the taxpayer prepares
their own taxes; and Combined, i.e. the cross-product of all of the above.
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