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A Q U A C U LT U R E

Remote sensing and computer vision for 
marine aquaculture
Sebastian Quaade1†, Andrea Vallebueno1†, Olivia D. N. Alcabes1,2,  
Kit T. Rodolfa1*‡, Daniel E. Ho1*‡

Aquaculture, the cultivation of aquatic plants and animals, has grown rapidly since the 1990s, but sparse, self-
reported, and aggregated production data limit the effective understanding and monitoring of the industry’s 
trends and potential risks. Building on a manual survey of aquaculture production from remote sensing imagery, 
we train a computer vision model to identify marine aquaculture cages from aerial and satellite imagery and gen-
erate a spatially explicit dataset of finfish production locations in the French Mediterranean from 2000 to 2021 
including 4010 cages (average cage area, 69 square meters). We demonstrate the value of our method as an easily 
adaptable, cost-effective approach that can improve the speed and reliability of aquaculture surveys and enables 
downstream analyses relevant to researchers and regulators. We illustrate its use to compute independent esti-
mates of production and develop a flexible framework to quantify uncertainty in these estimates. Overall, our 
study presents an efficient, scalable, and adaptable method for monitoring aquaculture production from remote 
sensing imagery.

INTRODUCTION
Aquaculture, the cultivation of aquatic plants and animals, has re-
cently emerged as a key driver of the supply of aquatic foods. With 
a sixfold increase in global production between 1990 and 2020 (1), 
it is the fastest growing food production sector globally (2, 3), out-
putting 122.6 million tonnes (live weight) in 2020 across freshwater, 
brackish water, and marine culture systems (1). This rapid develop-
ment and the strengthening of its role as a key contributor to sea-
food supply have underscored the debate around aquaculture’s 
social and environmental impact. On the one hand, the industry 
has been touted for its potential to increase food security and nu-
trition (4–7). In 2018, aquatic animals provided 15.3% of global 
crude protein supply, with 7.4% stemming from aquaculture pro-
duction (8), and estimates indicate that aquatic food production 
could contribute up to 8% of zinc and iron and 27% of vitamin B12 
global supply in 2030 (6). At the same time, aquaculture is associ-
ated with a number of environmental harms. Animal waste and 
inefficient feeding can cause algal bloom outbreaks that adversely 
affect water quality for humans and broader ecosystem health (9–
12). In addition, the industry’s use of antimicrobials to manage dis-
ease outbreaks, which is estimated to exceed human and terrestrial 
animal consumption levels (13), has been found to contribute to 
the emergence of multi-antimicrobial resistant strains (14). More-
over, several scholars have raised concerns regarding the welfare of 
intensively farmed aquatic animals (15–18).

Aquaculture’s rapid growth and environmental footprint has in-
creased demand for timely and reliable data on the industry. The 
Food and Agriculture Organization (FAO) generates the only source 
of data on fisheries and aquaculture production at a global level (1). 
On an annual basis, it publishes country-level aquaculture produc-
tion data using data primarily assembled from surveys conducted by 

national statistical offices (19). While FAO leverages alternative data 
sources to compile these monitoring statistics as accurately as pos-
sible, their reliance on national reports, which can depend on pro-
ducers to self-report production amounts (20), implies that the quality 
and availability of data are highly related to that of the surveys. In 
addition to general non-reporting, these can suffer from partial in-
formation, inconsistencies, highly aggregated data that fail to meet 
reporting standards, and varying data quality across species and 
production systems (1). Leading aquaculture nations have in the 
past been found to misreport production statistics (21). In 2020, 
FAO indicated that only 59% of countries submitted or reported of-
ficial aquaculture data, although these represented 97.6% of global 
production (1).

Spatially granular and disaggregated data on aquaculture pro-
duction is key to effective governance, monitoring, and regulation. 
Many of aquaculture’s negative environmental effects, including 
nutrification, chemical pollution, and threats to marine mammals 
(22–24), can be highly localized, and its environmental impact varies 
across production systems (25). Production primarily includes (i) 
inland aquaculture (44% of global production in 2020), which takes 
place in freshwater systems located in waterways such as rivers, ponds, 
or canals; and (ii) marine aquaculture (“mariculture,” 47% of pro-
duction), which cultivates species at sea during the entirety of the 
life cycle or exclusively during the grow-out stage (1, 26). However, 
few sources of data specify the location and intensity of mariculture 
with high spatial resolution. The European Marine Observation and 
Data Network compiles data on marine finfish production locations 
using government reports from European countries (27). However, 
only Cyprus, Denmark, Finland, Greece, Ireland, Malta, Norway, 
Spain, and Scotland report such data. More ambitiously, Clawson 
and colleagues (28) derive a spatially detailed dataset of global mari-
culture production by aggregating aquaculture data from national 
data releases, peer-reviewed research, and data releases from industry 
and research organizations. Although they are able to allocate 96% 
of mariculture production to specific spatial locations, only 17% of 
farms in their dataset have known locations, while the locations 
of the remaining 83% are imputed. Furthermore, at a resolution 
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of 25 km2, the dataset may not be sufficiently granular to assess the 
effects of mariculture effluents that are spatially concentrated. To derive 
higher-resolution distributions of mariculture production across 
space, more data are needed on the location and size of these farms.

One way to obtain precise marine aquaculture locations is to iden-
tify farms from remote sensing imagery. For instance, Trujillo et al. 
(29) and Katselis et al. (30) manually scan the Mediterranean and 
Greek coasts, respectively, using Google Earth to develop bottom-
up inventories of marine aquaculture production locations. Manual 
labeling efforts like these can provide valuable detailed informa-
tion. At the same time, they are highly time-consuming and do not 
easily replicate or scale over time and space. A large literature uses a 
variety of classical spectral, spatial features analysis, and object-
based image analysis methods to classify aquaculture production 
areas in satellite imagery [see for instance, (31) and (32)]. How-
ever, many of these methods rely on a small number of tunable 
parameters, meaning that their performance can be negatively af-
fected when aquaculture facilities and ocean backgrounds vary in 
appearance (33).

More recent work takes advantage of developments in computer 
vision to improve the accuracy of automated methods for mapping 
food production from remote sensing imagery. In the United States, 
deep learning approaches, namely, object detection and segmenta-
tion models, have been used to locate land-based agriculture facili-
ties that have not been previously reported (34, 35). Several studies 
have also used deep learning to map mariculture in China. For ex-
ample, a variety of image segmentation models have been trained to 
recognize aquaculture areas in low to medium resolution images, 
ranging from specific regional maps to mapping all mariculture facili-
ties along the Chinese coast (36–39). Other researchers have trained 
image segmentation models to map mariculture farms on high-
resolution imagery, although they have resorted to small study areas 
due to limited data availability (33, 40). These studies have been pri-
marily methodological in nature, designing their own deep learning 
architectures to enhance models’ capacity to segment aquaculture 
rafts. The literature has underexplored whether off-the-shelf deep 
learning methods—such as widely available, pretrained object de-
tection models—can be readily deployed by researchers to monitor 
aquaculture production with reasonable performance. Moreover, 
to our knowledge, deep learning–based approaches for identifying 

marine finfish production have not been developed for other re-
gions around the world.

To address the scarcity of high-resolution geospatial mariculture 
data, we develop a computer vision–based method for identifying 
marine finfish farms from remote sensing imagery. Building on a 
manual mapping of ocean fish farms by Trujillo et al. (29), we first 
create a hand-labeled dataset of mariculture finfish cages on high-
resolution satellite and aerial imagery from Google Earth Pro (GEP) 
(41). Next, we train a model to predict individual cages in remote 
sensing images by fine-tuning a YOLOv5 object detection model on 
this dataset and applying a cage detection post-processing procedure. 
We then evaluate our model’s performance and demonstrate the 
value of our method for aquaculture monitoring in a representative 
setting, the entire French Mediterranean coast, using publicly available 
aerial imagery from Institut national de l’information géographique 
et forestière (IGN) (42). To illustrate the impactful downstream analy-
ses that can be performed with our method, we create an inventory 
of marine finfish facilities and facility size in this region over time. 
Moreover, we generate production estimates for the region, with ac-
companying uncertainty measures, and compare these temporal 
estimates to survey-based data from FAO. Figure 1 presents an over-
view of our approach. Overall, our work (i) presents a cost-effective 
and adaptable methodology for offshore aquaculture detection; (ii) 
demonstrates a procedure for estimating marine finfish production 
from remote sensing imagery, with appropriate measures for uncer-
tainty from object detection; and (iii) showcases the use of our 
method as part of a human–artificial intelligence collaborative system 
that experts can use to conduct more efficient aquaculture surveys.

RESULTS
A computer vision model to detect aquaculture cages
Offshore finfish aquaculture primarily uses floating cage structures, 
which are often placed in clusters near feed storage, operation platforms, 
and other central resources. As the cage structures belong to two 
main typologies (square or circular) with differing geometries, we 
opted for a computer vision model that could not only detect the 
cage instances but also identify their typology. This enables down-
stream calculations of the cage area using the detected bound-
ing boxes and, thus, the estimation of production tonnage. Figure 2 

Fig. 1. Overview of our approach. First, we train a model to predict finfish cages from remote sensing imagery, using a dataset of GEP imagery and cage bounding 
boxes around known mariculture locations. Then, we obtain cage polygons on 2000–2021 aerial imagery of the French Mediterranean provided by IGN from two sources: 
first, from our model; second, from human annotations of a model-informed subset of the imagery, which are also used to evaluate our model’s performance. Last, we 
compute estimates of finfish mariculture production in the region using both the predicted cages (model estimates) and the human-annotated cages [human-in-the-loop 
(HITL) estimates] and compare these to FAO statistics.
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illustrates these different types of cage structures and showcases our 
model’s ability to detect and distinguish the two typologies.

We evaluate our method’s performance along the entire French 
Mediterranean coast, a representative setting of a region of interest 
for aquaculture activity detection, on aerial imagery from 2000 to 
2021 using the sampling approach described in the Materials and 
Methods (see the “Inference data collection” and “Model perfor-
mance evaluation” sections). Our overall methodology involves ob-
taining predictions from an object detection model, followed by two 
post-processing steps. The first step removes land-based objects by 
using a geometry of the French coastline to filter out all detections 
that are not located in the ocean. The second step clusters the cage-
level predictions into cage groups similar to the structures that are 
typically operated by aquaculture facilities. As we are unable to de-
termine whether cage groups fall under the same ownership solely 
from the aerial imagery, we refer to these sets of cages as clusters 
rather than facilities. This clustering is based on cage proximity and 
the number of cages within the cage cluster and is an effective ap-
proach to remove isolated predictions, which are often false positive. 
Figure 3 visualizes our method’s performance across model confi-
dence scores on the complete coastal imagery of the region. At a 
confidence threshold of 0.80, it achieves cage-level precision and 
recall of 82%. Moreover, this figure illustrates the considerable value 
of the methodology’s post-processing steps for overall precision, 
particularly when compared to the stand-alone object detection 
model (see the Supplementary Materials for typical false-positive 
predictions; fig. S1). We tuned this post-processing procedure via a 
cross-validation approach using the hyperparameter grid search pro-
cedure described in the Supplementary Materials. The tuned predic-
tion model achieves 91% precision and 73% recall at the cage level 
and 82% precision and 79% recall at the cage cluster level, on an in-
dependent test set comprising 10% of the region’s aerial imagery of 
the ocean.

Our methodology’s ability to effectively locate aquaculture pro-
duction is underlined by its performance relative to manual labeling 
efforts. Because of the cadence of the French aerial imagery (see the 
“Inference data collection” section), there is a slight mismatch be-
tween the study period of Trujillo et al.’s (29) manual survey of the 
region (2002–2010) and the timing of our imagery. Nonetheless, we 
make the closest comparison possible by considering cage clus-
ters from 2000 to 2004, 2005 to 2009, and 2010 to 2012 to find new 

locations within Trujillo et al.’s (29) time period and cage clusters 
from 2013 to 2015, 2016 to 2018, and 2019 to 2021 to find new loca-
tions that postdate their study period. In this manner, we find all of 
the marine finfish aquaculture locations in the French Mediterra-
nean that were identified by Trujillo et al. (29) in their manual sur-
vey of Google Earth from 2002 to 2010. During this study period, 
our model also finds an additional seven cage clusters that are more 
than 1 km away from Trujillo et al.’s (29) identified locations. Fur-
thermore, we identify an additional eight clusters that postdate 
their study period (on imagery from 2013 to 2021) and are more 
than 1 km away from their identified locations. Figure 4 maps the 
known marine finfish aquaculture locations identified by Trujillo 
et al. (29) and the cage clusters detected by our model during 2000–
2021 that are located at least 1 km away from these known produc-
tion locations (see the Supplementary Materials for a visualization 
of these locations over time; fig. S2).

Aquaculture production estimation in the 
French Mediterranean
Our method allows us to directly estimate the number of aquacul-
ture farms at a given point in time, as well as the number and surface 
area of cages at each location (Fig. 5). One downstream analysis these 
predictions can be particularly useful for is developing a bottom-up 
estimate of finish production that is almost independent of self-
reported and potentially incomplete survey-based estimates. To 
illustrate this application, we compute annualized estimates of finfish 
mariculture production in the French Mediterranean for the 2000–
2021 period using our method and compare these estimates to FAO 
statistics reported for the same species, region of interest and time 
period. Because of the cadence of the French aerial imagery, we 
compute production estimates over time periods corresponding to 
imagery waves over the French coast and estimate the annualized 
production over each wave of imagery on the assumption that pro-
duction is relatively stable over this time frame.

Figure 6 visualizes the annualized finfish production values 
(measured in tonnes, live weight equivalent) estimated by our meth-
od (blue) and the average annual finfish production values reported 
by FAO (orange) for each time period. In the case of our model esti-
mates, the error bars reflect SD measures that account for the fol-
lowing sources of uncertainty: (i) model performance; (ii) differing 
cage area estimates arising from multiple aerial images for a given 

Fig. 2. Example detections of aquaculture cages. Detections of surface square (cyan) and circular (red) finfish aquaculture cages identified by our object detection 
model on aerial imagery of the French Mediterranean. Imagery: IGN (42).

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 28, 2024



Quaade et al., Sci. Adv. 10, eadn4944 (2024)     16 October 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

4 of 13

location; (iii) cage area uncertainty from detected bounding boxes; 
and (iv) uncertainty in other factors of production (cage depth, 
stocking density, and harvest frequency), modeled according to the 
distributions described in the Supplementary Materials (fig. S3). For 
FAO statistics, error bars reflect the SD of the annual production 
statistics that fall in each time period. We also include imputed ton-
nage estimates, reflecting average production over a broader time 
frame, that account for the fact that the aerial imagery is unavailable 
in some locations (see the “Production estimation and uncertainty 
measurement” section for more details on the production estima-
tion and imputation methodologies).

Overall, we find that our tonnage estimates match up quite close-
ly to FAO statistics in most periods, with two exceptions. In 2000–
2004, our estimates are 55% lower, driven by lower quality of the 
coastal imagery that is available for these years, limiting the ability 
of our model to identify cages. On the other hand, our estimates are 
82% higher in 2010–2012. The stark decline in French finfish tonnage 
exhibited during 2005–2009, likely driven by weakened demand at 

the time of the economic crisis (43) and reflected in Fig. 6 in the 
wide error bars for the FAO data in this period, could be an explana-
tion for this discrepancy. It is possible that retired cages are not im-
mediately removed from the water, such that our estimates for the 
period include the estimated tonnage of a large number of cages that 
became inactive during this time of rapid production decline. In ad-
dition to FAO statistics, we can compare our tonnage estimates to 
those of Trujillo et al. (29), who also use the cage areas, derived from 
their manual survey, to estimate production. Within 1 km of the 
authors’ known facilities, we estimate annualized finfish production 
of 2590 (SD of 549) tonnes during the 2005–2009 period, closely 
tracking their estimate of 2678 tonnes (assuming that 100% of cages 
are in production) produced in 2006.

While our model can provide a rapid and robust means of iden-
tifying aquaculture locations and measuring their extent and pro-
duction, one option for improving further on the accuracy of these 
measurements is to use our method as a means of identifying candi-
date locations for human review. Such a human-in-the-loop (HITL) 
approach emphasizes the use of human interaction to more effec-
tively test models and to produce more relevant model outputs. In 
our application, this framework takes advantage of the domain ex-
pertise and judgement that benefits manual surveys of remote sens-
ing imagery while markedly reducing the burden of these efforts. By 
focusing human annotation efforts on images that have a higher 
likelihood of containing cages (as indicated by the model), human 
reviewers can perform a thorough survey of a region while looking 
at only a fraction of the area’s imagery. For instance, in our French 
Mediterranean setting, human reviewers only looked at 3.6% of the 
entirety of the coastal imagery to confirm all of the model predic-
tions and to estimate an upper bound on the total number of cages 
in the region. In this manner, this framework represents a highly 
cost-effective and accurate alternative to existing manual efforts.

Figure 6 also visualizes tonnage estimates (green) computed 
from the set of human-annotated cages that was derived from exam-
ining only the images in which the model detected a cage (with any 
confidence score), images near known aquaculture production loca-
tions, and a small sample of images that neither have predictions nor 
are close to known locations. While the HITL estimates are similar 
to the model-derived estimates in general, reflecting the overall high 
quality of the model’s predictions, HITL estimates are notably higher 

Fig. 3. Performance (cage-level precision and recall) on the French Mediterranean coast. The dark line reflects performance of the overall methodology (i.e., the 
object detection model in addition to the removal of land-based detections and cage clustering), whereas lighter lines reflect the stand-alone performance of the object 
detection model without these sequential postprocessing steps. Recall is virtually unchanged across the detection model and post-processing steps.

Fig. 4. Marine finfish aquaculture production locations in the French Mediter-
ranean. Red points indicate the known locations found by Trujillo et al. (29) in their 
manual survey of Google Earth during 2002–2010. Blue points indicate cage clus-
ters detected by our model during 2000–2021 that are at least 1 km away from 
these known locations.
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in the 2000–2004 period where poor image quality limited the mod-
el’s performance. Nonetheless, these estimates remain considerably 
below the average FAO-reported tonnage for that period, suggesting 
that the image quality issues may still pose a challenge for the hu-
man reviewers as well as the model. As a separate exercise, we can 
also use the HITL approach to estimate an upper bound on the total 
number of cages in the coastal imagery from 2000 to 2021. We esti-
mate a population of 4285 cages, including 4010 cages that were 
manually annotated from 3.6% of the imagery, and 275 cages esti-
mated from the remaining, unannotated portion of the imagery.

DISCUSSION
We have developed a highly adaptable and cost-effective framework 
that leverages high-resolution remote sensing imagery and object 
detection to locate finfish mariculture locations and estimate their 
production over time with robust uncertainty measures. We have 
demonstrated the application of our approach in the context of the 

French Mediterranean, representing, to our knowledge, the first deep 
learning–based mariculture mapping application outside of China. 
Our method exhibits strong performance on our independent and 
representative test set from the French Mediterranean, with 91% 
precision and 73% recall at the cage level. It finds all of the known 
production sites in the region that have been identified in a prior 
manual survey by Trujillo et al. (29) and discovers additional loca-
tions. Moreover, we have found that our production estimates cap-
ture at minimum the mariculture finfish tonnage reflected in FAO 
statistics for the region in all but one time period, potentially due to 
poor aerial image quality in 2000–2004.

Our methodology has a number of potential applications for en-
vironmental monitoring and impact studies. First, it enables the 
acquisition of data on mariculture production sites in a region, as 
demonstrated along the French Mediterranean coast, as well as their 
locations and sizes. These data are highly relevant for understanding 
the spread and scale of aquaculture production at any given point in 
time and, when compared inter-temporally, can give insight into 

Fig. 5. Predictions for a cluster of cages in the French Mediterranean over time. Imagery: IGN (42).

Fig. 6. Marine finfish aquaculture tonnage in the French Mediterranean over time. Model estimates reflect annualized finfish tonnage computed from the area of 
model-predicted cages, with error bars reflecting SD measures that incorporate uncertainty in the aerial imagery, in model performance, in cage area estimates, and in 
the tonnage production factors. HITL estimates reflect annualized finfish tonnage computed from the area of human-annotated cages, with error bars reflecting SD mea-
sures that incorporate uncertainty in the aerial imagery, in cage area estimates, and in the tonnage production factors. FAO data reflect average annual finfish production 
reported to FAO during the period, with error bars reflecting the SD of these values. We include imputed estimates of annualized finfish production that account for miss-
ing aerial imagery in some locations (see the “Production estimation and uncertainty measurement” section).
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industry dynamics. Second, it offers an alternative to estimates of 
aquaculture production based on producer surveys, with appropri-
ate measures of uncertainty that account for variance in the object 
detection step. Remotely sensed aquaculture data have the potential 
to allow experts to estimate production where survey data are miss-
ing and can be used to verify survey-based data where it is available. 
Notably, our method can be used to compute these estimates in a 
way that maintains a high level of expert involvement. We exempli-
fied this approach with the manual annotation of fewer than 4% of 
the entire set of images that was viewed by our model to produce 
temporal estimates for the French Mediterranean coast during a 
21-year period.

While our approach offers numerous advantages, we note several 
limitations to the current work. First, our approach may not gener-
alize to other regions that use different structures for mariculture 
production. For instance, our method is unsuitable for detecting 
underwater mariculture rafts, which are difficult to identify from 
remote sensing imagery. While research interest in submersible cag-
es has increased over the past couple of decades, our method’s rele-
vance is underpinned by the fact that surface cage culture remains 
the dominant production typology, and not all finfish species are 
well suited to submersible culture (44). Second, our method is de-
pendent on the availability of high-resolution aerial or satellite im-
agery, and limited image cadence may limit the granularity of any 
longitudinal study. In our estimation of mariculture production in 
the French Mediterranean, the available imagery limited our results 
to a cadence of 3 to 4 years over the 2000–2021 period, and lower 
quality of the imagery from earlier years affected the performance of 
our model. The limitations of relying on high-resolution imagery 
extend to other production systems that our method could poten-
tially be adapted to monitor. For instance, the extraction of inland 
aquaculture ponds used in freshwater aquaculture [44% of global 
aquaculture production, of which 57% is in China; (26)] typically 
relies on high-resolution imagery given the narrow dikes that sepa-
rate these ponds, difficulties distinguishing these from other water 
bodies, and the complex land cover contexts in which these are located 
(45–47). In the context of detecting mariculture cages, the resolu-
tion must be high enough to allow to clearly distinguish mariculture 
cages from other ocean features and, therefore, depends on the size 
and morphology of cages in a given region. The availability of high-
resolution imagery of global coastlines and seas varies substantially 
across time and geography but continued improvements in the 

availability, cadence, and quality of satellite data (48) suggest that 
these kinds of tools are likely to become more useful over time. Sep-
arately, we noticed several instances of mariculture farms that were 
pixelated to the point of obfuscation in our images. Some of these 
instances, such as the imagery of an aquaculture facility near the 
Greek island of Poros (Fig. 7), have arisen after community-guided 
efforts have pointed to the adverse environmental effects of these 
farms (49). This kind of alteration to remote sensing imagery can 
affect the usefulness of imagery-based methods for environmental 
monitoring. Third, there are inherent limitations to measuring the 
magnitude of aquaculture tonnage with a high level of precision us-
ing this object detection on remote sensing imagery approach. For 
instance, our area computations are necessarily based on bounding 
box predictions for individual cages rather than a precise outline of 
the cage objects (see the “Production estimation and uncertainty 
measurement” section). Although we account for uncertainty stem-
ming from the imprecision of bounding boxes in our estimates, cage 
predictions from image segmentation may result in greater preci-
sion. In addition, our method does not identify the extent to which 
cages are used during observation periods, which means that our 
estimates may better reflect available production capacity than ac-
tual production during periods of low utilization. Fourth, even with 
perfectly accurate cage predictions, computing production tonnage 
from these annotations is a challenging task due to the need for al-
ternative data sources (e.g., bathymetry for cage depth, stocking 
densities, and harvest frequencies), an understanding of local regu-
lation and enforcement, and the domain expertise required to mod-
el the production factor distributions to calculate sound uncertainty 
measures. Although our uncertainty estimates do not model more 
complex relationships such as the correlation of production factors 
across facilities, we note that our framework can be easily adapted to 
incorporate more complex mechanisms of this nature.

This study focuses on mariculture in the French Mediterranean 
as a proof of concept for a framework that can be adapted to other 
settings. With a small amount of training data capturing the domi-
nant cage typologies used in this location and quick fine-tuning of a 
pretrained detection model, our approach enabled the comprehen-
sive estimation of the region’s mariculture production. In the same 
manner, we expect that our approach can generalize and be readily 
implemented in new locations by collecting a modest amount of la-
bels that are representative of the region’s cage farms and retraining 
the model with these data. Our aim is that the highly adaptive nature 

Fig. 7. Pixelated imagery. Remotely sensed imagery for an aquaculture facility near the Greek island of Poros from April 2019 (left) and June 2021 (right). Imagery: 
Google, 2023 CNES/Airbus (April 2019 image) (41).
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of our approach can lower barriers to using deep learning for the 
environmental monitoring of aquaculture and make these tools 
more accessible to researchers with less experience using deep learn-
ing methods. Our tonnage estimation procedure, which applied 
the method of composition to capture uncertainty in our estimates 
stemming from multiple sources, also demonstrates an uncertainty 
quantification approach that can be adapted to other aquaculture 
settings and even to machine learning–based work seeking to com-
pute production estimates via remote sensing in general. To enable 
other researchers to build on our work, we release a dataset of aerial 
images of the French Mediterranean from IGN’s BD Ortho series 
(42) and a dataset of remotely sensed images of the Mediterranean 
from Google Earth (41), available to academic researchers upon re-
quest, that can be used to implement our method in other produc-
ing regions. In combination, these datasets contain ~6500 square 
and circular surface cage bounding box annotations.

To conclude, in this study, we developed a method to detect 
aquaculture production locations from remote sensing using an ob-
ject detection approach, present the first instance (to our knowl-
edge) of using deep learning to detect mariculture farms outside 
of China, and demonstrate how our method can be used to detect 
aquaculture sites in the French Mediterranean. Our aim is that this 
highly adaptable and accessible approach can markedly improve the 
capacity of aquaculture researchers and regulators to monitor in-
dustry dynamics and detect environmental harms, build public 
awareness around these issues, and build an evidence base for im-
provements in regulations that balance needs for food security, en-
vironmental impact, and animal welfare.

MATERIALS AND METHODS
The subsections below describe the key components of our marine 
aquaculture prediction approach: first, the data collection, model 
training, and the output post-processing procedures that we used to 
develop our prediction model that predicts cage bounding boxes 
from remote sensing imagery; and, second, the data collection, 
model evaluation, and statistical methods that we used to locate and 
estimate marine finfish aquaculture production in the French Medi-
terranean from aerial imagery using our prediction model. In the 
Supplementary Materials, we include additional details describing 
the cage annotation protocol used to build the training and evalua-
tion datasets, the method used to evaluate model performance, the 
approach used to tune our prediction post-processing procedure, 
our method to estimate cage areas from bounding box predictions 
(see table S1), and the production factor distributions used in our 
tonnage uncertainty quantification methodology (see fig. S3). Figure 8 
presents an overview of our methodology, as well as the imagery, 
external datasets, and cage inputs that we use at each step.

Training a computer vision model to detect finfish cages 
from remote sensing imagery
Training data collection
To obtain training data for our computer vision model, we identified 
Mediterranean marine aquaculture sites, using a dataset of 1020 lo-
cations manually assembled by Trujillo et al. (29), in GEP imagery 
(41). The facilities in this dataset are primarily located in the coastal 
waters of Greece, Italy, Croatia, France, Albania, and Malta. GEP 
includes aerial, satellite, and other types of remotely sensed images 
that are collected from different providers. In the locations that we 

explored to extract high-resolution imagery for our training data, 
GEP images were primarily sourced from Maxar Technologies and 
Centre National D’Etudes Spatiales (CNES)/Airbus, a partnership 
between Airbus and the French Space Agency (CNES). There is no 
systematic approach to determine the resolution of the collected im-
ages; however, we found that the Maxar-sourced images for some 
locations were derived from the WorldView-2 (resolution of ~48 cm/
pixel) and WorldView-3 (resolution of ~34 cm/pixel) satellites.

We used GEP’s historical imagery feature to download large, 
high-resolution images at each location for all available time snap-
shots. Specifically, at each location, we standardized the GEP view to 
be centered at the location’s coordinates with an altitude of 0 m, a tilt 
of 0°, and a range of 700 m and downloaded an image at each avail-
able time snapshot at the highest pixel resolution possible (8192 × 
5673) given our hardware’s screen dimensions. The images covered 
an extent of 810 m by 558 m, resulting in a resolution of ~9 to 10 cm/
pixel for the exported images.

To pre-process the raw images that we downloaded, we down-
scaled them by 50% and tiled them into 1024 × 1024 pixel images. 
Then, we randomly drew from these tiled images to hand-label cag-
es. We used Hasty.ai (https://hasty.cloudfactory.com), a platform 
that offers annotation tools for computer vision tasks, to manually 
create bounding box annotations around any cages present in the 
imagery (see the Supplementary Materials for annotation guide-
lines). Each cage bounding box was also classified as denoting a cir-
cular cage, square cage, or other cage type, depending on the cage 
geometry. In total, our annotated data comprised 1775 circular 
cages, 689 square cages, and seven labels belonging to other cage 
types across 896 1024 × 1024 pixel images.

Once our images were labeled, we partitioned them into train-
ing, validation, and test sets for model training. As images belonging 
to the same mariculture facility are similar in appearance, we created 
the training splits by partitioning the mariculture locations in our 
training data to avoid data leakage. In this manner, we created the 
splits such that 20% of the mariculture locations were in the test set 
and 20% of the remaining locations were in the validation set, re-
sulting in an overall train/validation/test split of 64/16/20% at the 
location level. In turn, this translated to an image-level split of 
59/20/21% of the images used by the computer vision model during 
training. We also ensured that no images of French mariculture fa-
cilities entered into the training and validation sets to avoid data 
leakage for our downstream test application in the French Mediter-
ranean (see the “Estimating marine finfish aquaculture tonnage in the 
French Mediterranean” section). A small fraction (1.4%) of the im-
ages in the training dataset belonged to ocean locations in France. 
However, we do not expect any data leakage from this subset, given 
that these images did not contain any mariculture facilities or any 
cages and given important differences between the GEP and the 
French aerial imagery (e.g., date of capture and image hue/saturation) 
that should prevent the model from gaining a performance advan-
tage as a result of seeing these images during training.

By sampling images around known mariculture facility loca-
tions, we were able to quickly assemble a dataset containing a large 
number of mariculture cage instances. However, the resulting data-
set only represents locations that are close to known mariculture 
production sites. A model trained on these data may perform well 
on this data distribution but poorly when asked to predict on a set of 
imagery that represents the complete distribution of coastal areas 
where mariculture activity is sought to be detected. For this reason, 
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the 20% validation and 21% image-level test splits described above 
were used exclusively for model training and model selection rather 
than for the evaluation of model performance. Instead, to assess 
whether our model performs well in a realistic inference setting, we 
evaluated its capacity to detect mariculture cages from aerial imag-
ery along the entirety of the French Mediterranean coast.
Model architecture and training
We used an object detection model to locate mariculture cages on 
the remote sensing imagery that we collected from GEP and on 
aerial imagery from IGN (42) (see the “Training data collection” and 
“Inference data collection” sections, respectively). Object detection 
models generate bounding boxes around instances of objects that 
they identify in an image. In contrast, previous studies using neural 
networks for aquaculture mapping have largely focused on image 
segmentation models [e.g., (36, 38, 40, 50)], which classify each pix-
el of an image into a category. We opted for the object detection ap-
proach for its ease of use and adaptability, which is mainly illustrated 
in two parts of the training procedure. First, when labeling images 
with many small, geometrically complex features, such as mariculture 

cages, it can be faster to create bounding box labels than labels that 
perfectly resemble the object geometries. In other words, we expect 
that our model choice reduced the time cost of data collection. Sec-
ond, there are a vast number of resources that enable practitioners to 
quickly and easily train well-performing object detection models, 
including platforms like YOLOv5 and off-the-shelf models that can 
be adapted to specific detection tasks.

In terms of model selection, we chose to fine-tune the medium-sized 
version of the YOLOv5 object detection architecture (yolov5m.pt) 
(51). Some models, such as YOLOv5, have been pretrained on large 
databases of images with bounding box labels [in our case, the MS 
COCO dataset; (52)]. Fine-tuning a pretrained model involves opti-
mizing pretrained model weights to generate accurate predictions 
on additional data that represent a more specific prediction task. 
Fine-tuning models that have been trained on a diverse dataset of 
images and labels can lead to better model performance on a spe-
cific task, as opposed to training an entirely new model from scratch 
on the task without the use of pretrained weights, for two reasons. 
First, models trained to generate accurate predictions across a diverse 
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Fig. 8. Methodology overview. Our approach consists of the following steps. First, we use known mariculture locations in the Mediterranean to create a training dataset 
of mariculture cages from GEP imagery and train a model on this dataset to predict cage bounding boxes from remote sensing imagery. Second, we run our model on 
aerial imagery of the French Mediterranean from 2000 to 2021. In addition, we ask a team of human labelers to annotate 3.6% of this French aerial imagery (per a stratified 
random sample) and use these human labels to evaluate model performance. Third, we compute two kinds of annualized tonnage estimates and uncertainty measures: 
(i) model estimates, using the predicted cages; and (ii) HITL estimates, using the human labels; and we compare both to FAO statistics.
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set of images encode information that is relevant for many object de-
tection tasks, which can lead to better performance (53). Second, by 
virtue of having encoded information that is useful across object de-
tections tasks, pretrained models tend to require less data to achieve 
strong performance on a task than if the model was trained on randomly 
instantiated weights. YOLOv5 specifically has been widely used for 
a range of object detection tasks since its release in 2020 (54–56).

To train the model, we fine-tuned YOLOv5 for 50 epochs to gener-
ate predictions for three cage typologies (circular, square, and other) 
on 640 × 640 pixel images (YOLOv5 automatically resizes the 1024 × 
1024 training images to this size), using a batch size of 16 and the 
default hyperparameters defined for YOLOv5. We use the validation 
and test sets comprising the GEP historical imagery to monitor the 
model’s performance and guide its training procedure, although 
we ultimately evaluate its performance on the French Mediterra-
nean coastal imagery.
Prediction post-processing
We implemented two post-processing steps to improve the quality of 
our model predictions. First, we removed predictions that were located 
on land by constructing a shapefile of French landmass and filtering 
any predictions that intersected this geometry (see the “Constructing 
a French landmass shapefile” section in the Supplementary Materials). 
Second, we used the Density Based Spatial Clustering of Applications 
with Noise (DBSCAN) clustering algorithm (57) to aggregate our aqua-
culture cage predictions into cage clusters. DBSCAN represents each 
aquaculture cage as a node and defines edges between nodes that are 
within a user-specified distance of one another. The resulting connected 
components are the output clusters. We used the DBSCAN imple-
mentation from the scikit-learn package (version 0.0.post4) (58), 
which also allows users to filter clusters under a given size. As most 
aquaculture facilities operate a number of aquaculture cages in close 
proximity, filtering predictions that do not form a cluster of a given 
size is effective at removing false-positive predictions.

We tuned all hyperparameters related to output post-processing 
(the minimum cluster size and distance threshold used by the DBSCAN 
algorithm) and the selection of a model confidence threshold through 
the grid search procedure and fivefold cross-validation approach 
described in the Supplementary Materials, on 90% of the set of 
French aerial imagery containing ocean images (i.e., images that 
were not fully contained on French landmass). Using this proce-
dure, we found the hyperparameters that maximized the product of 
recall and precision on the folds to be a model score threshold of 0.785, 
a distance threshold of 50 m, and a minimum cluster size of 5 cage 
predictions. Our final precision and recall measures assessing the 
prediction model’s performance were computed on an independent 
test set comprising the remaining 10% of the French aerial imagery 
containing ocean images.

Estimating marine finfish aquaculture tonnage in the 
French Mediterranean
As our finfish cage prediction model was trained on a dataset curated 
from known mariculture locations, we evaluated its performance on 
a different dataset that is representative of the more realistic inference 
setting that this model could be deployed in to detect mariculture 
facilities and estimate production. For this inference dataset, we 
used aerial imagery along the French Mediterranean coast.
Inference data collection
We obtained imagery of the French Mediterranean coast for the 2000–
2021 period from IGN, a French government agency that maintains 

geographical information. IGN provides high-resolution imagery for 
each French department (one of the country’s administrative subdivi-
sions), captured with a cadence of 2 to 4 years on different years for 
varying regions within France (see the Supplementary Materials for 
a visualization of the imagery’s spatial coverage; fig. S4). The image 
resolution varies over time, ranging from 50 cm/pixel for most de-
partments before 2014 to 15 cm/pixel in later years.

For our task, we collected imagery from IGN’s BD ORTHO series 
(42) along the French Mediterranean coast, covering nine departments 
(Pyrénées-Orientales, Aude, Hérault, Gard, Bouches-du-Rhône, Var, 
Alpes-Maritimes, Haute-Corse, and Corse-du-Sud). To do so, we 
created a shapefile of French Mediterranean coastal waters by inter-
secting a shapefile of the French Mediterranean sea with a shapefile of 
Europe’s shoreline buffered by 2000 m on each side (59, 60). We then 
tiled our coastal waters shapefile into 200 m–by–200 m squares and 
queried the BD ORTHO data portal with each tile to download an im-
age at the tile’s location. As the raw images from BD ORTHO are very 
large (6144 × 6144 pixels), we further tiled the downloaded images 
into 1024 × 1024 pixel squares before feeding them to the model.

Because of the different capture years on the imagery for each de-
partment, we were unable to obtain imagery for the complete French 
Mediterranean coast in a single year. For this reason, to generate annu-
alized marine aquaculture tonnages, we combined the images from 
different years into groups (2000–2004, 2005–2009, 2010–2012, 2013–
2015, 2016–2018, and 2019–2021) that comprise a spatial coverage of 
the coast that is as complete as possible (see fig. S4 for an example of 
the spatial distribution of imagery in the 2010–2012 period). Our ton-
nage estimation and uncertainty quantification procedure accounted 
for several artifacts stemming from the irregularity in the aerial im-
agery, including (i) the availability of multiple imagery from different 
years for a given location and (ii) missing imagery for a location 
within a given group.
Model performance evaluation
After running inference on the French Mediterranean coastal imag-
ery, we evaluated our model’s performance by manually annotating 
a subset of the coastal imagery. To measure model precision, we an-
notated all of the images with model predictions. To allow for the 
estimation of model recall, we also annotated all images without 
predictions that were near known aquaculture production locations, 
as well as a random sample of images without predictions that were 
not near known sites. Table 1 describes how we partitioned the en-
tire set of French aerial imagery into strata to define which images 
would be annotated. We first partitioned the images into two groups: 
those that had model predictions and those that did not. Next, for 
the images that did not have any predictions, we further disaggre-
gated these into images that were within ~1 km of the aquaculture 
sites identified by Trujillo et  al. (29) and those that were not. We 
note that, as distance calculations were performed using the coordi-
nate reference system of the imagery, the threshold used to define 
whether a location was near a known site was, in practice, ~900 m 
rather than 1 km. In the table, we also present the images with pre-
dictions disaggregated according to the maximum model score of a 
prediction within the image.

To generate the sample for annotation, we sampled all of the im-
ages that contained model predictions. Then, for the images without 
predictions (the no-prediction strata), we sampled all of the images 
near known locations and 1% of the images that were not near known 
locations, as the latter stratum contained hundreds of thousands of 
images. Our prior was that the set of images without predictions 
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and, far from known production locations, was highly unlikely to 
contain any aquaculture cages. However, by sampling a small frac-
tion of the images in this stratum, we were able to estimate a conser-
vative bound on the number of cage labels that may be in this group, 
despite random sampling not yielding any positive instances in these 
areas. To estimate this bound, we determined how large the pro-
portion of images with cages could be in this stratum such that we 
could find, with a reasonable probability, zero cages in our sample 
(see the Supplementary Materials for further details). Our sampled 
images were labeled by CloudFactory (www.cloudfactory.com), a 
third-party data labeling vendor (see the Supplementary Materials 
for annotation guidelines). In total, human annotators reviewed 3.6% 
of the ~800,000 total images of the French Mediterranean coast dur-
ing 2000–2021.

Our performance metrics of interest were model precision and 
recall. See the Supplementary Materials for additional information 
on how these metrics were computed and aggregated across strata.
Production estimation and uncertainty measurement
Our bounding box predictions of cages allowed us to estimate total 
finfish mariculture production over time with some uncertainty, fol-
lowing a similar methodology to that used in (29). Specifically, we 
model the annualized finfish tonnage (live weight equivalent), Yit, of 
a cluster of cages i detected in imagery from time period t using the 
following equation

where Ait is the estimated total cage area of the cluster (in square me-
ters), Dit is the estimated cage depth (in meters), Sit is the estimated 
stocking density (in kilograms per cubic meter), Hit is the estimated 
annual harvest frequency (e.g., Hit = 2 for fish harvested every 6 months, 
reflecting that the same cage volume is re-used twice in a given year), 
and 1

1000
 is a conversion factor from kilograms to tonnes. Notably, our 

model assumes that cages are fully used within time periods relative to 
their stocking density and harvest frequency. Although we model 
uncertainty in these parameters, our tonnage computation does 
not account for periods of time in which cages may potentially 
be inactive.

To compute these estimates and their associated measures of un-
certainty, we developed a framework that allowed us to make distri-
butional assumptions on each of the four production factors and 
propagate the uncertainty from these to compute a point estimate 
and SD for the tonnage in each period. This framework enabled us 
to model the uncertainty in each production factor independently 
and to incorporate uncertainty from the following sources to gener-
ate more robust tonnage estimates for each period: (i) the computer 
vision model’s performance; (ii) artifacts of the French Mediterra-
nean coastal imagery, resulting in multiple aerial images for a given 
location; and (iii) cage area uncertainty due to a lack of knowledge 
of the underlying cage orientation within each detected bounding 
box (see the “Cage area calculations from bounding boxes” section 
in the Supplementary Materials). Our approach used the method of 
composition (61), which generates independent and identically dis-
tributed samples of an output variable across multiple iterations. In 
each iteration, samples are first drawn from the distributions of a set 
of input variables and are then used to compute the output variable. 
In our application, for each cluster of cages, we independently sam-
pled values for each of the production factors from the distributions 
defined in the Supplementary Materials (see the “Production factor 
distributions for tonnage uncertainty quantification” section) and 
combined these to compute the cluster’s annualized tonnage for the 
period using Eq. 1.

Then, we computed period-level annualized tonnage estimates 
for the entire region by summing the cluster-level tonnage esti-
mates in each time period. We performed 10,000 iterations of this 
procedure, such that our final period-level estimates and error bars 
reflect the mean annualized tonnage and its SD, respectively, across 
the samples from these iterations. We note that, as we grouped the 
imagery from each year into periods representing a near complete 
survey of the French Mediterranean coast (2000–2004, 2005–2009, 
2010–2012, 2013–2015, 2016–2018, and 2019–2021), these mea-
sures are estimates of the region’s annualized aquaculture produc-
tion during each period. See the Supplementary Materials for 
further details and a visualization (fig. S3) of the production factor 
distributions used to generate the samples for the input variables 
in each iteration.

Yit = Ait × Dit × Sit ×Hit ×
1

1000
(1)

Table 1. Stratification of the French aerial imagery. Stratification was based on the presence of model predictions and the location of the imagery [whether it 
was near any of the aquaculture locations found by Trujillo et al. (29)]. We exclude any aerial images that are fully contained within French landmass, such that all 
of the images across these strata have at least a partial view of the ocean.

Stratum Number of images Sampled images (%)
Number of cage  

predictions Number of cages

 Prediction: 0 ≤ maximum 
score < 0.3 

2,203 100% 2,243 7

 Prediction: 0.3 ≤ maximum 
score < 0.5 

4,868 100% 5,316 16

 Prediction: 0.5 ≤ maximum 
score < 0.8 

3,402 100% 5,319 38

 Prediction: 0.8 ≤ maximum 
score ≤ 1 

1,157 100% 7,684 3,912

No prediction, near  
known location 

6,846 100% 0 37

No prediction, not near  
known location 

783,355 1% 0 0
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Although we grouped the French aerial imagery such that we 
could obtain coverage of the coast that was as complete as possible, 
in some cases, there was missing imagery that barred us from ob-
taining a representation of the entire coast. In particular, the aerial 
imagery was unavailable for some locations in the 2000–2004 (im-
agery area covers 82% of the imagery area from the most complete 
period), 2013–2015 (78%), and 2016–2018 (90%) time periods. For 
this reason, we performed an imputation exercise in which we esti-
mated the annualized production that could potentially be missing 
from the locations that lacked imagery in a time period. This was 
accomplished by measuring the tonnage output from these loca-
tions using the imagery from a different time period with more 
complete imagery. Specifically, we used the 2005–2009 period to im-
pute the tonnage from locations with missing imagery for the 2000–
2004 period and used the 2010–2012 period, which had relatively 
good spatial coverage, to impute missing tonnage for both the 2013–
2015 and the 2016–2018 periods. By using the information from 
other time periods, our estimates capture whether the missing imag-
ery in an imputed time period belongs to locations that are amenable 
to aquaculture and are, thus, relatively more likely to have produc-
tion compared to locations that did not experience any production 
during the comparison period. We emphasize that, rather than point 
estimates at the year level, the measures of production presented in 
Fig. 6 reflect annualized production over the wave of imagery in each 
time period and, in the case of the missing imagery estimates, esti-
mates of average production over a wider period of time that includes 
the comparison period used to impute the estimates.

In addition to the prediction-based estimates of production 
described thus far, we showcased the use of our method in a HITL 
setting that illustrates how our model could be used to perform 
more efficient yet still expert-driven surveys of aquaculture produc-
tion in a region. In this case, tonnage estimates were computed 
using the cage annotations derived from the stratified sample of im-
ages from Table 1 (3.6% of the entire set of imagery), instead of us-
ing the predicted cage polygons obtained from our model over the 
entire set of imagery. The procedure to compute the tonnage esti-
mates and uncertainty measures is exactly the same as the one out-
lined in this section for the model estimates, with the exception that, 
in the HITL case, we do not incorporate uncertainty from model 
performance, as the polygons were human verified. We also used the 
human cage annotations to estimate an upper bound on the total 
number of cages in the coastal imagery from 2000 to 2021, which we 
discuss in the “Estimating an upper bound on the population of 
aquaculture cages” section of the Supplementary Materials.

We compared the prediction-based and HITL-based annualized 
production estimates to annual FAO aquaculture production data 
for France in the Mediterranean and Black Sea region, within ma-
rine environments, for all finfish species (meagre, seabream, seabass, 
and miscellaneous marine fishes). FAO point estimates were com-
puted as the average annual FAO values within each period, while 
error bars in Fig. 6 reflect the SD of the annual production statistics 
that fall in each time period.

Supplementary Materials
This PDF file includes:
Supplementary Text
Figs. S1 to S7
Tables S1 and S2
References

REFERENCES AND NOTES
	 1.	 FAO, The State of World Fisheries and Aquaculture 2022: Towards Blue Transformation (FAO, 2022).
	 2.	D . Klinger, R. Naylor, Searching for solutions in aquaculture: Charting a sustainable 

course. Annu. Rev. Env. Resour. 37, 247–276 (2012).
	 3.	 M. Troell, R. L. Naylor, M. Metian, M. Beveridge, P. H. Tyedmers, C. Folke, K. J. Arrow,  

S. Barrett, A.-S. Crépin, P. R. Ehrlich, A. Gren, N. Kautsky, S. A. Levin, K. Nyborg,  
H. Österblom, S. Polasky, M. Scheffer, B. H. Walker, T. Xepapadeas, A. de Zeeuw, Does 
aquaculture add resilience to the global food system? Proc. Natl. Acad. Sci. U.S.A. 111, 
13257–13263 (2014).

	 4.	 R. R. Gentry, H. E. Froehlich, D. Grimm, P. Kareiva, M. Parke, M. Rust, S. D. Gaines,  
B. S. Halpern, Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 
1317–1324 (2017).

	 5.	C . Costello, L. Cao, S. Gelcich, M. Cisneros-Mata, C. M. Free, H. E. Froehlich, C. D. Golden,  
G. Ishimura, J. Maier, I. Macadam-Somer, T. Mangin, M. C. Melnychuk, M. Miyahara,  
C. L. De Moor, R. Naylor, L. Nøstbakken, E. Ojea, E. O’Reilly, A. M. Parma, A. J. Plantinga,  
S. H. Thilsted, J. Lubchenco, The future of food from the sea. Nature 588, 95–100 (2020).

	 6.	C . D. Golden, J. Z. Koehn, A. Shepon, S. Passarelli, C. M. Free, D. F. Viana, H. Matthey,  
J. G. Eurich, J. A. Gephart, E. Fluet-Chouinard, E. A. Nyboer, A. J. Lynch, M. Kjellevold,  
S. Bromage, P. Charlebois, M. Barange, S. Vannuccini, L. Cao, K. M. Kleisner, E. B. Rimm,  
G. Danaei, C. DeSisto, H. Kelahan, K. J. Fiorella, D. C. Little, E. H. Allison, J. Fanzo,  
S. H. Thilsted, Aquatic foods to nourish nations. Nature 598, 315–320 (2021).

	 7.	 J. A. Gephart, P. J. G. Henriksson, R. W. R. Parker, A. Shepon, K. D. Gorospe, K. Bergman,  
G. Eshel, C. D. Golden, B. S. Halpern, S. Hornborg, M. Jonell, M. Metian, K. Mifflin,  
R. Newton, P. Tyedmers, W. Zhang, F. Ziegler, M. Troell, Environmental performance of 
blue foods. Nature 597, 360–365 (2021).

	 8.	C . E. Boyd, A. A. McNevin, R. P. Davis, The contribution of fisheries and aquaculture to the 
global protein supply. Food Sec. 14, 805–827 (2022).

	 9.	 A. B. Dauda, A. Ajadi, A. S. Tola-Fabunmi, A. O. Akinwole, Waste production in aquaculture: 
Sources, components and managements in different culture systems. Aquac. Fish. 4, 
81–88 (2019).

	 10.	D . P. Bureau, K. Hua, Towards effective nutritional management of waste outputs in 
aquaculture, with particular reference to salmonid aquaculture operations. Aquacult. Res. 
41, 777–792 (2010).

	 11.	L . Ren, J. Zhang, J. Fang, Q. Tang, M. Zhang, M. Du, Impact of shellfish biodeposits and 
rotten seaweed on the sediments of Ailian Bay, China. Aquac. Int. 22, 811–819 (2014).

	 12.	 J. Wang, A. H. W. Beusen, X. Liu, A. F. Bouwman, Aquaculture production is a large, 
spatially concentrated source of nutrients in chinese freshwater and coastal seas. Environ. 
Sci. Technol. 54, 1464–1474 (2020).

	 13.	D . Schar, E. Y. Klein, R. Laxminarayan, M. Gilbert, T. P. Van Boeckel, Global trends in 
antimicrobial use in aquaculture. Sci. Rep. 10, 21878 (2020).

	 14.	 R. Lulijwa, E. J. Rupia, A. C. Alfaro, Antibiotic use in aquaculture, policies and regulation, 
health and environmental risks: A review of the top 15 major producers. Rev. Aquac. 12, 
640–663 (2020).

	 15.	 P. J. Ashley, Fish welfare: Current issues in aquaculture. Appl. Anim. Behav. Sci. 104, 
199–235 (2007).

	 16.	 F. S. Conte, Stress and the welfare of cultured fish. Appl. Anim. Behav. Sci. 86, 205–223 (2004).
	 17.	C . Brown, C. Dorey, Pain and emotion in fishes–fish welfare implications for fisheries and 

aquaculture. Anim. Studies J. 8, 175–201 (2019).
	 18.	 B. Franks, C. Ewell, J. Jacquet, Animal welfare risks of global aquaculture. Sci. Adv. 7, 

eabg0677 (2021).
	 19.	 FAO, Global aquaculture production (Fisheries and Aquaculture Division, 2023); www.fao.

org/fishery/en/collection/aquaculture.
	 20.	N ational Marine Fisheries Service, Fisheries of the United States, 2019 (U.S. Department 

of Commerce, NOAA, 2021); https://media.fisheries.noaa.gov/2021-05/FUS2019-FINAL-
webready-2.3.pdf.

	 21.	 B. Campbell, D. Pauly, Mariculture: A global analysis of production trends since 1950. Mar. 
Policy 39, 94–100 (2013).

	 22.	C . Espinosa-Miranda, B. Cáceres, O. Blank, M. Fuentes-Riquelme, S. Heinrich, 
Entanglements and mortality of endemic chilean dolphins (Cephalorhynchus eutropia) 
in salmon farms in Southern Chile. Aquat. Mamm. 46, 337–343 (2020).

	 23.	H . Heredia-Azuaje, E. J. Niklitschek, M. Sepúlveda, Pinnipeds and salmon farming: Threats, 
conflicts and challenges to co-existence after 50 years of industrial growth and 
expansion. Rev. Aquac. 14, 528–546 (2022).

	 24.	 A. E. Harnish, R. W. Baird, E. Corsi, A. M. Gorgone, D. Perrine, A. Franco, C. Hankins,  
E. Sepeta, Long-term associations of common bottlenose dolphins with a fish farm in 
Hawaii and impacts on other protected species. Mar. Mamm. Sci. 39, 794–810 (2023).

	 25.	 M. Tigchelaar, J. Leape, F. Micheli, E. H. Allison, X. Basurto, A. Bennett, S. R. Bush, L. Cao,  
W. W. L. Cheung, B. Crona, F. DeClerck, J. Fanzo, S. Gelcich, J. A. Gephart, C. D. Golden,  
B. S. Halpern, C. C. Hicks, M. Jonell, A. Kishore, J. Z. Koehn, D. C. Little, R. L. Naylor,  
M. J. Phillips, E. R. Selig, R. E. Short, U. R. Sumaila, S. H. Thilsted, M. Troell, C. C. C. Wabnitz, 
The vital roles of blue foods in the global food system. Glob. Food Sec. 33, 100637 (2022).

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 28, 2024

https://www.fao.org/fishery/en/collection/aquaculture
https://www.fao.org/fishery/en/collection/aquaculture
https://media.fisheries.noaa.gov/2021-05/FUS2019-FINAL-webready-2.3.pdf
https://media.fisheries.noaa.gov/2021-05/FUS2019-FINAL-webready-2.3.pdf


Quaade et al., Sci. Adv. 10, eadn4944 (2024)     16 October 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

12 of 13

	 26.	 FAO, FAO Fisheries and Aquaculture - FishStatJ - Software for fishery statistical time series 
(FAO Fisheries and Aquaculture Division, 2020); www.fao.org/fishery/en/
knowledgebase/150.

	 27.	E uropean Marine Observation and Data Network (EMODnet), EMODnet human activities, 
aquaculture, marine finfish (EMODnet Human Activities, 2021); https://ows.emodnet-
humanactivities.eu/geonetwork/srv/api/records/03c35b79-808f-4168-9d30-
2de44a55a6f4.

	 28.	 G. Clawson, C. D. Kuempel, M. Frazier, G. Blasco, R. S. Cottrell, H. E. Froehlich, M. Metian,  
K. L. Nash, J. Többen, J. Verstaen, D. R. Williams, B. S. Halpern, Mapping the spatial 
distribution of global mariculture production. Aquaculture 553, 738066 (2022).

	 29.	 P. Trujillo, C. Piroddi, J. Jacquet, Fish farms at sea: The ground truth from google earth. 
PLOS ONE 7, e30546 (2012).

	 30.	 G. Katselis, K. Tsolakos, J. A. Theodorou, Mapping of greek marine finfish farms and their 
potential impact on the marine environment. J. Mar. Sci. Eng. 10, 286 (2022).

	 31.	 M. Ottinger, K. Clauss, C. Kuenzer, Opportunities and challenges for the estimation of 
aquaculture production based on earth observation data. Remote Sens. 10, 1076 (2018).

	 32.	T . Zhang, X. Yang, S. Hu, F. Su, Extraction of coastline in aquaculture coast from 
multispectral remote sensing images: Object-based region growing integrating edge 
detection. Remote Sens. 5, 4470–4487 (2013).

	 33.	 Y. Liu, X. Yang, Z. Wang, C. Lu, Z. Li, F. Yang, Aquaculture area extraction and vulnerability 
assessment in Sanduao based on richer convolutional features network model.  
J. Oceanol. Limnol. 37, 1941–1954 (2019).

	 34.	C . Handan-Nader, D. E. Ho, Deep learning to map concentrated animal feeding 
operations. Nat. Sustain. 2, 298–306 (2019).

	 35.	C . Robinson, B. Chugg, B. Anderson, J. M. L. Ferres, D. E. Ho, Mapping industrial poultry 
operations at scale with deep learning and aerial imagery. IEEE J. Sel. Top. Appl. Earth Obs. 
Remote Sens. 15, 7458–7471 (2022).

	 36.	T . Shi, Q. Xu, Z. Zou, Z. Shi, Automatic raft labeling for remote sensing images via 
dual-scale homogeneous convolutional neural network. Remote Sens. 10, 1130 (2018).

	 37.	 Y. Fu, J. Deng, H. Wang, A. Comber, W. Yang, W. Wu, S. You, Y. Lin, K. Wang, A new 
satellite-derived dataset for marine aquaculture areas in China’s coastal region. Earth Syst. 
Sci. Data 13, 1829–1842 (2021).

	 38.	 Z. Zou, C. Chen, Z. Liu, Z. Zhang, J. Liang, H. Chen, L. Wang, Extraction of aquaculture 
ponds along coastal region using U2-net deep learning model from remote sensing 
images. Remote Sens. 14, 4001 (2022).

	 39.	H . Su, S. Wei, J. Qiu, W. Wu, RaftNet: A new deep neural network for coastal raft 
aquaculture extraction from landsat 8 OLI data. Remote Sens. 14, 4587 (2022).

	 40.	 Y. Fu, Z. Ye, J. Deng, X. Zheng, Y. Huang, W. Yang, Y. Wang, K. Wang, Finer resolution 
mapping of marine aquaculture areas using worldView-2 imagery and a hierarchical 
cascade convolutional neural network. Remote Sens. 11, 1678 (2019).

	 41.	 Google, Google Earth Pro, versions 7.3.4.8573–7.3.6.9326, Google Earth (2023); https://
earth.google.com.

	 42.	I nstitut national de l’information géographique et forestière, BD ORTHO, version 2.0, 
République Française Géoservices (2023); https://geoservices.ign.fr/documentation/
donnees/ortho/bdortho.

	 43.	 GLOBEFISH (Food and Agriculture Organization of the United Nations), “European 
Seabass and Gilthead seabream - March 2009” (Food and Agriculture Organization of the 
United Nations, 2009); https://www.fao.org/in-action/globefish/news-events/news/
newsdetail/European-Seabass-and-Giltheadseabream---March-2009/en.

	 44.	 M. Sievers, Ø. Korsøen, F. Warren-Myers, F. Oppedal, G. Macaulay, O. Folkedal, T. Dempster, 
Submerged cage aquaculture of marine fish: A review of the biological challenges and 
opportunities. Rev. Aquac. 14, 106–119 (2022).

	 45.	 Z. Zeng, D. Wang, W. Tan, G. Yu, J. You, B. Lv, Z. Wu, RCSANet: A full convolutional network 
for extracting inland aquaculture ponds from high-spatial-resolution images. Remote 
Sens. 13, 92 (2021).

	 46.	 Z. Zeng, D. Wang, W. Tan, J. Huang, Extracting aquaculture ponds from natural water 
surfaces around inland lakes on medium resolution multispectral images. Int. J. Appl. 
Earth Obs. Geoinf. 80, 13–25 (2019).

	 47.	 Y. Han, J. Huang, F. Ling, J. Qiu, Z. Liu, X. Li, C. Chang, H. Chi, Dynamic mapping of inland 
freshwater aquaculture areas in jianghan plain, China. IEEE J. Sel. Top. Appl. Earth Obs. 
Remote Sens. 16, 4349–4361 (2023).

	 48.	 M. Burke, A. Driscoll, D. B. Lobell, S. Ermon, Using satellite imagery to understand and 
promote sustainable development. Science 371, eabe8628 (2021).

	 49.	 Guest Contributor, Petition to save Poros Island from aquacultural industrialization, Greek City 
Times, 6 December 2020; https://greekcitytimes.com/2020/12/06/petition-to-save-poros.

	 50.	 Y. Fu, S. You, S. Zhang, K. Cao, J. Zhang, P. Wang, X. Bi, F. Gao, F. Li, Marine aquaculture 
mapping using GF-1 WFV satellite images and full resolution cascade convolutional 
neural network. Int. J. Digit. Earth 15, 2048–2061 (2022).

	 51.	 G. Jocher, YOLOv5 by Ultralytics, GitHub (2020); https://github.com/ultralytics/yolov5.
	 52.	T .-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, C. L. Zitnick, 

Microsoft COCO: Common objects in context, paper presented at the 13th European 
Conference on Computer Vision, Zurich, Switzerland, 6 to 12 September 2014.

	 53.	 X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, Y. Yao, A. Zhang, L. Zhang,  
W. Han, M. Huang, Q. Jin, Y. Lan, Y. Liu, Z. Liu, Z. Lu, X. Qiu, R. Song, J. Tang, J.-R. Wen,  
J. Yuan, W. X. Zhao, J. Zhu, Pre-trained models: Past, present and future. AI Open 2, 
225–250 (2021).

	 54.	 W. Wu, H. Liu, L. Li, Y. Long, X. Wang, Z. Wang, J. Li, Y. Chang, Application of local fully 
Convolutional Neural Network combined with YOLO v5 algorithm in small target 
detection of remote sensing image. PLOS ONE 16, e0259283 (2021).

	 55.	 Y. Fang, X. Guo, K. Chen, Z. Zhou, Q. Ye, Accurate and automated detection of surface 
knots on sawn timbers using YOLO-V5 model. Bioresources 16, 5390–5406 (2021).

	 56.	 M. Kasper-Eulaers, N. Hahn, S. Berger, T. Sebulonsen, Ø. Myrland, P. E. Kummervold, 
Detecting heavy goods vehicles in rest areas in winter conditions using YOLOv5. 
Algorithms 14, 114 (2021).

	 57.	 M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering 
clusters in large spatial databases with noise, paper presented at the Second 
International Conference on Knowledge Discovery and Data Mining, Portland, OR,  
2 to 4 August 1996.

	 58.	 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,  
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, 
M. Perrot, E. Duchesnay, Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 
2825–2830 (2011).

	 59.	 Flanders Marine Institute, Maritime Boundaries and Exclusive Economic Zones (200NM), 
version 11, Maritime Boundaries Geodatabase (2019); https://doi.org/10.14284/386.

	 60.	E uropean Environment Agency, Europe Coastline Shapefile, Environmental Information 
Systems (2015); www.eea.europa.eu/ds%5Fresolveuid/06227e40310045408ac8be0d469e1189.

	 61.	 M. A. Tanner, Tools for Statistical Inference: Methods for the Exploration of Posterior 
Distributions and Likelihood Functions, Springer Series in Statistics (Springer, 1996).

	 62.	E uropean Environment Agency, France Shapefile, Environmental Information Systems 
(2013); www.eea.europa.eu/ds%5Fresolveuid/ca88b5c9fb874aa3a3d53e2a84c3e12d.

	 63.	 F. Cardia, A. Ciattaglia, R. A. Corner, Guidelines and Criteria on Technical and Environmental 
Aspects of Cage Aquaculture Site Selection in the Kingdom of Saudi Arabia (Food and 
Africulture Organization of the United Nations, 2017); www.fao.org/3/i6719e/i6719e.pdf.

	 64.	E uropean Marine Observation and Data Network (EMODnet), EMODnet digital 
bathymetry (DTM 2022), EMODnet Product Catalogue (2022); https://emodnet.ec.
europa.eu/geonetwork/srv/eng/catalog.search#/metadata/b5278b56-00f0-4fcf-9955-
76d4b4880bdb.

	 65.	D irection départementale des territoires et de la mer du Var, Arrêté Préfectoral du 30 Oct 
2020 portant schéma des structures des exploitations de cultures marines du 
département du Var (Préfet Du Var, 2020); www.var.gouv.fr/contenu/
telechargement/26928/184361/file/ss%5F2020%5Fsigne%5Fprefet.pdf.

	 66.	D irection départementale des territoires et de la mer et des Bouches-du-Rhône, Arrêté 
portant schéma des structures des exploitations de cultures marines du département 
des Bouches-du-Rhône (Préfet des Bouches-du-Rhône, 2023); www.bouches-du-rhone.
gouv.fr/content/download/15879/99974/file/Projet%5FSdS%5FBdR.pdf.

	 67.	 Scientific Opinion of the Panel on Animal Health and Welfare on a request from the 
European Commission, Animal welfare aspects of husbandry systems for farmed 
european seabass and gilthead seabream. EFSA J. 844, 1–21 (2023).

	 68.	 M. Monfort, Present market situation and prospects of meagre (Argyrosomus regius), as 
an emerging species in Mediterranean aquaculture (General Fisheries Commission for 
the Mediterranean, 2010); www.fao.org/3/i1675e/i1675e.pdf.

	 69.	I mproving the welfare of European sea bass and gilthead sea bream (Compassion in 
Food Business, n.d.); www.compassioninfoodbusiness.com/media/7436996/
the-science-driving-change-for-gilthead-sea-bream-and-european-sea-bass.pdf.

	 70.	N . L. François, M. Jobling, C. Carter, P. Blier, Eds., Finfish Aquaculture Diversification  
(CABI, 2010).

	 71.	N . Kružić, B. Mustać, I. Župan, S. Čolak, Meagre (Argyrosomus regius Asso, 1801) 
aquaculture in Croatia. Croat. J. Fish. 74, 14–19 (2016).

	 72.	 B. García García, C. Rosique Jiménez, F. Aguado-Giménez, J. García García, Life cycle 
assessment of seabass (Dicentrarchus labrax) produced in offshore fish farms: Variability 
and multiple regression analysis. Sustainability 11, 3523 (2019).

	 73.	 M. Zoli, L. Rossi, C. Bibbiani, J. Bacenetti, Life cycle assessment of seabass and seabream 
production in the Mediterranean area: A critical review. Aquaculture 573, 739580 (2023).

	 74.	 K. Abdou, F. B. R. Lasram, M. S. Romdhane, F. Le Loc’h, J. Aubin, Rearing performances and 
environmental assessment of sea cage farming in Tunisia using life cycle assessment 
(LCA) combined with PCA and HCPC. Int. J. Life Cycle Assess. 23, 1049–1062 (2018).

Acknowledgments: We thank the editor and C. Piroddi for helpful comments and 
conversations. Funding: This research was supported by Stanford Impact Labs, NSF-Access 
(grant number SOC220014), and a couple of anonymous donors. Author contributions: 
Conceptualization: S.Q., A.V., O.D.N.A., K.T.R., and D.E.H. Methodology: S.Q., A.V., O.D.N.A., K.T.R., 
and D.E.H. Investigation: S.Q., A.V., O.D.N.A., and D.E.H. Visualization: S.Q., A.V., O.D.N.A., and 
D.E.H. Supervision: K.T.R. and D.E.H. Writing—original draft: S.Q., A.V., O.D.N.A., and D.E.H. 

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 28, 2024

https://www.fao.org/fishery/en/knowledgebase/150
https://www.fao.org/fishery/en/knowledgebase/150
https://ows.emodnet-humanactivities.eu/geonetwork/srv/api/records/03c35b79-808f-4168-9d30-2de44a55a6f4
https://ows.emodnet-humanactivities.eu/geonetwork/srv/api/records/03c35b79-808f-4168-9d30-2de44a55a6f4
https://ows.emodnet-humanactivities.eu/geonetwork/srv/api/records/03c35b79-808f-4168-9d30-2de44a55a6f4
https://earth.google.com
https://earth.google.com
https://geoservices.ign.fr/documentation/donnees/ortho/bdortho
https://geoservices.ign.fr/documentation/donnees/ortho/bdortho
https://www.fao.org/in-action/globefish/news-events/news/newsdetail/European-Seabass-and-Giltheadseabream---March-2009/en
https://www.fao.org/in-action/globefish/news-events/news/newsdetail/European-Seabass-and-Giltheadseabream---March-2009/en
https://greekcitytimes.com/2020/12/06/petition-to-save-poros
https://github.com/ultralytics/yolov5
http://dx.doi.org/10.14284/386
http://www.eea.europa.eu/ds%5Fresolveuid/06227e40310045408ac8be0d469e1189
https://www.eea.europa.eu/ds%5Fresolveuid/ca88b5c9fb874aa3a3d53e2a84c3e12d
https://www.fao.org/3/i6719e/i6719e.pdf
https://emodnet.ec.europa.eu/geonetwork/srv/eng/catalog.search#/metadata/b5278b56-00f0-4fcf-9955-76d4b4880bdb
https://emodnet.ec.europa.eu/geonetwork/srv/eng/catalog.search#/metadata/b5278b56-00f0-4fcf-9955-76d4b4880bdb
https://emodnet.ec.europa.eu/geonetwork/srv/eng/catalog.search#/metadata/b5278b56-00f0-4fcf-9955-76d4b4880bdb
https://www.var.gouv.fr/contenu/telechargement/26928/184361/file/ss%5F2020%5Fsigne%5Fprefet.pdf
https://www.var.gouv.fr/contenu/telechargement/26928/184361/file/ss%5F2020%5Fsigne%5Fprefet.pdf
https://www.bouches-du-rhone.gouv.fr/content/download/15879/99974/file/Projet%5FSdS%5FBdR.pdf
https://www.bouches-du-rhone.gouv.fr/content/download/15879/99974/file/Projet%5FSdS%5FBdR.pdf
https://www.fao.org/3/i1675e/i1675e.pdf
http://www.compassioninfoodbusiness.com/media/7436996/the-science-driving-change-for-gilthead-sea-bream-and-european-sea-bass.pdf
http://www.compassioninfoodbusiness.com/media/7436996/the-science-driving-change-for-gilthead-sea-bream-and-european-sea-bass.pdf


Quaade et al., Sci. Adv. 10, eadn4944 (2024)     16 October 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

13 of 13

Writing—review and editing: S.Q., A.V., O.D.N.A., K.T.R., and D.E.H. Resources: S.Q., K.T.R.,  
and D.E.H. Data curation: S.Q., A.V., and O.D.N.A. Funding acquisition: K.T.R. and D.E.H. 
Validation: S.Q., A.V., O.D.N.A., K.T.R., and D.E.H. Project administration: K.T.R. and D.E.H. Formal 
analysis: S.Q., A.V., O.D.N.A., and D.E.H. Software: S.Q., A.V., and O.D.N.A. 
 Competing interests: The authors declare that they have no competing interests. 
 Data and materials availability: All data and code needed to evaluate the conclusions in the 
paper are present in the paper and/or the Supplementary Materials and are available in the 

following repository: github.com/reglab/aquaculture (permanent repository: https://doi.
org/10.5281/zenodo.10933921).

Submitted 13 December 2023 
Accepted 7 August 2024 
Published 16 October 2024 
10.1126/sciadv.adn4944

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 28, 2024

http://github.com/reglab/aquaculture
https://doi.org/10.5281/zenodo.10933921
https://doi.org/10.5281/zenodo.10933921

	Remote sensing and computer vision for marine aquaculture
	INTRODUCTION
	RESULTS
	A computer vision model to detect aquaculture cages
	Aquaculture production estimation in the French Mediterranean

	DISCUSSION
	MATERIALS AND METHODS
	Training a computer vision model to detect finfish cages from remote sensing imagery
	Training data collection
	Model architecture and training
	Prediction post-processing

	Estimating marine finfish aquaculture tonnage in the French Mediterranean
	Inference data collection
	Model performance evaluation
	Production estimation and uncertainty measurement


	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

	Remote sensing and computer vision for marine aquaculture
	INTRODUCTION
	RESULTS
	A computer vision model to detect aquaculture cages
	Aquaculture production estimation in the French Mediterranean

	DISCUSSION
	MATERIALS AND METHODS
	Training a computer vision model to detect finfish cages from remote sensing imagery
	Training data collection
	Model architecture and training
	Prediction post-processing

	Estimating marine finfish aquaculture tonnage in the French Mediterranean
	Inference data collection
	Model performance evaluation
	Production estimation and uncertainty measurement


	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments


