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New Evidence on Information Disclosure 
through Restaurant Hygiene Grading†

By Daniel E. Ho, Zoe C. Ashwood, and Cassandra Handan-Nader*

The case of restaurant hygiene grading occupies a central role 
in information disclosure scholarship. Comparing Los Angeles, 
which enacted grading in 1998, with California from 1995–1999, 
Jin and Leslie (2003) found that grading reduced foodborne ill-
ness hospitalizations by 20 percent. Expanding hospitalization 
data and collecting new data on mandatorily reported illnesses, we 
show that this finding does not hold up under improvements to the 
original data and methodology. The largest salmonella outbreak 
in state history hit Southern California before Los Angeles imple-
mented grading. Placebo tests detect the same treatment effects for 
Southern California counties, none of which changed restaurant 
grading. (JEL D83, H75, I12, I18, L83, L88)

A core question of information economics surrounds the conditions under which 
mandatory information disclosure improves welfare (Dranove and Jin 2010). 

To date, the empirical literature has yielded mixed results. Werner et al. (2012), for 
instance, finds nursing home report cards led patients to choose higher rated homes, 
but that the magnitude of the effect was “minimal.” Figlio and Lucas (2004) reports 
that grading of schools affected short-term housing prices, but that the stochastic 
nature of grades diminished effects over time. Dranove et  al. (2003) concludes 
that cardiac surgery report cards decreased social welfare due to hospital selection 
effects. One of the few studies finding uniformly large and positive effects on pub-
lic health is Jin and Leslie (2003)—henceforth, JL. JL found that the enactment 
of restaurant hygiene grades in Los Angeles County in 1998 caused an increase in 
restaurant health inspection scores, a change in consumer demand for restaurant 
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hygiene, and a 20 percent decrease in the number of hospitalizations for foodborne 
illnesses in LA compared to the rest of California (CA).1

JL occupies a pivotal role in the scholarship on information disclosure. 
Loewenstein, Sunstein, and Golman (2014, 392, 403), for instance, reviews the lit-
erature on information disclosure, finding a “paucity of data supporting the efficacy 
of such policies,” but points out JL as “a paradigm for successful disclosure.” JL’s 
study of restaurant grading is the cornerstone of the leading and influential synthe-
sis of information disclosure policies (Fung, Graham, and Weil 2007; Weil et al. 
2006). Based exclusively on the LA evidence, Fung, Graham, and Weil (2007) pos-
its restaurant grading as the archetypal disclosure and model of “targeted transpar-
ency,” as it is simple and relevant at the time of decision making. As JL puts it, “It 
seems remarkable that simply providing a standard format for disclosure … would 
be sufficient to change the equilibrium from zero disclosure and low hygiene qual-
ity, to high hygiene quality with potentially full disclosure” (Jin and Leslie 2003, 
450). The findings intensified scholarly focus on the simplification of information 
disclosure (e.g., Ayres, Raseman, and Shih 2013; Ben-Shahar and Schneider 2014b; 
Feng Lu 2012; Loewenstein, Sunstein, and Golman 2014; Marotta-Wurgler 2012; 
and Robertson 2015). Even the toughest skeptics of disclosure, who argue that infor-
mation disclosure has been a “spectacular failure,” described JL at one point as an 
effective “emblem of simplification” (Ben-Shahar and Schneider 2011, 647, 743; 
Ben-Shahar and Schneider 2014a, S260).

The foodborne illness finding in particular has surfaced in a wide range of pol-
icy debates over the enactment of restaurant grading regimes.2 Since publication, 
nearly 30 jurisdictions across the globe, from New York City to Seattle and from 
the United Kingdom to South Korea, have adopted restaurant grading. Such enact-
ment efforts can be quite contentious—as public health practitioners have long har-
bored skepticism of the reliability of grading systems (Seiver and Hatfield 2000, 
Wiant 1999)—and consume considerable resources of local health agencies with 
limited budgets. New York City, for instance, allocated $3.2 million for the imple-
mentation of grading, an increase of roughly 19 percent in the food safety program’s 
budget.3 In 61 percent of enactment debates we identified, officials and commenta-
tors specifically referenced the foodborne illness finding in support of grading. Yet 
despite the ubiquity of this finding in public discourse, its internal empirical validity 
has never been reexamined.4

1 A different version of the foodborne illness analysis was also published as Simon et  al. (2005). Online 
Appendix A shows that the same issues identified here affect that analysis.

2 JL’s findings have also frequently appeared in policy contexts outside of food safety. We provide more details 
of the study’s appearance in policy debates in online Appendix B.

3 Collins, G. (2010). “For Restaurants It’s Like Going Back to School.” New York Times, July 28, A15; New York 
City, 2009 Executive Budget.

4 To be sure, some have raised questions. Winston (2008) argues that isolating the effects of grading in LA 
is challenging given considerable changes in the food safety system in the 1990s. Ho (2012) concludes that high 
inter-inspector variability undermines the reliability of New York’s grading system and that grading distorted 
enforcement resources, but does not examine the evidence in LA. Characterizing JL as a “landmark study,” Bubb 
(2015, 1040–41) questions why LA’s grading system appeared more successful at reducing foodborne illness than 
grading systems in other jurisdictions. Ben-Shahar and Schneider (2014a, S260) expresses skepticism of the “sen-
sational 20 percent decline in foodborne illnesses.”
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We sought to build on JL’s foodborne illness results by choosing foodborne ill-
ness hospitalizations as a primary outcome for a resource-intensive randomized 
controlled trial of a restaurant grading system we designed for Seattle and King 
County. Yet we found that even with a posited 20 percent effect size, the stochastic 
nature of foodborne hospitalizations severely impeded statistical power. To under-
stand why power might be so distinct from LA, we expanded hospitalization data 
from the same source as JL by fivefold to cover 1983–2009, and collected new 
data on mandatorily reported foodborne illnesses from 1990–2015 and all cases of 
salmonella from 1964–2015. We did not reexamine the other two JL findings, and 
do not offer evidence to question their validity. Although we were able to replicate 
the foodborne illness results reported in JL, we find that the expanded hospitaliza-
tion and illness data do not support the inference that LA’s grading system reduced 
foodborne illness.

First, Southern CA experienced one of the state’s largest and most acute out-
breaks of salmonella in the years immediately preceding LA’s enactment of 
restaurant grading. Because JL used all of California (excluding LA) as a control 
group and observed hospitalizations only from 1995–1999, the study was unable 
to capture the sharp drops in salmonellosis that Southern CA counties experi-
enced starting before 1995 and most sharply around 1998. Raw data reveal this 
pattern across Southern CA counties that had no changes in grading policies. 
Consequently, JL’s research design detects nearly identical and statistically sig-
nificant grading effects for Southern CA counties that did not introduce restaurant  
grading.

Second, we show how bias resulting from JL’s model specification worsens 
when adjusting the control group to account for the salmonella outbreak. JL’s 
specification imposes a restrictive assumption that digestive and foodborne hos-
pitalizations follow the same time trend in the geographic control group, while 
allowing these time trends to vary in LA. This assumption is not borne out in the 
original comparison to CA, producing moderate bias. When using Southern CA 
as a control group to account for the salmonella outbreak, bias becomes more sub-
stantial. Adding the missing interaction term for a full triple difference specifica-
tion reduces grading effects to null. Similarly, we keep CA as a control group but 
reduce the weight of salmonella by including campylobacter, one of the two lead-
ing foodborne diseases. Pretreatment trends become more parallel between LA 
and CA as a result, but the interaction effect once again reduces grading effects 
to null.

Our paper proceeds as follows. Section  I briefly outlines JL’s research design. 
Section II details our much more expansive data sources on foodborne illnesses and 
hospitalizations. Section  III examines how the Southern CA salmonella outbreak 
explains the effects JL attributed to grading. Section IV performs placebo tests with 
JL’s design, showing statistically identical grading effects on hospitalizations for 
Southern CA counties that did not adopt restaurant grading. Section V discusses the 
treatment effect bias introduced by JL’s model specification. Section VI concludes 
with implications for our understanding of information disclosure and replication 
efforts in economics. For brevity and to focus only on the core issues, we relegate 
many of the complexities and auxiliary issues to the online Appendix.
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I.  Extant LA Evidence

A. Motivating Research Design

Using discharge data between 1995 and 1999 from CA’s Office of Statewide 
Health Planning and Development (OSHPD), JL motivates the analysis with a 
difference-in-differences (DID) framework, comparing foodborne illness hospital-
izations between LA and CA (excluding LA)5 before and after the grading pol-
icy took effect on January 16, 1998. The DID estimator subtracts the difference in 
average (logged) foodborne illness hospitalizations in CA before and after grading 
in 1998 (​​​F 

–
​​ Before​ 
CA ​​  and ​​​F 

–
​​ After​ 
CA ​​ , respectively) from the corresponding difference in LA 

before and after grading in 1998 (​​​F 
–
​​ Before​ 
LA ​​  and ​​​F 

–
​​ After​ 
LA ​​ , respectively):

(1)	​​ δ​Foodborne​​  = ​ (​​F 
–
​​ After​ 
LA ​  − ​​F 

–
​​ Before​ 
LA ​ )​ − ​(​​F 

–
​​ After​ 
CA ​  − ​​F 

–
​​ Before​ 
CA ​ )​​.

JL adds a second control group of all other (non-foodborne) digestive system 
disorders. For simplicity, we refer to these categories as “foodborne” and “diges-
tive” disorders. The DID estimate for digestive outcomes would subtract the dif-
ference in average (logged) hospitalizations CA before and after grading in 1998  
(​​​D 

–
 ​​ Before​ 
CA ​​  and ​​​D 

–
 ​​ After​ 
CA ​​ , respectively) from the corresponding difference in LA before and 

after grading in 1998 (​​​D 
–
 ​​ Before​ 
LA ​​  and ​​​D 

–
 ​​ After​ 
LA ​​ , respectively):

(2)	​​ δ​Digestive​​  = ​ (​​D 
–
 ​​ After​ 
LA ​  − ​​D 

–
 ​​ Before​ 
LA ​ )​ − ​(​​D 

–
 ​​ After​ 
CA ​  − ​​D 

–
 ​​ Before​ 
CA ​ )​​.

Subtracting equation  (2) from equation  (1) comprises a 
difference-in-difference-in-differences (or triple differences) identification strategy, 
where ​​δ​Grading​​​ is the average treatment effect of grading:

(3)	​​ δ​Grading​​  = ​ δ​Foodborne​​ − ​δ​Digestive​​​.

JL describes its slightly different identification strategy in the text: “identification is 
based on time-series variation and cross-sectional variation provided by the presence 
of two control groups: California outside of LA and admissions for nonfood-related 
digestive disorders” (Jin and Leslie 2003, 439). As we show in Section V, the spe-
cific implementation deviates from triple differences in a consequential way.

Figure 1 plots the four trends described above, independently replicated from the 
same OSHPD data source.6 Panel A presents the foodborne hospitalization rate (per 
100,000) for LA (solid) and CA excluding LA (dashed).7 The vertical line indicates 

5 Hereafter, the shorthand CA denotes CA excluding LA County.
6 The correlation coefficients between our tabulated counts and JL’s for the LA foodborne, CA foodborne, LA 

digestive system disorder, and CA digestive system disorder series are ​ ≈​1.00, 0.98, 0.99, and 0.99, respectively. 
The small remaining differences are likely due to different masking rules employed by OSHPD over time. See 
online Appendix J for details, showing that quarter masking leads to a loss of only 2–2.7 percent of hospitalizations.

7 JL restricts hospitalizations to those for digestive system disorders in which the patient was admitted from 
home as part of an unscheduled visit. Food-related digestive disorders include diagnoses such as salmonella gas-
troenteritis classified as food-related in over 90 percent of cases. JL relied on Mead et al. (1999) and a medical 
researcher to make this classification. Section V and online Appendix D discuss the validity of this disease selection.
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when LA County grading went into effect in 1998. Foodborne hospitalization rates 
drop more substantially in LA compared to the rest of CA. Panel B plots analogous 
time trends of digestive system hospitalizations, which show minimal differences 
in trends between LA and CA. Because these control illnesses include anything 
pertaining to the digestive system (e.g., hemorrhoids, ulcers, Crohn’s disease), the 
hospitalization rate is substantially higher and the time trend is distinct from that of 
foodborne illnesses.

Based on these descriptive data, JL characterizes the sharp decrease in LA’s food-
borne hospitalizations in 1998, in contrast to CA and digestive hospitalizations, as 
“basic and compelling evidence in favor of hygiene grade cards causing an improve-
ment in actual health outcomes” (Jin and Leslie 2003,  437).

B. JL Implementation

After motivating the analysis of LA’s grading system in a way that resembles a 
triple difference, JL implements the analysis as follows.

JL separates the treatment effect ​​δ​Grading​​​ into two distinct mechanisms at the 
municipal level: mandatory and voluntary disclosure. Grading went into effect 
in unincorporated LA County on January 16, 1998,8 but the 88 incorporated LA 
municipalities had to separately adopt grading to make posting mandatory in each 
city. For these incorporated cities, JL hence denotes January 1998 as imposing vol-
untary disclosure in incorporated cities, whereby restaurants could voluntarily dis-
close placards, and each subsequent municipal enactment as imposing mandatory 

8 The grading ordinance was adopted by the LA Board of Supervisors on December 16, 1997, with an effective 
date of January 16, 1998.
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Figure 1. Trends in LA (Solid) and the Rest of CA (Dashed) of Hospitalizations 
for Foodborne and (Non-foodborne) Digestive System Disorders from 1995–1999

Notes: The adoption of grading is denoted by the vertical line. This figure plots the same data as Table V in Jin and 
Leslie (2003,  437).
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disclosure.9 (In unincorporated LA, JL denote January 1998 as imposing mandatory 
disclosure.)

While these mechanisms operate at the municipal level, JL implements the analy-
sis at the three-digit ZIP code level.10 (Three-digit ZIP codes aggregate conventional 
five-digit ZIP codes to the first three digits.11) The key treatment variables ​m​ and ​v​ 
represent the population proportion of a ZIP code subject to mandatory or voluntary 
disclosure, respectively. We make two preliminary remarks here. First, three-digit 
ZIP codes align with neither municipal nor county boundaries and hence pose non-
trivial implementation challenges articulated in online Appendices  E, L, and M. 
Second, because most large LA municipalities quickly adopted grading in 1998, ​m​ 
and ​v​ largely stand in for the post-1998 period in LA. As we show in Section IV, ​v​ is 
principally identified by LA in 1998 and ​m​ by LA in 1999.

Formally, let the outcome ​​a​ijt​​​ represent the number of hospital admissions for 
illness type ​j  ∈  {0, 1}​, where ​j​ equals 1 if foodborne and 0 if not, in the three-digit 
ZIP code ​i  ∈  {1, … , 57}​ in month ​t​. Let the indicator variable ​​Food​j​​​ equal 1 for 
foodborne hospitalizations and 0 for digestive hospitalizations. The proportion 
of a ZIP code subject to mandatory and voluntary disclosure are calculated as ​​
m​it​​​ and ​​v​it​​​, respectively.12 JL fit the following linear regression to explain logged 
hospitalizations:

(4)	​ ln​(​a​ijt​​)​  = ​ α​ij​​ + ​τ​t​​ + ​β​1​​ ​m​it​​ + ​β​2​​ ​v​it​​ + ​γ​1​​ ​m​it​​ × ​Food​j​​ + ​γ​2​​ ​v​it​​ × ​Food​j​​ + ​ϵ​ijt​​,​

where ​​α​ij​​​ are fixed effects for each illness-ZIP combination, ​​τ​t​​​ are time fixed effects, 
and ​​β​1​​​ and ​​β​2​​​ control for illness-invariant, time-specific effects in mandatory and 
voluntary disclosure areas in LA, respectively. The causal effects of mandatory and 
voluntary grading, ​​γ​1​​​ and ​​γ​2​​​, are each estimated to be a roughly 20 percent reduction 
in foodborne hospitalizations.13

II.  Expanded Data

It is widely accepted that the credibility of DID (or triple differences) hinges 
on parallel pretreatment time trends between comparison groups (Wing, Simon, 
and Bello-Gomez 2018; Greene 2012; Imbens and Wooldridge 2009; and Angrist 
and  Pischke 2008). Because the original observation period was relatively short 
(1995–1999), we begin our investigation by substantially expanding the data in 
three ways.

9 The only LA County cities not ever subject to voluntary grading are Long Beach, Pasadena, and Vernon, as 
these cities operated inspections independently of the county and adopted neither voluntary nor mandatory grading.

10 While OSPHD data include a county field, JL likely used three-digit ZIP codes because OSHPD does not 
include municipality identifiers.

11 For instance, ZIP codes 94306 and 94305 are contained in the 943 ZIP code.
12 While ​m​ and ​v​ sum to unity for interior ZIP codes, ​m​ and ​v​ can sum to less than one for ZIP codes that are 

partially outside of LA. For details, see online Appendix L.
13 Specifically, ​​γ​1​​  =  −0.22​ (standard error  =  0.04) and ​​γ​2​​  =  −0.21​ (standard error  =  0.04). JL interprets 

the “net effect [as] the sum of the coefficients” ​β​ and ​γ​, but as we explain in online Appendix F, this does not cohere 
with the triple difference design. In later descriptions, JL correctly interprets the causal effect as a “20 percent 
decrease in foodborne illness hospitalizations” (Jin and Leslie 2009, 238).
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Hospitalizations, 1983–2009.—We obtain discharge data from OSHPD to expand 
JL’s 5 years of hospitalization data to 26 years (1983–2009).14 This increases the 
total number of hospitalizations by more than fivefold. Panel A of Figure 2 plots, 
for reference, the comparable foodborne hospitalization data from Figure 1.15 Using 
the original 1995–1999 observation period, we successfully replicate the JL model, 
finding comparable (statistically significant) effects for mandatory and voluntary 
disclosure (see Model 1 of Table 3).16 Our coefficients are slightly larger in mag-
nitude due to small differences in aggregation and masking, but our coefficients 
are statistically indistinguishable from those reported by JL ( ​p​-values are 0.33 and 
0.63).

Panel B expands JL’s observation window (denoted by the shaded gray box) and 
plots hospitalization rates for 1983–2009. Several trends become apparent. First, 
the decrease in LA hospitalizations started from a proximate peak in 1994 well 
before grading was adopted. Second, the data refute the assumption of parallel 
trends. Hospitalizations, for instance, spike much more sharply (and statistically 
significantly) in LA in 1994 than in CA overall.17 Third, the panel C plots a sep-
arate time series for Southern CA (excluding LA). For simplicity and to maintain 
a comparable number of treated ZIP codes between LA and Southern CA,18 we 

14 We could not recover one year of data in 1988.
15 The only difference is that we do not apply the hospitalization filter for unscheduled admissions from home, 

as OSHPD does not contain these fields before 1995. As online Appendix J shows, this choice is inconsequential.
16 While our data source is identical, we use a version of OSHPD data that contains five-digit ZIP code aggre-

gated at the quarterly level. Because JL does not explicitly discuss the treatment of zero counts for the outcome ​ln​
(a​ijt​​)​, we take a standard approach by modeling ​ln(​a​ijt​​ + 1)​.

17 A test for lead effects on hospitalizations in the pretreatment period confirms that trends are not parallel. The ​
p​-value ​< ​ 0.05 on the treatment coefficient in a DID with 1994 as the treatment year, an observation window of 
1990–1997, fixed effects for three-digit ZIPs and year-quarters, and standard errors clustered by three-digit ZIP. For 
a fuller set of placebo tests, see online Appendix G.

18 Because of LA’s large population, out of 57 total three-digit ZIP codes, there are 18 fully or partially in LA 
county and 20 fully or partially in Southern CA (excluding LA).
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adoption of grading. The salmonella outbreak causes a sharp spike in LA around 1994 compared to the rest of CA. 
There is little evidence of parallel trends in the pretreatment period. The right panel plots LA against Southern CA 
(excluding LA). Spikes in the late 1980s reflect a salmonella newport outbreak.
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use a widely accepted definition of Southern CA as the ten southernmost counties 
excluding LA.19 It is worth noting that Southern California is geographically quite 
dispersed: San Diego is 120 miles from Los Angeles, roughly the same distance as 
between New York City and Hartford, CT. The panel shows that LA and Southern 
CA trends are substantially similar throughout the longer time series. As we explain 
in Section III, the similarity around 1995–1999—when no other Southern CA county 
other than LA adopted restaurant grading—is in fact driven by a major salmonella 
outbreak in Southern CA.

Illnesses, 1990–2015.—While the expanded hospitalization data are useful, the 
epidemiological consensus is that hospitalizations capture only a small part of 
foodborne illness incidence (Mead et al. 1999, Scallan et al. 2011). The Institute 
of Medicine reports: “hospital discharge summary records … significantly under-
report specific [foodborne] infections, as laboratory diagnoses may often not be 
reflected in the discharge … coding” (Institute of Medicine 2006, 77–78), a point 
widely echoed in the public health field.20 Only 27 percent of laboratory-confirmed 
salmonella illnesses, for instance, result in hospitalization (Scallan et al. 2011). 
Table 1 presents estimates of total annual hospitalizations and laboratory-confirmed 
illnesses for foodborne pathogens from an authoritative review of foodborne patho-
gens (Scallan et al. 2011). The left columns present national estimates and the right 
columns present average annual counts for LA. The actual number of hospitaliza-
tions in LA is quite low. From 1995–1999 in LA, we observe an annual average of 
only 213 hospitalizations for salmonella, compared to 1,701 laboratory-confirmed 
salmonella illnesses. CDC data similarly show that while the average number of 
hospitalizations for an outbreak is 0.95, the average number of reported illnesses is 
19.5.21 Hospitalization data may be particularly sensitive to outbreaks. In 2014, for 
instance, a salmonella outbreak at Foster Farms sickened 490 Californians, with 38 
percent hospitalized. This single outbreak might account for nearly 20 percent of the 
CA’s total foodborne hospitalizations in a year.22

Fortunately, Table 1 also points to a much more complete second data source: 
laboratory-confirmed illnesses. CA law requires that health practitioners, admin-
istrators, laboratories, and schools report a wide range of communicable diseases, 
including the major foodborne illnesses studied by JL, to local health departments 
(Kim-Farley 2000). This rich source of data (typically referred to as “notifiable” 

19 See https://en.wikipedia.org/wiki/Southern_California (“Southern California … is a geographic and cultural 
region that generally comprises California’s 10 southernmost counties.”) Excluding LA, this area is comprised 
of Imperial, Kern, Orange, San Bernardino, San Diego, San Luis Obispo, Santa Barbara, Riverside, and Ventura 
counties. Counties that did not engage in restaurant grading during the observation period are Imperial, Orange, San 
Luis Obispo, Santa Barbara, and Ventura counties. As mentioned above, San Diego and Riverside have been grading 
restaurants since 1947 and 1963, respectively. Two counties enacted restaurant grading outside of JL’s observation 
period but within our longer observation window: San Bernardino in 2005 and Kern in 2006. Online Appendix I 
shows that the results are insensitive to accounting for grading adoptions.

20 See, e.g., Roberts, Jensen, and Unnevehr (1995, 53) (“ICD [hospital discharge] codes are currently incom-
plete and provide insufficient detail for analyzing sources of foodborne illness.”); Boehmer et  al. (2011, 106) 
(“Using discharge diagnoses alone is practical only for diseases that have simple case definitions and nonspecific 
symptoms that require laboratory confirmation before making a diagnosis.”).

21 This is based on data on all reported outbreaks to the CDC from 1998–2015.
22 This is comparing hospitalizations (0.38 × 490) against the annual average observed by JL of just above 

1,000 annual hospitalizations for CA from the 1995–1999 data. See Table 6 in online Appendix D.

https://en.wikipedia.org/wiki/Southern_California
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or “reportable conditions”) is the most common tool for foodborne illness surveil-
lance.23 Because there is nothing in the theory of restaurant grading to suggest it 
should exclusively affect hospitalizations,24 these data provide an alternative way 
to test the impact of restaurant grading. We hence digitize mandatorily reported 
foodborne illnesses from 1990–2015 using state communicable disease reports. We 
begin the observation period in 1990, as it corresponds to when campylobacter and 
vibrio became subject to mandatory reporting.25 Figure 3 plots illness rates over 
time based on these data. The solid lines plot LA compared against the rest of CA in 
panel A and against Southern CA (excluding LA) in panel B. While illnesses drop 
dramatically in LA during the 1995–1999 observation period (in gray), this drop is 
evident in the rest of the state as well. Most striking is that the Southern CA series, 
which does not include LA, is nearly indistinguishable from the LA series.

Salmonella, 1964–2015.—The patterns in Figure 3 led us to further investigate 
the drop in foodborne illnesses by examining specific pathogens. While JL aggre-
gates over a dozen pathogens, Table 1 shows that salmonella is by far the most 
prevalent. Fifty-seven percent of nationwide hospitalizations for foodborne bacterial 
infections are for salmonella (Scallan et al. 2011, 12). In JL’s data, 61 percent of 

23 See Dodd et al. (2017, 35) (“While disease surveillance can include the ongoing collection and monitoring 
of morbidity and mortality data from a variety of sources (i.e., physician visits, hospital records, death certificate 
data), most foodborne disease surveillance data rely on the monitoring of laboratory-diagnosed cases of infection.”) 
and Schweitzer, Reza Zali and Jackson (2006, 44) (“Mandatory reporting of selected diagnoses and laboratory test 
results is a pillar of our system.”).

24 Indeed, JL itself contemplates an impact on illnesses, not hospitalizations: “grade cards should cause … 
decreases in illnesses” (Jin and Leslie 2003, 414, emphasis added).

25 Campylobacter became reportable on March 30, 1989 (Hastings et al. 1991, 3), but because we collect data 
at an annual level, we begin in 1990. Vibrio became mandatorily reportable in 1988 (Kizer 1994), and we first 
observe cases compiled in 1989. The foodborne diseases that were mandatorily reportable from 1990–2015 were 
salmonella, campylobacter, listeria, and vibrio. E. Coli O157 became reportable in 1996 (Belshé et al. 2003), and 
online Appendix K shows that results are comparable when including E. Coli.

Table 1—Estimated Annual US Hospitalizations and Lab-Confirmed Illnesses for Top Bacterial 
Foodborne Pathogens

National Los Angeles

Hospitalizations Illnesses Hospitalizations Illnesses
Pathogen Count Prop. Count Prop. Count Count

Salmonella 19,366 0.57 41,930 0.44 213 1,701
Campylobacter 8,463 0.25 43,696 0.46 59 1,479
E. Coli 2,138 0.06 3,704 0.04 <18 18
Listeria 1,455 0.04 808 0.01 17 35
Staphylococcus 1,064 0.03 323 <0.01 9 –

Notes: These estimates are based on 18 pathogens reported in Scallen et. al (2011, 11–12, Tables 2 and 3) that are 
estimated to be 50 percent or more foodborne. US estimates adjust for underreporting and underdiagnosis and are 
based on data from 2000–2008. Rows are sorted by hospitalization cases. Salmonella is non-typhoidal; E. Coli is 
Shiga-toxin producing E. Coli O157; and staphylococcus is staphylococcus aureus. Prop. represents the proportion 
out of a total of 34,239 hospitalizations or 95,726 lab-confirmed illnesses for 18 bacterial pathogens. This table shows 
the importance of a small number of pathogens, particularly salmonella and campylobacter, in explaining variability 
in foodborne hospitalizations and illnesses. By comparison, we also present average annual hospitalization and ill-
ness counts for LA between 1995–1999. We use the ICD 9 codes described in Table 1 of Mead et al. (1999) to match 
pathogens to hospitalizations. Because foodborne pathogens do not perfectly align with ICD 9 codes, an upper bound 
is presented for E. Coli O157 using all applicable ICD codes.
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foodborne hospitalizations are for salmonella. We hence hand-collect salmonella ill-
ness reports from weekly and yearly state reports from 1964, which corresponds to 
the beginning of the salmonella national reporting system, to 2015 (Swaminathan, 
Barrett, and Fields 2006).

III.  Southern CA Salmonella Outbreak

We document here that one of the largest recorded salmonella outbreaks in state 
history affected Southern CA counties prior to LA’s implementation of restaurant 
grading. Following the outbreak, salmonella cases sharply dropped from 1994–1999 
across Southern CA counties, with none other than LA implementing restaurant 
grading. Because JL’s analysis compares LA to the rest of CA in an observation 
window too short to capture the full course of the outbreak, it misattributes the entire 
salmonellosis drop to restaurant grading, without consideration of the time- and 
region-specific shock of the outbreak and its response.

Figure 4 displays illness and hospitalization rates for salmonellosis over time in 
Southern CA counties.26 Illness rates are significantly higher than hospitalization 
rates, confirming the value of this richer dataset. Most striking is that each county 
experiences a sharp spike in illness and hospitalization rates in the years immedi-
ately prior to JL’s observation period (shaded in gray). The salmonella (enteritidis) 
outbreak was widely recognized. The LA Times reported, “Health officials from five 
Southern California counties [Los Angeles, Orange, Riverside, San Bernardino, and 
San Diego] are reporting dramatic increases—ranging from 700% to 1,782%—in 

26 The unusually high reported cases of salmonellosis in Riverside from 1965 is accurate. In that year, there was 
an outbreak of salmonella typhimurium affecting an estimated 16,000 of 133,000 residents (Riverside County Health 
Department 1971).
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Figure 3. Mandatorily Reported Foodborne Illnesses, 1990–2015

Notes: This figure plots foodborne illness rates (per 100,000 individuals) over time. Panel A compares CA exclud-
ing LA (dashed) against LA (solid) and panel B compares Southern CA excluding LA (dashed) against LA (solid). 
The drop in reported illnesses around 1998 is comparable for the CA series, and Southern CA counties exhibit the 
same pattern as LA. The four conditions that were mandatorily reported from 1990–2015 were salmonella, campy-
lobacter, listeria, and vibrio.



414	 AMERICAN ECONOMIC JOURNAL: ECONOMIC POLICY� NOVEMBER 2019

illnesses linked to contaminated eggs over the past six years.”27 One state epide-
miologist opined, “Salmonella enteritidis has become No. 1 on the hit parade” in 

27 These are rates for the specific serotypes linked to eggs (Salmonella enteritidis), and are hence even more dra-
matic than the increases in Figure 4, which pool all salmonella serotypes. Salmonella enteriditis, typically found in 
eggs and poultry, is the salmonella serotype most commonly responsible for outbreaks (Jackson et al. 2013).
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Rates (per 100,000) (Gray) for Five Southern CA Counties and the Rest of CA Excluding Those Counties

Notes: The time period under study by JL (1995–1999) is highlighted in gray, with the white vertical line repre-
senting the adoption of grading. This figure shows that the dramatic salmonella outbreak in the mid-1990s preceded 
restaurant grading in 1998. Reported illnesses and a longer observation period show that the drop in salmonellosis 
occurred before restaurant grading in 1998 and is comparable across each of the Southern CA counties known to 
have been affected by the outbreak, but which exhibited no changes in grading policy.
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Southern CA.28 Public health reports noted that the salmonella enteritidis “epidemic 
… involved much of Southern California [but that] northern California counties 
experienced no overall increase during this period” (Passaro et al. 1996).

The result of the outbreak was that other Southern CA counties, which made no 
changes in restaurant grading policies during this time,29 experienced salmonello-
sis declines as large, if not larger than, LA. Most importantly, those decreases began 
before the 1995–1999 observation period and continued throughout that observation 
period. Consider the case of Orange County, reported by the LA Times as most simi-
larly affected by the outbreak. Table 2 provides salmonellosis rates from 1994–1999, 
as well as annual percent changes. Both LA and Orange County exhibit peak rates in 
1994–1995, and both rates begin to drop before 1998, continuing through the end of 
JL’s observation period. If anything, Orange County, with no introduction of restaurant 
grading, exhibits a larger decrease (40 percent) in 1998 than LA County (20 percent).

In response to the outbreak, LA, Orange, Riverside, San Bernardino, and San Diego 
counties took “unprecedented joint action” to warn consumers about raw eggs.30 The 
major cause of the outbreak appeared to be contamination at a single, large Southern 
CA egg ranch (Kinde et al. 1996, Passaro et al. 1996). Egg producers were partic-
ularly threatened by the outbreak and responded by instituting strict protocols for 
industrial safe practices (e.g., salmonella testing and vaccination, “Hazard Analysis 
and Critical Control Points” (HACCP) protocols). This egg safety program likely 
played a substantial role in decreasing salmonella in southern CA.31 Regardless of 
which response might have helped, the richer data reveal that the tail end of the out-
break coincided nearly perfectly with the advent of restaurant grading in LA.

It is worth emphasizing that the illness rates plotted in Figure 4 stem directly from 
communicable disease reports issued by the state of CA. These raw data depend on no 
modeling assumptions and plainly show confounding in the large LA grading effect 

28 Nicolosi, M. 1994. “Salmonella Called Epidemic in O.C.” Orange County Register, December 6, B1.
29 San Diego and Riverside have been grading restaurants since 1947 and 1963, respectively. Orange County has 

not graded restaurants in modern history. San Bernardino began grading restaurants in 2005, and Figure 4 does not 
suggest any health benefits close to the 20 percent magnitude reported for LA.

30 Puzo, D.P. 1995. “Illnesses tied to tainted eggs increase sharply.” Los Angeles Times, March 7.
31 See Mumma et al. (2004, 1782) (egg quality assurance programs adopted in response to the “epidemic” likely 

“played a major role in reducing of S. Enteritidis”). Other CA regions had not experienced major problems with 
contaminated eggs before the program was in place (Breitmeyer 1997).

Table 2—Comparison of Illness Rates from 1994–1999 between LA and Orange County

Salmonella rate Percent change

LA Orange LA Orange

1994 ​25.2​ ​24.8​ ​34.5​ ​52.6​
1995 ​23.6​ ​25.5​ ​− 6.4​ ​2.9​
1996 ​21.0​ ​21.0​ ​− 11.3​ ​− 17.8​
1997 ​20.0​ ​20.3​ ​− 4.8​ ​− 3.1​
1998 ​16.1​ ​12.0​ ​− 19.5​ ​− 40.8​
1999 ​11.8​ ​11.0​ ​− 26.8​ ​− 8.9​

Notes: The illness rate is the reported salmonella rate per 100,000. Percent change indicates the percent change rel-
ative to the preceding year. This table shows that, if anything, Orange County exhibited a sharper drop in salmo-
nellosis than LA in 1998.
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JL infer from the drop in LA hospitalizations (relative to CA) from 1995–1999.32 
Figure 5 confirms with the expanded hospitalization data that LA and Southern CA 

32 As JL writes, in 1998, “there was a 13.3 percent decrease in hospital admissions for food-related digestive 
disorders in Los Angeles, relative to the year before … In addition, if one looks at food-related digestive disorders 
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Figure 5. Salmonella Time Series for Hospitalization Rates in LA, Southern CA, 
and Northern CA (all other ca counties excluding la and southern ca counties)

Table 3—Replication of JL’s Analysis with Placebo Tests Substituting Southern CA Counties 
(Excluding LA) as Placebo Treated Units

Continuous treatment Binary treatment

LA treated S. Cal. treated LA treated S. Cal. treated

(1) (2) (3) (4) (5) (6) (7) (8)

Foodborne ​×​ mandatory ​− ​0.31​​ ⁣​​ ​− ​0.33​​ ⁣​​ ​− ​0.28​​ ​​ ​− ​0.39​​ ⁣​​ ​− ​0.31​​ ⁣​​ ​− ​0.31​​ ⁣​​ ​− ​0.31​​ ⁣​​ ​− ​0.37​​ ⁣​​
  disclosure post-1998 ​​(0.07)​​ ​​(0.05)​​ ​​(0.11)​​ ​​(0.09)​​ ​​(0.06)​​ ​​(0.04)​​ ​​(0.10)​​ ​​(0.08)​​

Foodborne ​×​ voluntary ​− ​0.27​​ ⁣​​ ​− ​0.30​​ ⁣​​ ​− ​0.32​​ ⁣​​ ​− ​0.36​​ ⁣​​ ​− ​0.26​​ ⁣​​ ​− ​0.27​​ ⁣​​ ​− ​0.32​​ ⁣​​ ​− ​0.32​​ ⁣​​
  disclosure post-1998 ​​(0.08)​​ ​​(0.08)​​ ​​(0.12)​​ ​​(0.12)​​ ​​(0.05)​​ ​​(0.06)​​ ​​(0.09)​​ ​​(0.09)​​
Mandatory disclosure ​​0.04​​  ​​ ​0.05​ ​0.07​ ​​0.22​​ ⁣​​ ​​0.05​​  ​​ ​0.04​ ​​0.09​​  ​​ ​​0.21​​ ⁣​​
  post-1998 (digestive) ​​(0.03)​​ ​​(0.03)​​ ​​(0.06)​​ ​​(0.08)​​ ​​(0.03)​​ ​​(0.03)​​ ​​(0.05)​​ ​​(0.07)​​
Voluntary disclosure ​​0.08​​  ​​ ​​0.09​​  ​​ ​0.07​ ​0.09​ ​0.04​ ​0.04​ ​0.03​ ​0.07​
  post-1998 (digestive) ​​(0.04)​​ ​​(0.03)​​ ​​(0.04)​​ ​​(0.06)​​ ​​(0.03)​​ ​​(0.03)​​ ​​(0.04)​​ ​​(0.05)​​

​​R​​ 2​​ ​0.99​ ​0.99​ ​0.99​ ​0.99​ ​0.99​ ​0.99​ ​0.99​ ​0.99​
Observations 2,280 7,752 2,280 7,752 2,280 7,752 2,280 7,752
Observation period 1995–1999 1993–2009 1995–1999 1993–2009 1995–1999 1993–2009 1995–1999 1993–2009

Notes: Coefficients are shown with standard errors, clustered by three-digit ZIP and illness-type combinations, 
in parentheses. Each model is estimated with fixed effects for three-digit ZIP and illness-type combinations and 
year-quarters. We present results for the original observation period (1995–1999) as well as an expanded observa-
tion period (1993–2009) for comparability with later models. Continuous treatment indicates ​m​ and ​v​ as the frac-
tion of a ZIP code subject to mandatory or voluntary grading. Binary treatment for ​v​ equals the proportion of the 
three-digit ZIP in LA if the year is 1998 and 0 otherwise, and for ​m​ equals the proportion of the three-digit ZIP 
in LA if the year is 1999 or later and 0 otherwise. The continuous treatment for Southern CA is calculated from 
1,000 random draws from LA’s observed ​m​ and ​v​ values, adjusting for boundary populations. Models 3 and 4 pres-
ent representative models out of the 1,000 draws based on the lowest sum of squared distances from the median  
​t​-statistics for each parameter. For details, see online Appendix L. The rejection rate for a significant ​m​ effect in the 
Southern California continuous models is 81.5 percent for 1995–1999 and 100 percent for 1993–2009. The rejec-
tion rate for a significant ​v​ effect in the Southern California continuous models is 86.2 percent for 1995–1999 and 
89.6 percent for 1993–2009.



VOL. 11 NO. 4� 417HO ET AL.: NEW EVIDENCE ON INFORMATION DISCLOSURE

are nearly indistinguishable during this period, while Northern CA fails to capture 
the sharp drop in salmonella hospitalizations between 1994 and 1999.

IV.  Simple Placebo Tests

We show here that because of the salmonella outbreak, JL’s model generates 
identical treatment effects for Southern CA counties, excluding LA.

We fit JL’s model in equation (4), first replicating the effects for LA and then sub-
stituting Southern CA as treated units. Table 3 presents results. Model 1 shows the 
replicated results from JL on the quarterly OSHPD data with three-digit ZIP codes 
from 1995–1999.33 The first two rows of Table 3 present treatment effect estimates: 
coefficients on the interaction term between foodborne hospitalization and either 
mandatory ​m​ (first row) or voluntary ​v​ (second row) disclosure. Because ​m​ and ​v​ 
are positive only starting in 1998 for the treated units, we label them “post-1998” 
for clarity.34 Both are statistically significant and negative, indicating that restaurant 
grading reduced foodborne hospitalizations by more than 20 percent. Coefficients 
on ​m​ and ​v​ (​​β​1​​​ and ​​β​2​​​ from equation (4)), reported in the third and fourth rows, 
allow for digestive hospitalizations to vary over time within LA. (For clarity, we 
label it as “Digestive” to indicate that it represents the time trend for digestive dis-
orders in LA.) Model 2 fits the same model using a longer observation period from 
1993–2009, with comparable treatment effect estimates.35

Models 3 and 4 fit the same model using Southern CA counties as treated units, 
with LA in the control group. To assign placebo ​m​ and ​v​ values, we randomly sample ​
m​ and ​v​ values from LA, adjusting only for ZIP codes at the boundary.36 We find strik-
ingly similar results. Southern CA is estimated to have comparable treatment effects.

Because most large LA municipalities adopted restaurant grading within a year, 
mandatory disclosure (​m​) and voluntary disclosure (​v​) measures may proxy simply 
for time in LA. Figure 6 displays the average ​m​ and ​v​ values over time in LA ZIP 
codes. We find that ​v​ spikes in 1998 and ​m​ rises to nearly 0.7 in 1999. (Due to bound-
ary ZIP codes, ​m​ and ​v​ do not necessarily sum to unity in a ZIP code.) These coef-
ficients may hence reveal less about mandatory enactment by municipalities per se 

in the rest of California in 1998, there was a 3.2 percent increase in hospitalizations from the prior year … This is 
basic and compelling evidence in favor of hygiene grade cards causing an improvement in actual health outcomes.”

33 Although the data source is identical, JL uses a version aggregated at the three-digit ZIP code monthly level, 
while our version is aggregated at the five-digit ZIP code quarterly level. For replicability, we retain the three-digit 
ZIP code unit of analysis in this section, but use quarterly time units. We spell out some of the limitations of using 
three-digit ZIP codes in online Appendix E. A three-digit ZIP code, for instance, can span from LA to Yosemite, 
requiring fractional assignment of the treatment. Our data allow us to assign hospitalizations to a specific county 
(rather than a three-digit ZIP) in online Appendix K. Most importantly, because hospitalizations are sparse, aggregat-
ing from months to quarters is unlikely to provide any additional leverage with these data. For instance, JL report 910 
total foodborne hospitalizations in CA in 1999. Given 57 three-digit ZIP codes, the expected number of hospitaliza-
tions at the monthly level is only 1.3 cases and at the quarterly level is 4. Table 3 shows that the aggregation does not 
matter, yielding coefficients that are statistically indistinguishable from the ones reported by JL. Online Appendix E 
also shows that because municipal adoptions largely track quarters, there is little to be gained from monthly data.

34 As we explain in Section V, these coefficients are in actuality triple interaction terms between time, unit 
location, and illness type.

35 For comparability with models presented later, we use 1993 as the beginning date, as that is the first full year 
after a separate diagnosis code for campylobacter was developed. Online Appendix I shows that these results are 
insensitive to observation period.

36 For details, see online Appendix L.
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than the continuing decline in LA foodborne hospitalizations in 1998 and 1999.37 To 
test this, models 5–8 in Table 3 replace the continuous variables ​m​ and ​v​ with binary 
indicators for whether the year is 1998 and whether the year is 1999 or later, respec-
tively.38 The results are comparable: the binary treatment yields effect estimates very 
close to models 1–4, including the statistically significant Southern CA placebo effect.

In sum, using the same model as JL, Southern CA exhibits statistically identical 
grading effects, even though no Southern CA county adopted grading in this time 
period.39 This confirms the substantive account of Section III: any detectable effects 
of restaurant grading are confounded with the sharp drops in salmonella across 
Southern CA after a multiyear regional epidemic.

V.  Model Bias in Treatment Effect

In this section, we show how specification bias in JL’s model is exacerbated with 
an improved geographic control group or an improved illness selection that reduces 
the weight of salmonella.

37 The version of the analysis by the same researchers published as Simon et al. (2005) uses a dummy variable 
representation of the posttreatment years and finds no statistically significant change in the decline from 1998 to 1999.

38 To account for boundary ZIP codes, just as in JL, we multiply the binary treatment indicator with the propor-
tion of each ZIP code’s population that is in LA County or Southern CA for the placebo analysis.

39 The following table reports ​p​-values for pairwise comparisons of treatment effect coefficients:

S. CA

Mandatory Voluntary

LA 1995–1999 ​0.80​ ​0.99​ ​0.73​ ​0.61​
1993–2009 ​0.58​ ​0.46​ ​0.68​ ​0.63​
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Notes: ​v​ indicates the proportion of LA subject to “voluntary” grading, defined as the passage of grading in the 
county, without municipal enactment. ​m​ indicates the proportion of LA subject to “mandatory” grading, meaning 
after the enactment of grading amongst 88 municipalities. This figure shows that because most of the LA population 
lived in municipalities that quickly adopted grading, ​m​ and ​v​ largely proxy for the first and second year after 1998.
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A. Southern CA

The results of Section IV suggest that we can leverage Southern CA as a control 
group to identify the marginal effect of restaurant grading in LA net of the salmo-
nella outbreak. At the outset, we acknowledge that spillover effects in the region 
could threaten this design. However, the assumption of no spillovers follows directly 
from JL’s original design, which assumes away spillovers in order to identify man-
datory and voluntary effects between closely neighboring areas. As an additional 
check, online Appendix H offers statistical tests for regional spillover effects and 
finds no significant results. As we mention in Section II, the dispersed geography of 
the region makes it implausible that non-independence is driven primarily by dining 
across Southern CA counties.

Table 4 shows the results of using Southern CA as the control group with a 
difference-in-differences specification on foodborne illnesses alone (DID);40 the 
JL specification in equation  (4) that includes a disease control group (JL); and a 
fully specified triple differences model, which simply adds a two-way interaction 
between digestive disorders and time to equation (4) (DDD). Regardless of observa-
tion period, the DID and DDD models find no marginal effect of restaurant grading 
net of other regional factors that also influenced Southern CA counties. Visualizing 

40 Motivated by equation (1), this model is equivalent to the JL specification without a disease control group, 

(5)	​ ln​(​a​it​​)​  =  ​α​i​​ + ​τ​t​​ + ​γ​1​​ ​m​it​​ + ​γ​2​​ ​v​it​​ + ​ϵ​it​​,​

where ​​α​i​​​ are fixed effects for each three-digit ZIP, ​​τ​t​​​ are time fixed effects, and ​​γ​1​​​ and ​​γ​2​​​ represent the treatment 
effects for mandatory and voluntary disclosure areas in LA, respectively.

Table 4—Marginal Effects of Restaurant Grading in LA with Southern CA as the Control Group

1995–1999 1993–2009

(1) (2) (3) (4) (5) (6)

Foodborne ​×​ LA mandatory ​− 0.04​ ​− ​0.31​​ ⁣​​ ​0.00​ ​− 0.08​ ​− ​0.33​​ ⁣​​ ​0.03​
  disclosure post-1998 ​​(0.10)​​ ​​(0.07)​​ ​​(0.10)​​ ​​(0.06)​​ ​​(0.05)​​ ​​(0.09)​​
Foodborne ​×​ LA voluntary ​0.11​ ​− ​0.27​​ ⁣​​ ​0.06​ ​0.02​ ​− ​0.30​​ ⁣​​ ​0.07​
  disclosure post-1998 ​​(0.10)​​ ​​(0.08)​​ ​​(0.11)​​ ​​(0.12)​​ ​​(0.09)​​ ​​(0.12)​​
Foodborne ​×​ S.Cal. ​− ​0.29​​ ⁣​​ ​− ​0.33​​ ⁣​​
  post-1998 ​​(0.07)​​ ​​(0.07)​​
LA mandatory disclosure ​​0.13​​ ⁣​​ ​−0.02​ ​0.07​ ​− ​0.10​​  ​​
  post-1998 (digestive) ​​(0.05)​​ ​​(0.04)​​ ​​(0.05)​​ ​​(0.06)​​
LA voluntary disclosure ​​0.19​​ ⁣​​ ​0.02​ ​​0.15​​ ⁣​​ ​− 0.03​
  post-1998 (digestive) ​​(0.06)​​ ​​(0.05)​​ ​​(0.05)​​ ​​(0.06)​​

​Model​ DID JL DDD DID JL DDD
​​R​​ 2​​ ​0.75​ ​0.99​ ​0.99​ ​0.73​ ​0.99​ ​0.99​
Observations 660 1,320 1,320 2,244 4,488 4,488
​F​-ratio 30.74​​​​​ ⁣​​ 116.15​​​​​ ⁣​​

Notes: Coefficients shown with standard errors, clustered by three-digit ZIP and illness-type combinations, are 
in parentheses. Each model is estimated with fixed effects for three-digit ZIP and illness-type combinations and 
year-quarters. We present results for the original observation period (1995–1999) as well as an expanded observa-
tion period (1993–2009). Disease selection is consistent with JL’s original design.
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these findings, Figure 7 shows that foodborne illnesses drop, and digestive disorders 
rise, by nearly identical amounts in LA and Southern CA between 1995 and 1999.

In stark contrast to these models, the JL specification finds significant effects 
because it does not fit the data for Southern CA. Figure 7 illustrates how this occurs. 
Digestive disorders trend upward and foodborne illnesses trend downward for both 
LA and Southern CA, but the JL specification predicts the average over these oppos-
ing trends for Southern CA alone. As shown in gray, this specification results in 
substantial prediction error. Highly statistically significant F-ratios in Table 4 con-
firm that the effects reported in models 2 and 5 are artifacts of poor model fit.

To clarify the specification issue, we rewrite JL’s equation (4) with a single aver-
age treatment effect ​​γ​1​​​ (corresponding to ​​δ​Grading​​​ in Section I), which can be inter-
preted as the effect averaged over mandatory and voluntary disclosure. This is based 
on the fact that ​​m​it​​​ and ​​v​it​​​ sum to the proportion of LA county ZIP codes subject to 
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Figure 7. Bias from Omitting Two-Way Interaction Terms with Southern CA 
as a Control Group in the Original Observation Period, 1995–1999

Notes: The top row presents model predictions against observed data from JL’s specification with a single treatment 
indicator averaged over mandatory and voluntary disclosure. The bottom row presents model predictions against 
observed data from a fully specified triple difference, modeling the ​Food × After​ interaction with illness-by-time 
fixed effects. Dashed lines indicate observed data and solid lines indicate predicted values. For consistency with 
JL’s specification, outcomes are presented as log counts of hospitalizations. Because the JL specification assumes 
time trends for foodborne and digestive disorders are the same for Southern CA (but not LA), when foodborne 
disorders in fact decrease and digestive disorders in fact increase after 1998, the top row shows that Southern 
CA’s predicted slope is attenuated toward zero. Shading indicates prediction error. The foodborne DID estimate is 
biased downward because the model does not fit the drop in CA after 1998. The digestive DID is biased upward 
because the model does not fit Southern CA’s increase after 1998. Both of these biases magnify the treatment effect. 
Calculations are shown on the left: the triple difference estimate is −0.28 for the JL specification and 0.02 for the 
fully specified triple difference.
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any form of grading after January 16, 1998. The combined average effect of manda-
tory and voluntary grading is a triple interaction between LA ZIP codes, time after 
1998, and illness type:

(6)	​ ln​(​a​ijt​​)​  = ​ α​ij​​ + ​τ​t​​ + ​β​1​​​(​LA​i​​ × ​After​t​​)​ + ​γ​1​​​(​LA​i​​ × ​After​t​​ × ​Food​j​​)​​.

Three parameters capture temporal variation: ​​β​1​​​ for LA digestive disorder hospi-
talizations after grading, ​​γ​1​​​ for LA foodborne hospitalizations after grading, and ​​
τ​t∈1998,1999​​​ for the geographic control group’s hospitalizations after grading. Unlike 
canonical triple differences (e.g., Angrist and Pischke 2008, 242–43; Gruber 1994, 
630–31; Imbens and Wooldridge 2007, 2–3; and Khandker, Koolwal, and Samad 
2010, 80–82), there is no explicit parameterization of the geographic control group’s 
foodborne hospitalizations after grading (e.g., ​​β​3​​ ​Food​j​​ × ​After​t​​​).41 The result is 
that the average trend of foodborne and digestive hospitalizations in the geographic 
control group ​(​​ ‾ FD ​​ After​ 

CA ​  − ​​ ‾ FD ​​ Before​ 
CA ​ )​ stands in for both the control group’s trend in 

foodborne hospitalizations ​(​​F 
–
​​ After​ 
CA ​  − ​​F 

–
​​ Before​ 
CA ​ )​ and the control group’s trend in diges-

tive disorder hospitalizations ​(​​D 
–
 ​​ After​ 
CA ​  − ​​D 

–
 ​​ Before​ 
CA ​ )​. In contrast, the fully specified triple 

differences in equation (7) allows foodborne trends to vary distinctly from digestive 
trends in both LA and its control group by adding the bolded missing interaction 
term to equation (4):

(7)	​ ln​(​a​ijt​​)​  = ​ α​ij​​ + ​τ​t​​ + ​β​1​​ ​m​it​​ + ​β​2​​ ​v​it​​ + ​β​𝟑​​ ​Food​j​​ × ​After​t​​

	 + ​γ​1​​ ​m​it​​ × ​Food​j​​ + ​γ​2​​ ​v​it​​ × ​Food​j​​ + ​ϵ​ijt​​​.

The consequences of omitting the interaction term are twofold. First, the treat-
ment effect point estimates are biased to the extent that the trend averaged over 
digestive and foodborne illnesses diverges from the trends within each disease cat-
egory in the geographic control group. Figure 8 shows that time trends for food-
borne and digestive hospitalizations move in opposite directions in LA, CA, and 
Southern CA.42 But since LA and Southern CA also experience a steep secular drop 
in foodborne illnesses, averaging over the foodborne and digestive trends is most 
problematic for these geographies. The better the match on pretreatment foodborne 
illness trends between LA and its control group (holding digestive disorder trends 
constant), the worse the model fits the data.

Second, omitting the interaction term downwardly biases the (cluster-robust) 
standard errors of treatment effects. Absent the interaction term, the JL model pools 
time fixed effects across foodborne and digestive hospitalizations for the geographic 
control group. Foodborne hospitalizations have much more within-cluster temporal 

41 For applications of triple differences, each of which include the full set of second-level interactions, see 
Gruber and Poterba (1994), Acs and Nelson (2004), Figlio (2006), and de Carvalho Filho (2008).

42 The divergence may also call into question the validity of the digestive disorders as a disease control group. 
This control group, after all, comprises nearly 1,000 diagnostic codes for any disorder of the digestive system, rang-
ing from “foreign body in colon” to “unspecified open wound of abdominal wall” to “malignant carcinoid tumor of 
the appendix” (Centers for Medicare and Medicaid Services 2016).
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variability than digestive disorder hospitalizations, both because foodborne illnesses 
are outbreak-driven and the digestive category includes a much higher volume of 
cases, adding stability to the trends. Pooling time fixed effects across the two catego-
ries hence underestimates the variance of the effect on foodborne hospitalizations.43 
Table 4 shows that the standard errors of the treatment effects uniformly inflate 
compared to the JL specification when adding in the interaction term to decouple the 
temporal variances of foodborne and digestive disorders. In model 6, the standard 
error of the mandatory grading effect nearly doubles. Monte Carlo simulations in 
online Appendix G reveal that the downward bias in the standard errors, coupled 
with the upward bias in the absolute value of the point estimates, results in Type I 
error of 22 percent in the shortest observation window and up to 51 percent with a 
longer observation window.

B. CA

Similar patterns emerge when we improve CA as a control group by reducing 
the influence of salmonella in the aggregate foodborne illness trends. We do so by 
including a highly prevalent and widely studied foodborne illness, campylobacter, 
to the set of foodborne illnesses. Campylobacter is universally recognized in the 
medical literature as a dominant source of bacterial foodborne illness in the United 
States (Mead et al. 1999, Scallan et al. 2011). The authoritative synthesis on food-
borne illness in the United States describes campylobacter and salmonella as the 

43 More formally, the within-cluster covariance of foodborne and digestive ZIP clusters in the geographic con-
trol group are given equal weight by the ZIP-and-time-demeaned treatment indicator in the meat of the sandwich 
matrix ​​∑ g=1​ G  ​​ ​X​g​​ ​​u ˆ ​​g​​ ​​u ˆ ​​ g​ 

T​ ​X​ g​ 
T​​, where G is the number of ZIP-hospitalization type clusters, ​​N​g​​​ is the number of time 

points per cluster, ​​X​g​​​ is an ​​N​g​​​ × 2 matrix of demeaned regressors for cluster ​g​ representing parameters ​​β​1​​​ and ​​γ​1​​​ in 
equation (6), and ​​​u ˆ ​​g​​​ is an ​​N​g​​​ × 1 vector of OLS residuals for cluster ​g​ from equation (6).
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for Foodborne and (Non-foodborne) Digestive System Disorders from 1995–1999

Note: Digestive disorders trend in the opposite direction of foodborne illnesses for all three geographic groups.
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“leading causes of foodborne illnesses” in the United States (Scallan et al. 2011, 
13). As Table 1 shows, campylobacter and salmonella are responsible for 80 percent 
of foodborne hospitalizations and 90 percent of foodborne illnesses. In many years, 
cases of campylobacter outstrip cases of salmonella, leading one review to conclude 
that campylobacter “is well recognized as the leading cause of bacterial foodborne 
diarrheal disease worldwide” (Silva et al. 2011).44 The transmission of campylo-
bacter is linked to poultry (similar to salmonella), unpasteurized milk, and cheese 
(Bryan and Doyle 1995, USDA 2012), and restaurant food preparation practices 
affect the risk of campylobacter infection (Friedman et al. 2004, Jones et al. 2016).45

Figure 9 shows that when adding campylobacter to the aggregate foodborne 
disease selection, the pretreatment trends between LA and the rest of CA become 
more parallel.46 Lead (difference-in-differences) tests between LA and CA before 

44 Campylobacter was dubbed the “the King of Foodborne Disease in the US” by Marler Clark, the nation’s 
leading food safety law firm, which represented plaintiffs in the Jack in the Box E. Coli case. See http://www.
foodpoisonjournal.com/food-poisoning-information/campylobacter-the-king-of-foodborne-disease-in-the-us.

45 JL appears to have excluded campylobacter because of an inclusion threshold that diseases must be 90 per-
cent foodborne. However, this omission is inconsistent with JL’s selection of other diseases. Roughly 80 percent 
of campylobacter cases are foodborne (Mead et al. 1999), though sources disagree on the precise percentage, but 
JL appears to select multiple diseases beneath the 90 percent threshold. For instance, all forms of E. Coli appear to 
be included, but the same public health source on which JL relies indicates that none of the three E. Coli serotypes 
would meet the 90 percent threshold. Online Appendix D goes into more detail about foodborne disease selection, 
informed by extensive research and conferrals with a King County epidemiologist and a representative from the 
Centers for Disease Control and Prevention. 

46 Since the modeled outcome is the aggregated foodborne illness counts, not campylobacter alone, the con-
cern with parallel trends must be in the aggregate counts. More generally, online Appendix D documents that the 
wide-ranging selection of 24 diseases would make it challenging to model disease specific trends and effects. 
Figure 9 in online Appendix D demonstrates that there is substantial evidence that trends are not parallel between 
LA and CA for other specific discharge codes (e.g., food poisoning (unspecified) and cysticercosis), with evidence 
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and after 1994 in the pretreatment period 1993–1997 confirm this visual finding  
( ​p  <​  0.05 without campylobacter, ​p  =​  0.87 with campylobacter). As a result of 
conforming CA’s pretreatment foodborne illness trends to LA’s trends, holding the 
digestive disorder trends constant, bias from the missing interaction term increases. 
Table 5 compares the original JL disease selection (left) with the enhanced disease 
selection including campylobacter (right), using CA as a control group. Even in 
the shortest time span with JL’s disease selection as shown in model 1, omitting 
the interaction term leads to poor model fit (​F​  =  8.71, ​p  <​  0.01). However, after 
adding campylobacter aligns CA’s pretreatment foodborne illness trends closer to 
LA’s in model 5, bias from omitting the interaction term substantially increases 
(​F​  =  33.93, ​p  <​  0.001).47 With the longest time span shown in model 7, the bias 
is even larger (​F  =​  177.14, ​p  <​  0.001). The addition of the two-way interaction 
term brings all grading effects to null in models with campylobacter included.48

for year- and disease-specific shocks. One plausible rationale for the specification is that aggregating these diseases 
can average out small shocks to potentially make the pretreatment time series in the aggregate credible. But when 
a large outbreak occurs for the dominant disease category like salmonella, this approach may still fall short, as this 
paper demonstrates.

47 This is likely the reason why JL reports finding similar results with a sensitivity check for diagnoses that are 
over 50 percent foodborne, which would have included campylobacter.

48 A later version of the work by the same authors, along with several authors trained in public health, makes 
several changes to the analysis and includes campylobacter (Simon et al. 2005). Online Appendix A shows that, in 
addition to failing to account for the salmonella outbreak, this version reports statistically significant grading effects 
because of the omission of the two-way interaction term.

Table 5—Bias from Omitting Two-Way Interaction Terms with CA 
as the Control Group, with and without Campylobacter in the Disease Selection

JL disease selection Campylobacter added

1995–1999 1993–2009 1995–1999 1993–2009

(1) (2) (3) (4) (5) (6) (7) (8)

Foodborne ​×​ LA mandatory ​− ​0.31​​ ⁣​​ ​− ​0.20​​ ​​ ​− ​0.33​​ ⁣​​ ​− ​0.13​​ ​​ ​− ​0.30​​ ⁣​​ ​− 0.10​ ​− ​0.36​​ ⁣​​ ​− 0.08​
  disclosure post-1998 ​​(0.07)​​ ​​(0.08)​​ ​​(0.05)​​ ​​(0.06)​​ ​​(0.07)​​ ​​(0.08)​​ ​​(0.05)​​ ​​(0.06)​​
Foodborne ​×​ LA voluntary ​− ​0.27​​ ⁣​​ ​− ​0.15​​  ​​ ​− ​0.30​​ ⁣​​ ​− 0.09​ ​− ​0.33​​ ⁣​​ ​− 0.11​ ​− ​0.36​​ ⁣​​ ​− 0.06​
  disclosure post-1998 ​​(0.08)​​ ​​(0.09)​​ ​​(0.08)​​ ​​(0.10)​​ ​​(0.10)​​ ​​(0.10)​​ ​​(0.09)​​ ​​(0.10)​​
Foodborne ​×​ CA ​− ​0.10​​ ​​ ​− ​0.18​​ ⁣​​ ​− ​0.19​​ ⁣​​ ​− ​0.26​​ ⁣​​
  post-1998 ​​(0.04)​​ ​​(0.04)​​ ​​(0.04)​​ ​​(0.04)​​
LA mandatory disclosure ​​0.04​​  ​​ ​− 0.01​ ​0.05​ ​− 0.05​ ​​0.10​​ ⁣​​ ​0.00​ ​​0.09​​ ⁣​​ ​− 0.05​
  post-1998 (digestive) ​​(0.03)​​ ​​(0.02)​​ ​​(0.03)​​ ​​(0.04)​​ ​​(0.03)​​ ​​(0.02)​​ ​​(0.03)​​ ​​(0.04)​​
LA voluntary disclosure ​​0.08​​ ​​ ​0.02​ ​​0.09​​ ⁣​​ ​− 0.01​ ​​0.12​​ ⁣​​ ​0.01​ ​​0.14​​ ⁣​​ ​− 0.01​
  post-1998 (digestive) ​​(0.04)​​ ​​(0.03)​​ ​​(0.03)​​ ​​(0.03)​​ ​​(0.04)​​ ​​(0.03)​​ ​​(0.03)​​ ​​(0.03)​​

​Model​ JL DDD JL DDD JL DDD JL DDD
​​R​​ 2​​ ​0.99​ ​0.99​ ​0.99​ ​0.99​ ​0.99​ ​0.99​ ​0.99​ ​0.99​
Observations 2,280 2,280 7,752 7,752 2,280 2,280 7,752 7,752
​F​-ratio 8.71​​​​​ ⁣​​ 82.13​​​​​ ⁣​​ 33.93​​​​​ ⁣​​ 177.14​​​​​ ⁣​​

Notes: Coefficients shown with standard errors, clustered by three-digit ZIP and illness-type combinations, are 
in parentheses. Each model is estimated with fixed effects for three-digit ZIP and illness-type combinations and 
year-quarters. We present results for the original observation period (1995–1999) as well as an expanded observa-
tion period (1993–2009).
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VI.  Conclusion

We conclude with several implications. First, our findings show that there is little 
credible evidence for the impact of restaurant grading—what many regard as the 
archetypal disclosure—on foodborne illness. Although we do not address JL’s find-
ings on consumer behavior and restaurant hygiene scores, our analysis suggests that 
much work remains to be done to empirically ground our understanding of informa-
tion disclosure. The fact that it has taken nearly 15 years for anyone to reexamine 
the foodborne illness finding stems in part from data limitations in public health. 
Hospitalization data, even if anonymized, remain difficult to access. Reporting of 
foodborne illness and food safety enforcement is highly decentralized in the US sys-
tem, with limited efforts at unifying surveillance data. This system is not only 
problematic for enforcement, but also poses serious impediments to developing a 
rigorous evidence base for health interventions and the economic understanding of 
disclosure regimes.

Second, we note a sharp divergence between the popularization of JL and its 
actual findings. In policy circles, the LA finding, popularized by the synthesis of 
Fung, Graham, and Weil (2007), has inspired calls for simplified, mandatory dis-
closure like letter grading across fields. Yet JL originally found no statistically sig-
nificant differences between voluntary and mandatory restaurant grading. Although 
the study carefully couched its findings as being uninformative about informational 
unraveling, nearly every jurisdiction contemplating grading has applied these find-
ings to support mandatory grading, even though the evidence at the time may have 
also supported informational unraveling.49

Third, our study illustrates the need to go beyond direct replication of observa-
tional studies in economics. While many have discussed the challenges of direct 
replication (McCullough and Vinod 2003, Camerer et al. 2016), our results show 
that the validity of an inference may hinge on more than merely replicating a regres-
sion (Rosenbaum 2001). Our deeper reassessment required expanding the data to 
uncover the salmonella outbreak, implementing a full triple differences specifica-
tion, studying the power of the design, and engaging with medical science and epi-
demiology to assess robustness to disease selection and outbreaks. We fear that the 
incentives for researchers to engage in such resource-intensive efforts may be lack-
ing. (We did so only after having spent three years working on food safety, assuming 
the validity of the LA hospitalization effect.)

Last, while the quantitative examination of public health initiatives is a sign of 
the positive and growing influence of econometric policy evaluation, our analysis 
shows the need for cross-fertilization. JL’s study could have benefited from sub-
stantive insights from public health: that reported illnesses are a richer source of 
foodborne illness information than hospitalization data; that two pathogens are 
responsible for the bulk of foodborne illnesses; and that acute outbreaks make 

49 This confusion persists in the scholarly literature. Loewenstein, Sunstein, and Golman (2014), for instance, 
describes JL as showing that “mandatory disclosure was more effective than voluntary disclosure.” Benoît 
and Dubra (2006, 182) infer that “unraveling occurred in the disclosure of grades obtained by restaurants for their 
hygiene.” But see Jin and Leslie (2003, 425–26) (“caution should be used when interpreting the similarity between 
the effects of mandatory and voluntary disclosure.”).
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evaluation of food safety interventions challenging. By the same token, rapid 
developments in econometrics have much to add to public health policy and the 
study of information disclosure. Focused attention to research design (see, e.g., 
Angrist and  Pischke 2010), improved approaches for intra-cluster dependence 
(e.g., Cameron, Gelbach, and Miller 2008), and synthetic control methods (e.g., 
Abadie, Diamond, and  Hainmueller 2010) are considerably more developed in 
the economic literature. These methodological advancements can help research-
ers determine whether it is possible to evaluate a policy of limited scope, such as 
restaurant grading, using an outcome as stochastic as foodborne hospitalizations. 
Yet much work remains to be done to complete that revolution in credibility.
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