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Appendix A Extension to Later Analysis by Simon (2005)

In this Appendix, we show that the issues with J&L apply equally to those reported in Simon

et al. (2005) (“Simon”). While Simon was separately published in the Journal of Environmental

Health, the study comes from the same research team, as J&L are coauthors along with staff from

the LA County Department of Health Services. Details for the precise specification are lacking, but

Simon at core uses the same research design.

Simon estimates a simple DID model and specification similar to Equation 4, comparing LA

and CA before and after the adoption of grading in 1998. There are three principal differences

compared to J&L. First, the observation window is lengthened to 1993-2000. Because the fields

for the type of admission differ, the analysis does not utilize a filter to include only unscheduled

admissions from home (see Appendix J). Second, Simon no longer uses the mandatory disclosure

(m) and voluntary disclosure (v) fractional treatment parameters, and instead uses a simple binary

treatment indicator for the proportion of the three-digit ZIP in LA post-1998. Third, the most

substantial difference is that Simon uses a radically different set of diseases (see Appendix D).

For instance, in contrast to J&L, Simon includes campylobacter, botulism, listeria, yersinia, and

c. perfringens, but excludes cysticercosis, amoebic dysentery, and gastrointestinal anthrax. Such

differences underscore our point above that the disease selection used in J&L does not cohere with

a public health understanding of how restaurant sanitation practices affect foodborne illness. In

addition, instead of using all (non-foodborne) digestive system disorder discharge codes as a control

group, Simon uses hospitalizations for appendicitis.

As before, it does not appear that Simon included all two-way interactions in the model specifi-

cation, again imposing the assumption that foodborne and appendicitis hospitalizations follow the

same average trend in CA, but not LA. Simon’s DID model yields a 13% treatment effect and the

model with appendicitis control illnesses yields a 12% treatment effect.

We hence estimate the same models (reported as models 1 and 1 in Simon) to show that the same
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Diff-in-Diff J&L Spec. Triple Diff.
LA S. Cal. LA S. Cal. LA S. Cal.

Grade Cards −0.04 −0.05 0.13∗∗∗ 0.16∗∗ −0.01 0.02
(0.06) (0.07) (0.03) (0.06) (0.03) (0.06)

Grade Cards −0.31∗∗∗ −0.34∗∗∗ −0.03 −0.07
× Foodborne (0.06) (0.09) (0.07) (0.09)

Foodborne −0.26∗∗∗ −0.25∗∗∗

× post-1998 (0.04) (0.03)

R2 0.70 0.70 0.96 0.96 0.96 0.96
N 1,824 1,824 3,648 3,648 3,648 3,648

Table 1: Replication of Simon analysis with falsification tests substituting Southern CA (excluding LA) as
placebo treated units. All models use Simon foodborne disease selection (see Appendix D) and appendicitis as
the control illness group. As in Simon, the variable Grade Cards equals the proportion of the three-digit ZIP
code population within LA for observations post-1998, and 0 otherwise. Coefficients shown with standard
errors, clustered by three-digit ZIP and illness type combinations (or simply ZIPs for the DID model) in
parentheses. Each model is estimated with fixed effects for year-quarters and either (a) fixed effects for
three-digit ZIPs in the DID model or (b) fixed effects for three-digit ZIP by illness type combinations for
the J&L specification and triple differences models. We present results for the original observation period
(1993-2000). p-values for pairwise comparisons of LA and Southern CA coefficients in each set of models
from left to right are 0.95, 0.74, and 0.73. ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01

limitations apply, using the 1993-2000 data with the new disease selection and binary treatment.

Table 1 presents both the placebo models for Southern CA from Section IV, as well as the fully

specified triple difference models from Section V. The first two columns provide estimates for DID

models for LA and Southern CA. Curiously, these models do not yield a statistically significant

treatment effect, which we explore below. The middle columns present the J&L specification, using

appendicitis as a control illness, but imposing the assumption that trends for appendicitis and

foodborne illnesses are the same for CA, but not LA. Point estimates are statistically comparable

to those presented in Simon. Again, we find statistically significant grading effects for Southern CA,

showing that the results are in part an artifact of the salmonella outbreak. The last two columns

complete the triple difference specification, adding only the foodborne × post-1998 interaction

term. Substantively, this allows for appendicitis time trends to be distinct from foodborne illness

time trends in CA. As before, the treatment effects become statistically insignificant in the fully

specified triple difference regression.

We also investigated why our DID estimate was statistically insignificant in contrast to Simon’s.

One potential explanation is that Simon may have omitted zero count observations. Because of the
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sparseness of foodborne hospitalizations, a non-trivial number of observations have counts of zero.

For instance, as a lower bound for the prevalence in monthly data, roughly 7% of the quarterly-ZIP

data is comprised of zero counts. J&L appears to have included zero count observations (e.g., by

calculating log(a + 1)). J&L’s reported sample size is 6,840, corresponding to 12 months × 5 years

× 57 three-digit ZIP codes × 2 types of illnesses. Simon’s reported sample size, however, falls short

of the balanced panel. We would expect 10,944 observations, given the three additional years (=

12 months × 8 years × 57 three-digit ZIP codes × 2 types of illnesses), but Simon reports only

7,972 observations. As this number is not divisible by 12 or 8, one explanation may be that zero

count observations are dropped, but some other unarticulated sample omission is possible.

To test this hypothesis, we approximate what the DID model would look like if we dropped zero

count observations. We do so by dropping all observations with fewer than three hospitalizations

in a quarter, which necessarily implies that at least one observation at the monthly level would be

dropped. Figure 2 presents results, showing that we can replicate a 14% treatment effect with a

DID model by dropping such observations. Doing so introduces obvious bias.

All Obs. Dropped

Grade Cards −0.04 −0.14∗∗∗

(0.06) (0.05)

R2 0.70 0.64
N 1,824 1,132

Table 2: Comparison of DID model with LA as the treated county using all observations (All Obs.) and
dropping quarters with fewer than 3 hospitalization counts (Dropped). All models use Simon foodborne
disease selection. As in Simon, the variable Grade Cards equals the proportion of the three-digit ZIP code
population within LA County for observations post-1998, and 0 otherwise. Coefficients shown with standard
errors, clustered by three-digit ZIPs in parentheses. Each model is estimated with fixed effects for year-
quarters and three-digit ZIPs. We present results for the original observation period (1993-2000). ∗p<0.10;
∗∗p<0.05; ∗∗∗p<0.01

In sum, the salmonella outbreak and omission of the two-way interaction term affect the Simon

results in the same way as the J&L results, pointing towards severe confounding in the evidence of

grading effects.
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Appendix B Appearance of J&L in Policy Debates

The LA foodborne illness findings have appeared frequently in public debates on disclosure. The

public health community has traditionally harbored serious reservations about restaurant grading

(Seiver and Hatfield, 2000; Wiant, 1999). One of the principal concerns was that the underlying

inspection scores are quite stochastic, because (a) conditions can fluctuate considerably in restau-

rants over days, and (b) inspectors can apply dramatically different standards for scoring violations

(Boehnke and Graham, 2000; Wiant, 1999). Indeed, after including restaurant grading in its Model

Food Code for several decades, the Food and Drug Administration abandoned it in 1976 due to

skepticism of the utility of grading (Ho, 2012, pp. 588-91). The evidence for the association between

restaurant inspection scores and foodborne illness outbreaks is quite mixed (see, e.g., Cruz et al.,

2001; Irwin et al., 1989; Jones et al., 2004; Serapiglia et al., 2007; NYCDHMH, 2012).

To assess the policy relevance of the LA findings, we performed newspaper searches of jurisdic-

tions that considered restaurant hygiene disclosure since J&L’s publication in 2003. We searched

all top 20 US metropolitan areas by population and also recorded any other jurisdictions that our

search revealed to have considered restaurant hygiene disclosure. Although our search is by no

means exhaustive, we quickly identified 44 jurisdictions spanning 7 different countries, including 10

out of the United States’ 20 largest cities, that underwent substantial deliberation about restau-

rant hygiene disclosure. (We do not include LA, which considered J&L’s evidence in expanding

the scheme to food trucks, in this group of 10.) As shown in Table 3, these jurisdictions top a

combined population of 205 million people. Out of the top 19 metropolitan areas (excluding LA),

63% of residents lived in jurisdictions considering restaurant disclosure since 2003. 50% of residents

experienced the adoption of restaurant grading since 2003.

Enactment /
Jurisdiction contemplating J&L Amendment
restaurant disclosure Largest city Population cited year

United State of Florida Jacksonville 18, 801, 310 Yes
States Los Angeles County, CA Los Angeles 9, 818, 605 Yes 2010

New York City, NY New York City 8, 174, 962 Yes 2010
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Harris County, TX Houston 4, 092, 459
Maricopa County, AZ Phoenix 3, 817, 117 2011
Orange County, CA Anaheim 3, 010, 232 Yes
San Bernardino County, CA San Bernardino 2, 035, 210 Yes 2004
Clark County, NV Las Vegas 1, 951, 269 2010
King County, WA Seattle 1, 931, 249 Yes 2017
Santa Clara County, CA San Jose 1, 781, 642 Yes 2014
Alameda County, CA Oakland 1, 510, 271 2012
Sacramento County, CA Sacramento 1, 418, 788 Yes 2007
San Antonio, TX San Antonio 1, 327, 551 2016
Cuyahoga County, OH Cleveland 1, 280, 122 Yes
Allegheny County, PA Pittsburgh 1, 223, 348 Yes 2015
Contra Costa County, CA Concord 1, 049, 025 Yes 2016
Pima County, AZ Tucson 980, 263 Yes 2002
Fulton County, GA Atlanta 920, 581 2013
Mecklenburg County, NC Charlotte 919, 628 2012
Kern County, CA Bakersfield 839, 631 Yes 2006
Ventura County, CA Oxnard 823, 318 Yes
San Francisco, CA San Francisco 805, 195 Yes
Columbus, OH Columbus 788, 792 2006
San Mateo County, CA Daly City 718, 451 Yes 2016
Baltimore, MD Baltimore 621, 143
Boston, MA Boston 617, 680 Yes 2016
Stanislaus County, CA Modesto 514, 453 Yes
Sonoma County, CA Santa Rosa 483, 878 2016
Minneapolis, MN Minneapolis 382, 599 Yes
Albany County, NY Albany 304, 204 2011
Weld County, CO Greeley 252, 825 2014
Marin County, CA San Rafael 252, 409 Yes 2015
Butte County, CA Chico 220, 000 2014
Muskegon County, MI Muskegon 172, 188 Yes
Napa County, CA Napa 136, 484 2005
Hartford, CT Hartford 124, 775 Yes 2012
San Angelo, TX San Angelo 93, 227
Newton, MA Newton 85, 174 2015

Foreign United Kingdom London 62, 300, 000 Yes 2008
South Korea Seoul 49, 410, 366 2017
New South Wales, Australia Sydney 7, 230, 000 Yes 2010
Hong Kong, China Hong Kong 7, 071, 576 Yes
New Zealand Auckland 4, 362, 000 Yes
Hamilton, Ontario, Canada Hamilton 721, 053 Yes 2014
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Table 3: Selective sample of jurisdictions contemplating restaurant grading since publication of J&L in 2003.
10 of the 20 largest cities in the United States have enacted restaurant grading, excluding LA’s amendment
to cover food trucks. Commentators and government reports specifically cited J&L’s LA evidence in 61%
of enactment debates. In some cases, jurisdictions are coded as amending hygiene disclosure when the
amendment debate referenced J&L. For instance, the evidence played into the consideration by LA County
to extend the grading system to food trucks in 2010, the consideration by Pima County to change grading
from voluntary to mandatory in 2008, and Allegheny County’s conversion to letter grades in 2015. In three
cases (Baltimore, Harris County, and San Angelo), jurisdictions considered restaurant grading, but did not
cite the LA evidence and did not enact grading. In San Francisco, the LA evidence was cited in support of a
partnership with Yelp to disclose inspection results online. In Stanislaus County, the LA evidence supported
an argument for increased funding to post inspection results online. Population for domestic jurisdiction is
from the 2010 census. Population for international jurisdictions is from the 2010 or 2011 local census, except
for South Korea, which is from the World Bank for 2010.

We also searched for whether the LA foodborne illness evidence was cited in the enactment

debates. The fourth column of Table 3 indicates whether the effect identified by J&L was explicitly

referenced. In 27 amendment or enactment debates, the LA evidence was specifically referenced.

For instance, the J&L evidence appeared in the debate about implementing restaurant grading in

Hamilton, Ontario, the ninth largest city in Canada, in the following news report:

Influential research from the United States suggests the threat of damage to business

is exactly what makes full disclosure systems work, and work well. Stanford Univer-

sity’s Leslie co-authored a groundbreaking study published in 2003 in the prestigious

Quarterly Journal of Economics. The study examined the impact of the sign system

introduced in Los Angeles County in 1998. It gives restaurants a grade of A, B or C

depending on the results of inspections. Perhaps most revealingly, the year after the

program was introduced, hospitalizations for food-borne illnesses dropped by 20 per

cent, a trend not reflected in other areas of the state without the grade cards.

Hamilton’s health officer expressed skepticism based on costs to implement the system and the

ability to isolate the effect of grading: “I think when anybody’s got a program, they are 100 per

cent sold on the fact their program’s the best, so I am not at all surprised that L.A. [is] saying,

‘what we did was right.’ They’re not going to tell you it’s a dud.” The skepticism expressed

by the Hamilton medical officer, however, is somewhat of an outlier. In nearly all reports we
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discovered, the LA foodborne illness findings were stated with certainty. Such citations exist not

just in newspapers, but also in government reports (e.g., the United Kingdom’s Food Standard

Agency), official hearing records (e.g., Allegheny County Board of Public Health minutes), and

grand jury reports (e.g., Orange County).

Beyond restaurant hygiene disclosure, J&L’s findings as a whole also appeared to bolster argu-

ments in favor of targeted disclosure in a variety of policy debates nationwide. Table 24 provides

some examples. In a 2007 speech, for instance, then-governor of the Federal Reserve System Randall

S. Kroszner invoked J&L as “systematic evidence that in practice, changes in disclosure affect both

consumer and supplier behavior in a number of consumer product markets.” Policy areas in which

the findings were cited run the gamut from consumer protection (e.g., privacy) to environmental

safety (e.g., toxic harms) and consumer finance (e.g., credit card disclosure) and communications

technology (e.g., emergency coverage of wireless phones). Our analysis, however, does not call into

question any finding in J&L except the one concerning foodborne illness.
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Appendix C Nonrandom Enactment

C.1 Municipal Enactment

In November 1997, the local television station KCBS ran a multipart exposé, wherein journalists

went undercover to document sanitation practices in LA restaurants. This exposé was the impetus

for the county restaurant grading ordinance and subsequent municipal adoptions. J&L posit that

adoption differences across LA’s 88 incorporated municipalities were largely due to “bureaucratic

delays rather than the influence of restaurants” (p. 419), and hence exogenous. Anecdotal news

reports suggest that the influence of the restaurant lobby plays a major role in adoption of restau-

rant grading. The city of Long Beach, for instance, faced similar political pressure after the KCBS

exposé, but “decided to eschew letter grades or numeric scores after a year of discussion and in-

put from the local restaurant industry.”1 On the other hand, San Bernardino adopted restaurant

grading in 2004, “[d]espite ardent opposition from restaurant owners.”2 To rule out nonrandom

adoption, J&L estimates a duration model, with restaurant and city attributes as predictors. Be-

cause “coefficients on the restaurant characteristics are insignificantly different from zero,” J&L

concludes that the assumption of “exogenous city adoption dates” is well-founded (p. 420).

While adoption rates may be uncorrelated with restaurant attributes, we show here that adop-

tion is strongly (and statistically significantly) related to a wide range of city demographics. De-

spite testing for such associations, J&L does not report results of city demographics in the duration

model. We collect city demographics from a 1990 Census report for 81 of the 85 incorporated mu-

nicipalities under the jurisdiction of the LA Department of Public Health.3 In addition, we augment

the data with information on the number of hospitals and hospital beds. The left three columns

of Table 4 present conditional means for ten covariates for municipalities that adopted grading in

1998, municipalities that adopted later than 1998, and municipalities that never adopted grading.

1Dickerson, M. (1999, April 21). Long Beach’s grading system gets low marks from restaurateurs. Los Angeles
Times.

2Hugo, M. (2004, June 9). San Bernardino county to rate restaurants. Los Angeles Times.
3Four municipalities were not included in the 1990 Census either because their populations were under 1,000 or

they were not yet incorporated in 1990.
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1998 Post-1998 Never Survival
Adopters Adopters Adopters F-test Model

Covariate Mean Mean Mean p-value exp(coef) p-value
Population (1000s) 123.29 52.57 6.41 0.16 1.15 0.00
Hospitals 1.54 1.04 0.14 0.02 1.14 0.00
Hospital beds 2.54 3.51 0.59 0.00 1.00 0.91
Households (HHs, 1000s) 41.66 18.67 2.40 0.18 1.48 0.00
Median HH income ($1000s) 43.23 37.95 83.09 0.00 0.22 0.01
Children / HH 0.96 0.75 0.66 0.00 2.62 0.00
Female (%) 50.33 50.79 50.95 0.00 0.88 0.10
African-American (%) 4.29 8.54 2.24 0.00 1.00 0.86
Asian-American (%) 12.05 10.89 9.69 0.00 1.01 0.41
Hispanic (%) 39.20 31.89 14.04 0.00 1.01 0.00
No. of cities 48 26 7
Perc. of LA pop. 81% 19% 1%

Table 4: City attributes are correlated with time to municipal enactment of restaurant grading. We analyze
81 out of 85 incorporated cities under the jurisdiction of the LA Department of Public Health that had
available 1990 census data. This excludes three cities that did not contract with LA county for food safety
enforcement (Long Beach, Pasadena, Vernon), unincorporated areas, and cities that had populations under
1,000 people at the time of the 1990 census. Percent of LA population for each adopter group is calculated
out of this subset. All covariates are from the 1990 Census except for number of hospitals and available
hospital beds, which are both from OSPHD’s Hospital Quarterly Financial and Utilization Report in Q4 of
1997 http://www.oshpd.ca.gov/HID/Hospital-Quarterly.html. For population, household, and median
income, averages are expressed in units of 1000s and exponentiated coefficients are expressed in units of
100000s for readability. Available hospital beds are per 1,000 people. Missing percent female values were
imputed from the 2000 census for Avalon, Westlake, Signal Hill, and Rolling Hills Estates. We report average
covariate values for three groups: adopters in 1998, adopters post-1998, and never adopters. ANOVA p-value
is from an F-test of difference-in-means between the three adoption groups (1998, post-1998, and never).
Exponentiated coefficients and p-values are from a Cox proportional hazards regression on days to enactment
using each covariate as the sole predictor.

We present simple p-values from F-tests of equivalence of means, with eight of ten tests rejecting

the null. 48 of 81 municipalities adopted in 1998, covering 80% of LA’s incorporated population

under the jurisdiction of LA Department of Public Health. The differences are the most stark

between adopters and never-adopters, with never adopting cities being smaller, more affluent, and

much less ethnically diverse. The last two columns present results from Cox survival models, using

each covariate as a separate predictor for duration until adoption. Six of these tests reject the null,

again strongly refuting the notion that adoption was truly exogenous.4 Such nonrandom adoption

may, of course, bias effects. If competitive pressure is higher in large cities, for instance, the pres-

sure to respond directly to the KCBS exposé independent of grading may induce greater sanitation

4It is possible that J&L interpreted tests from a saturated duration model. Due to collinearity, test statistics on
individual coefficients may not be statistically significant. But a Wald test of a Cox model with all 10 predictors
strongly rejects the null hypothesis that all coefficients are jointly equal to zero, with a pseudo-R2 of 0.33.
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improvements.

C.2 County Enactment

J&L posits that the “key feature of our data is the introduction of hygiene grade cards.” The

paper describes the adoption as rapid and unanticipated (p. 417), justifying exogeneity. J&L

addresses two other changes, namely the removal of a subjective inspection component in July

1997 and the addition of violations in March 1998, by examining effects over time.

What this characterization misses is that restaurant grading was one component of a litany

of enforcement reforms. The sensational KCBS coverage placed intense political pressure on the

Department of Health, leading to substantial and simultaneous changes in food safety enforcement

beyond restaurant grading. Indeed, the head of the Department himself described these interven-

tions as the “Marshall Plan for restaurant inspections.”5

At least three interventions distinct from restaurant grading — none of which were discussed

by J&L — may confound restaurant grading. First, the same county ordinance that established

restaurant grading also mandated that all managers become certified as food handlers.6 The or-

dinance devoted equal space to the creation of a four-hour food handler training course, display

of food handler’s certificate, and revocation procedures as to restaurant grading. Prior empirical

work, albeit mixed in rigor, suggests that such training and certification requirements can improve

sanitation practices (Anding et al., 2007; Cotterchio et al., 1998; Egan et al., 2007). Because this is

a contemporaneous change, the research design offers no way to disentangle the effects of certifica-

tion vs. restaurant grading. Second, the Department instituted a “zero tolerance” sanitation policy,

engaging in an “unprecedented crackdown, closing eateries for code violations at three times the

usual rate.”7 This crackdown occurred at the same time that restaurant grading was implemented,

so that any observed gains in sanitation practices may have been due to the direct effect of this zero

5Haefele, M.B. (1997, December 7). The state; dirty kitchens in the county’s health department. Los Angeles
Times.

6Los Angeles County Ordinance 97-0071.
7Tobar, H., and Leeds J. (1998, January 29). Restaurants get a taste of tough county health policy. Los Angeles

Times.
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tolerance policy. Indeed, LA officials themselves stated that the crackdown “produced dramatic re-

sults” independent of grading.8 Third, the Department implemented a new policy that a restaurant

would be shut down if it exhibited critical violations on successive routine inspections.9 To sup-

port the more aggressive enforcement policy, the Department hired dozens of additional inspectors,

potentially increasing deterrence not just through sanctions but also inspection probability.

The fact that grading was part of a package of reforms does not invalidate efforts to assess the

effects of the compound intervention. But the research design cannot isolate the effects of grading

per se.

8Meyer, J. (1998, February 4). Loophole hampers restaurant crackdown. Los Angeles Times.
9Meyer, J. (1997, November 26). County crackdown on dirty restaurants OK’d. Los Angeles Times.
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Appendix D Foodborne Disease

D.1 Foodborne Outbreaks and Panel Design

We now show how time trends in the major diseases selected by J&L are heavily outbreak driven,

thereby undercutting the credibility of a DID (or triple difference) research design. This challenge

is likely endemic to foodborne illnesses in the U.S. context. Figure 1 displays hospitalizations from

1983-2009 for the three most prevalent discharge codes studied by J&L.
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Figure 1: Foodborne hospitalizations from 1983-1999 for the three most prevalent discharge codes studied by
J&L. LA is plotted in solid lines and the rest of CA in dashed lines. J&L observation window is highlighted
in grey. Each of these time series suggests limitations to the original research design.

The left panel plots the LA and CA time series for “food poisoning (unspecified).” (This is a

large residual category when physicians do not enter a more specific diagnosis code.) Most notable

is that hospitalizations in LA spike in 1985, corresponding to a large outbreak from pesticide-

contaminated watermelons in Central Valley (Goldman et al., 1990). Nearly 50 hospitalizations

in LA were attributable to the outbreak (and 1,376 illnesses were reported), which is substantial

considering that the average annual LA hospitalizations in J&L’s data was 380.

The middle panel depicts the longer salmonella time series. From 1985-87, a salmonella newport

outbreak from cattle in Tulare and San Bernardino counties caused a 4.9-fold increase in newport

cases statewide, but LA was reported to have been particularly affected (Spika et al., 1987; Puzo,

1986). The longer time series also shows how the Southern CA salmonella enteritidis outbreak in

the early 1990s is inconsistent with parallel trends. Peak salmonella rates occurred in 1994 and

declined rapidly years before LA enacted restaurant grading.
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The third panel plots cysticercosis, a discharge code responsible for nearly 20% of hospital-

izations. This tapeworm infection is largely border-related. The panel shows that, as a result,

cysticercosis exhibits in LA (a) a much steeper increase in the 1980s, and (b) a more pronounced

secular decline from the mid-1990s to 2010 than CA.

These hospitalization trends illustrate why conventional panel methods do not appear to work

well with foodborne hospitalization data.

D.2 Replication

We now spell out how we replicated J&L’s disease selection. J&L focuses on hospitalizations

for disorders of the digestive system falling in the “Major Diagnostic Category” (MDC) 6. J&L

distinguishes foodborne and non-foodborne MDC 6 illnesses “based on the principal diagnosis” (i.e.,

the chief cause of admission) from International Classification of Diseases, Ninth Revision, Clinical

Modification Code (ICD-9-CM codes or “discharge codes”). Although the paper purports to rely on

Mead et al. (1999) and a medical researcher to classify discharge codes as over 90% foodborne, Table

5 of J&L appears to measure foodborne illnesses exclusively “based on the definition by the medical

researcher.” Simon, on the other hand, classifies foodborne illnesses principally based on whether

Mead et al. (1999) indicates that more than 70% of cases are foodborne. Simon excludes two

diseases (Salmonella Typhi and Vibrio cholerae) for being travel-related, as well as hospitalizations

of children less than five years of age.

To replicate the disease selection, we obtained a spreadsheet from J&L including the discharge

code and notes from their medical researcher. Out of the 41 illnesses in that spreadsheet, nine

are marked by the medical researcher as being over 90% foodborne. This judgment is not strictly

correct, as E. Coli, for instance, is marked as over 90% foodborne. (As noted in Subsection D.3,

85% of shiga-toxin producing E. Coli (e.g., O157:H7), 70% of enterotoxigenic E. Coli, and only

30% of other diarrheagenic E. Coli are estimated to be foodborne (Mead et al., 1999).) Even

this information, however, is insufficient to determine the exact disease set. The spreadsheet, for
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instance, included only the first three ICD digits, but the first three digits (a) can correspond

to multiple diagnostic categories (i.e., beyond MDC 6), and (b) can correspond to more specific

diseases, not all of which are primarily foodborne (e.g., diarrheagenic E. Coli). We hence collected

all ICD codes starting with these nine three-digits and subset to MDC 6 categories.

Table 5 displays diseases ostensibly studied by J&L and Simon. The first column lists the disease

and the second column lists the count of total hospitalizations in CA from 1995-99. While there

is some uncertainty about the inclusion of rare diseases, the major diseases are readily identified,

because only a small number of diseases drive outcomes. J&L, for instance, studies a total of 5,068

CA foodborne hospitalizations. The only set of diseases yielding that volume include salmonella,

food poisoning unspecified, and cysticercosis, which together comprise 85% of foodborne hospital-

izations. Table 5 also merges in estimates for the percentage of cases that are foodborne from Mead

et al. (1999) and Scallan et al. (2011), as well as the estimated percentage that is travel-related,

based on matching ICD codes to pathogens. The J&L and Simon columns indicate whether each

study included the particular discharge code.

We successfully replicate J&L’s hospitalization counts. Table 6 compares counts between those

reported in J&L and replicated here. While there are small differences, these are readily explained

by differences in masking rules across versions of OSHPD data. Because masking rules have become

stricter over time, J&L’s earlier version of the dataset may include a few more counts than ours.

In addition, because we use the 5-digit ZIP code, quarterly dataset and J&L uses the 3-digit ZIP

code monthly dataset, some cases may be masked in J&L’s dataset, but not ours (and vice versa).

It’s also unclear how J&L addresses instances of admissions occurring in one calendar year, but

discharged in a subsequent calendar year. Our 1999 data, for instance, includes discharges occurring

in 2000. Table 7 tabulates the ratio of replicated counts against those reported by J&L, with all

ratios very close to 1.

16



Inclusion

Illness Hosp. Pathogen F
o
o
d
b

o
rn

e
%

(M
e
a
d
)

F
o
o
d
b

o
rn

e
%

(S
c
a
ll
a
n
)

T
ra

v
e
l

%

J&L Simon IC
D

-9
C

o
d
e

Salmonella gastroenteritis 1, 809 Nontyphoidal Salmonella spp. 95 94 11 X X 0030
Unspecified 1, 273 X X 0059

Cysticercosis 1, 233 Taenia spp. X 1231
Campylobacteriosis 1, 202 Campylobacter spp. 80 80 20 X 00843

Botulism 242 Clostridium botulinum 100 100 1 X 0051
Listeriosis 228 Listeria monocytogenes 99 99 3 X 0270

Unspecified E. coli infection 173 Diarrheagenic E. Coli 30 30 1 X X 00800
Staphylococcal 97 Staphylococcus aureus 100 100 1 X X 0050
Other bacterial 77 X X 00589

Other E. coli infection 69 Diarrheagenic E. Coli 30 30 1 X X 00809
Yersiniosis 67 Yersinia enterocolitica 90 90 7 X 00844

EHEC E. coli infection 52 STEC O157 and non-O157 85 68 4 X X 00804
Amoebiasis 26 Entamoeba histolytica X 0060

ETEC E. coli infection 23 ETEC 70 100 55 X X 00802
EPEC E. coli infection 16 Diarrheagenic E. Coli 30 30 1 X X 00801

V. parahaemolyticus 7 V. parahaemolyticus 65 86 10 X 0054
Amebic nondysenteric colitis 6 Entamoeba histolytica X 0062

Hymenolepiasis 5 Hymenolepiasis X 1236
V. vulnificus 3 V. vulnificus 50 47 2 X 00581

Taenia solium infection 2 Tania spp. X 1230
Unspecified cestode infection 2 X 1239

EIEC E. coli infection 1 Diarrheagenic E. Coli 30 30 1 X X 00803
Unspecified Taeniasis 1 Taenia spp. X 1233

C. perfringens 0 C. perfringens 100 100 1 X 0052
Clostridia 0 Clostridium spp. X X 0053

Enteric tularemia 0 Francisella tularensis X 0211
Gastrointestinal anthrax 0 Bacillus cereus X 0222
Taenia saginata infection 0 Taenia spp. X 1232

Diphyllobothriasis 0 Diphyllobothrium spp. X 1234
Sparganosis 0 Spirometra spp. X 1235

Other cestode infection 0 X 1238

Table 5: Comparison of J&L and Simon disease selection. Each row represents a unique ICD-9 code either
included by Simon or J&L. Hosp. indicates the total number of CA hospitalizations from 1995-99 in OHSPD
data for that discharge code. Travel percentage indicates the estimated percentage of cases that are acquired
through travel (Scallan et al., 2011). A checkmark indicates whether J&L or Simon likely included the
discharge code. Rows shaded in light grey are discharge codes included only by J&L and rows shaded in
dark grey are included only by Simon. Across discharge codes, the two studies agree for only 35% of 31
discharge codes, illustrating sharp differences in disease selection across these studies.
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Los Angeles California
Foodborne Digestive Foodborne Digestive

Year J&L Replication J&L Replication J&L Replication J&L Replication

1995 401 396 54,412 54,328 607 589 128,849 129,295
1996 431 428 56,692 56,627 675 663 131,623 132,021
1997 405 403 59,585 59,520 634 613 139,645 139,415
1998 351 350 61,305 61,237 654 642 145,261 144,662
1999 309 311 60,915 61,472 601 601 148,338 149,542

Table 6: Hospital admissions for foodborne and non-foodborne digestive disorders (MDC 6). The J&L
columns indicate counts reported in J&L’s Table 5. The Replication columns indicate counts based on
replicating their protocol with our version of the OSHPD data.

LA CA
Year Foodborne Digestive Foodborne Digestive

1995 0.990 0.998 0.970 1.003
1996 0.993 0.999 0.980 1.003
1997 0.995 0.999 0.970 0.998
1998 0.997 0.999 0.980 0.996
1999 1.006 1.009 1.000 1.008

Table 7: Ratio between replicated counts and J&L counts. Ratios close to 1 indicate perfect replication for
the year, region, illness cell.

D.3 Issues with Disease Selection

As documented in the paper, the exclusion of campylobacter runs contrary to the public health

consensus. We here detail other issues with J&L’s disease selection.

Comparing the J&L and Simon disease sets, Table 5 highlights the disease selection issues. In

spite of the fact that the two papers purport to implement the same research design (with the

same principal authors), the two papers study radically different disease sets. Of 31 discharge

codes, only 11 discharge codes are shared between the papers (e.g., salmonella, food poisoning

unspecified). J&L studies 13 discharge codes (rows shaded light grey) that are excluded by Simon

(e.g., cysticercosis, amoebiasis, taeniasis, and gastrointestinal anthrax). Conversely, Simon includes

7 discharge codes excluded by J&L. Likely because it was published in a public health journal, Simon

coheres with the public health consensus by including campylobacter, foodborne botulism, listeria,

vibrio, and yersinia. The raw discrepancy suggests that the J&L disease selection evinced serious

issues, which we outline below.
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E. Coli. J&L appears to include all E. Coli 008 ICD-9 subcodes, but there is no reason to expect

restaurant grading to affect ETEC and EPEC E. Coli infections. ETEC is also known as “traveler’s

diarrhea” (Nataro and Kaper, 1998) and Scallan et al. (2011) estimate that 55% of hospitalizations

in the United States for ETEC are acquired overseas. The FDA notes, “People in the U.S. usually

don’t get ETEC infections, unless they travel to areas of the world with poor sanitation” (Food

and Drug Administration, 2012). EPEC infections most commonly occur in children less than

2 years old, and in countries outside the United States: “Recent estimates from the Centers for

Disease Control and Prevention (CDC) on food-related illness in the United States listed only 4

hospitalizations as a result of EPEC infection; however, this pathogen continues to persist in other

parts of the world and continues to be regarded as a serious threat to children under the age of 2”

(Croxen et al., 2013).

Cysticercosis. Cysticercosis (a type of taeniasis) is principally travel-related. The FDA notes,

“In the United States, the disease occurs primarily in individuals who have traveled or immigrated

from endemic regions in Latin America, India, Asia, Eastern Europe, and Africa” (Food and Drug

Administration, 2012). There is also a significant delay between the ingestion of Taenia solium

eggs, and the onset of cysticercosis or taeniasis symptoms. For instance, it can take several years

before neurocysticercosis symptoms are displayed (Food and Drug Administration, 2012).

Exclusion of Listeriosis. Listeriosis is recognized as “one of the leading causes of death from

foodborne illness” (Food and Drug Administration, 2012), and is estimated to be food-borne in

99% of cases in the United States, and travel-related in just 3% of cases (Scallan et al., 2011).

Under-inclusion of Salmonella. Similarly, by focusing only on MDC 6 disorders, J&L may

miss the most serious cases of salmonellosis that present non-gastroenteritic complications (e.g.,

salmonella septicemia, salmonella pneumonia, salmonella arthritis, and salmonella osteomyelitis).

Such cases constitute roughly half of (non-typhoidal) salmonella hospitalizations in LA county from
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1995-99. While some non-MDC 6 codes are properly excluded (e.g., salmonella meningitis largely

affects babies), foodborne salmonellosis can manifest in non-gastroenteritic ways (Acheson and

Hohmann, 2001).

Other Idiosyncratic Illnesses. Some diseases included by J&L appear entirely irrelevant from

a public health understanding of foodborne disease in the United States (e.g., tularemia, amebiasis,

gastrointestinal anthrax and taeniasis). These illnesses are absent from the major public health

reviews (Mead et al., 1999; Scallan et al., 2011). For amebiasis, “water is the most common source of

contamination”, and like many of the other illnesses that J&L studies, it is often acquired overseas:

“[Amebiasis is] not very common in the U.S., where it usually affects people who traveled here from

a country with poor sanitation” (Food and Drug Administration, 2012). Gastrointestinal anthrax

is also predominantly acquired overseas, by consuming meat from livestock infected with anthrax

(Centers for Disease Control and Prevention, 2015).

Principal Diagnosis. The exclusive focus on principal diagnoses may also undercount foodborne

hospitalizations. For instance, hemolytic-uremic syndrome (HUS) is a complication associated with

E. coli, leading to life-threatening kidney failure (Gould et al., 2009). Due to the severity of HUS,

it may be coded as the principal diagnosis (the reason for hospital admission), but a secondary

diagnosis of E. Coli may be entered.10

10Lloyd and Rissing (1985) documents considerable discretion in entering discharge codes.
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Appendix E Units of Analysis

In this Appendix, we explain why the geographic units of analysis used by J&L — three-digit

ZIP codes – are inappropriate for the analysis undertaken. We also discuss why OSHPD data at

the monthly, compared to quarterly, level are unlikely to provide any advantages for assessing the

impact of restaurant grading on foodborne illness rates.

E.1 ZIP Codes as Geographic Units

It is widely documented that five-digit ZIP codes have serious limitations for public health and

social science research (Krieger et al., 2002a,b; Grubesic, 2008). First, ZIP codes are administrative

units created for efficient delivery of mail and are hence incompatible with jurisdictional lines

relevant for understanding the impact of health laws. ZIP codes, for instance, do not correspond

to municipal lines (Sater, 1994). Each ZIP code can, as a result, have radically different sizes and

populations. Second, ZIP codes can change substantially over time. Between 1997 and 2001, for

instance, the post office added 390 new ZIP codes and discontinued 120 (Krieger et al., 2002b, p.

1100). Mapping census data to ZIP codes is hence nontrivial. The 2000 census, for instance, created

ZIP Code Tabulation Areas (ZCTAs) that are quite distinct from how ZIP codes were represented

in the 1990 Census.

These limitations can have serious implications for research. Krieger et al. (2002a), for instance,

shows that while census block and tract data detected demographic health disparities, ZIP code

measures sometimes failed to detect such disparities or detected disparities inconsistent with census

tract and block measures. As put succinctly in a presentation by a research scientists from the CA

Department of Public Health: “Avoid using ZIP codes whenever possible” (Smorodinsky, 2010).

J&L’s analysis compounds this problem by using three-digit ZIP codes. While five-digit ZIP

codes generally accord with county lines, three-digit ZIP codes do not. Three digit ZIP codes

correspond to a processing and distribution center of the US Postal Service (“Sectional Center
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Figure 2: The primitive geographic unit of analysis for J&L is a three-digit ZIP code. These exacerbate
well-known limitations to using five-digit ZIP codes. This figure plots the region for a single 3-digit border
LA ZIP code (935), which spans much of the state of CA.

Facilities”). Out of 18 LA three-digit ZIP codes, five cross county lines,11 requiring J&L to assign

fractional treatments to those units, even though grading is adopted at the county and municipal

level. To see how problematic that can be, Figure 2 plots the area for the 935 three-digit ZIP code.

While that ZIP code contains much of northern LA, it spans vast portions of CA, reaching some

300 miles north to Yosemite Park and the Nevada border. Nor is it the case that three-digit ZIP

codes escape realignment of ZIP codes. In 1999, for instance, realignment in Riverside county split

the ZIP code 91719 into 92877, 92879, 92881, and 92883.12

Because our version of the OSHPD data contains information on five-digit ZIP codes, we can

construct an alternative test of grading effects that is implicit in J&L’s treatment of boundary

ZIP codes. We focus on three-digit ZIP codes that were assigned fractional treatment by J&L.

An observable implication of grading should be that if we disaggregate that unit into constituent

five-digit ZIP codes, (a) hospitalization rates for units just inside and just outside of LA should

be parallel pretreatment, but (b) rates for units inside LA should decrease around 1998 relative to

11We calculated this based on population, but J&L report six border ZIPs, potentially because of land area. Using
land area is tricky, as ZIP code boundaries are poorly defined.

12Postal Bulletin, pp. 61-62. (1999, April 8).
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Figure 3: Analysis of border ZIP codes. The left panel plots areas for five-digit ZIP codes in boundary
three-digit ZIP codes to which J&L assigned fractional treatment. The right panel plots time trends for
five-digit ZIP codes just outside of LA and just inside of LA.

those outside of LA. Figure 3 conducts this border analysis, with the left panel displaying border

(five-digit) ZIP codes just inside and just outside of LA. The right panel plots time trends, with

pointwise 95% confidence intervals. This reveals no evidence consistent with grading effects. If

anything, the drop after 1997 is as pronounced in units outside of LA, even if it stems from a spike

around 1996.

E.2 Temporal Aggregation

In this subsection, we show that monthly OSHPD data is unlikely to provide any additional

leverage over the research question. As mentioned in footnote 33, the principal reason is that

foodborne hospitalizations are sparse. In 1999, the expected number of hospitalizations at the

monthly level is 1.3 hospitalizations, compared to 4 at the quarterly level. While a general concern

with higher levels of temporal aggregation is the loss of statistical power, Section IV shows that

we can replicate statistically indistinguishable grading effects using J&L’s model. In addition,

because J&L models log(counts), it also appears to adjust for zero count observations, but such

log transformations are known to be problematic (Buntin and Zaslavsky, 2004; O’hara and Kotze,

2010). Given the sparseness of foodborne hospitalizations, monthly data are likely to inflate zero

count observations.
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We flesh out one additional reason why monthly data — particularly given the tradeoff in

terms of geographic aggregation to the three-digit ZIP code level — will not offer any significant

benefits to assessing the effects of grading adoption. To understand this, we investigate the timing

of how LA municipalities adopted grading. Figure 4 plots average values of mit and vit across LA

ZIP codes from 1998-99, with dashed lines representing monthly data and solid lines representing

quarterly data.13 The quarterly and monthly values align well for m, as municipal adoption largely

occurs by quarter. Mandatory grading became effective in the City of Los Angeles, home to 40%

of the county population, on April 4, 1998, and in the City of Glendale, the third largest city in

LA county, on March 24, 1998.

The right panel shows that the only substantial difference between monthly and quarterly

adoption data occurs for v in the early months of 1998. This is because the county ordinance

becomes effective January 16, decreasing v in January, but driving v up in February and March

before subsequent municipal adoptions. (Recall that because ZIP codes include areas outside of LA

county’s public health jurisdiction, v < 1 after January 16 before any municipal adoption.) As a

behavioral matter, it is highly implausible that voluntary grading effects should manifest themselves

rapidly in the first two months of effectiveness. Restaurant inspections occur only one to three times

per year (County of Los Angeles Public Health, 2017). It would hence take a considerable amount

of time (1) for a sufficient number of restaurants to receive placards, (2) for consumers to infer

that failure to post indicates a low sanitation score, and (3) for restaurants to improve sanitation

practices due to this form of informational unraveling. If restaurants anticipate prospectively being

graded, this also undermines the idea that monthly variation provides any substantial leverage. As

Section IV shows, m and v are simply standing in for the years 1999 and 1998, respectively.

13See Equations 13 and 14 in Appendix L.
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Figure 4: Timeline for grading enactment at monthly and quarterly level. The left panel plots the average
value of mit across LA 3-digit ZIP codes between January 1998 and December 1999. The dashed line shows
the average value for mit at the monthly level, while the solid line shows the average value for mit at the
quarterly level (where mit values are calculated for 3-digit ZIP codes at the quarterly or monthly level
according to equation 13 in Appendix L, and generalizing t to months for the monthly calculation). The
right panel plots the average v values across LA 3-digit ZIP codes for the same time period.
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Appendix F Triple Differences

F.1 Model specification

As described in Section I, J&L’s analysis extends a DID analysis by adding a second control

group of non-foodborne hospitalizations. Adding this control group could relax the DID assumption

that there are no LA-specific time shocks coinciding with the introduction of grading in 1998. While

the use of hospitalizations for all digestive system disorders as control illnesses may be questionable,

it is worth considering what might comprise an ideal set of control illnesses. For example, we might

be concerned that contemporaneous changes in LA’s food supply, such as salmonella contamination

in a local food supplier that serves both grocery stores and restaurants, could confound the impact

of restaurant grading on foodborne hospitalizations.14 To address this concern, we could split

foodborne hospitalizations into two groups: those arising from restaurant meals, with an expected

value across three-digit ZIP codes of R̄, and those arising from home-cooked meals, with an expected

value across three-digit ZIP codes of H̄. We could then calculate two DID estimators in Equations 1

and 2. The triple differences estimator in equation 3 would adjust for the confounding effect of

food supply safety changes in LA in 1998:

δRestaurant = (R̄LA
After − R̄LA

Before)− (R̄CA
After − R̄CA

Before) (1)

δHome = (H̄LA
After − H̄LA

Before)− (H̄CA
After − H̄CA

Before) (2)

δGrading = δRestaurant − δHome (3)

where superscripts LA and CA represent three-digit ZIP codes in LA and the rest of CA respec-

tively, and the subscripts Before and After represent the time periods before and after grading was

introduced in 1998 respectively. The triple differences estimator for δGrading requires four param-

eters corresponding to the four time-dependent differences that estimate δRestaurant and δHome.

Equation 4 describes the model using fixed effects αij for (time-invariant) ZIP code-illness type

14This scenario recently occurred in the 2016 alfalfa sprout salmonella outbreak. Products from Sprouts Extraor-
dinaire, which supplies both restaurants and grocery stores with alfalfa sprouts, were identified as a common source
of reported illnesses (https://www.cdc.gov/salmonella/reading-08-16/index.html).
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combinations, fixed effects τt for year-quarters, and three additional parameters for each remaining

temporal comparison before and after grading:

ln (aijt) = αij + τt + β1(LAi ×Aftert) + β2(Restaurantj ×Aftert) + γ1(LAi ×Aftert × Restaurantj) (4)

Table 8 describes how this parameterization relates to the expectations described in equations 1-3.

Difference Parameters

Restaurant (R̄LA
After − R̄LA

Before) τAfter − τBefore + β2 + β1 + γ1

(R̄CA
After − R̄CA

Before) τAfter − τBefore + β2

δRestaurant β1 + γ1

Home (H̄LA
After − H̄LA

Before) τAfter − τBefore + β1

(H̄CA
After − H̄CA

Before) τAfter − τBefore

δHome β1

Net Treatment Effect δGrading γ1

Table 8: Parameterization of triple differences estimate. The estimate is a difference between two DID’s.
The top panel is the DID for foodborne hospitalizations from restaurants. The second panel is the DID for
foodborne hospitalizations from home meals. In principle, triple differences can adjust for LA-specific shocks
(e.g., to the food supply).

J&L appears to pursue an identification strategy similar to the one outlined in Table 8, noting

that “identification is based on time-series variation and cross-sectional variation provided by the

presence of two control groups: California outside of Los Angeles and admissions for nonfood-related

digestive disorders,” the hospitalization control group analogous to our illnesses from home example

(p. 439). However, J&L’s specification only accounts for three of the four sources of temporal

variation. We again rewrite m and v in the J&L specification as a single two-way interaction of LA

(or proportion of ZIP population in LA) and post-1998:

ln (aijt) = αij + τt + β1(LAi ×Aftert) + γ1(LAi ×Aftert × Foodj) (5)

We can now more clearly see that compared to Equation 4, β2 is absent. Excluding β2 results in a

biased DID estimator for both foodborne and control hospitalizations. Equations 6-9 show the new

estimators using J&L’s control group of all other digestive disorder hospitalizations and assuming a
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balanced panel, where F̄ represents the average over foodborne illness hospitalizations, D̄ represents

the average over all other digestive disorder hospitalizations, and FD represents the average over

both foodborne illness and digestive disorder hospitalizations. Without a separate parameter for

foodborne illness hospitalizations in CA after grading, the average trend over foodborne illness and

digestive disorder hospitalizations in CA stands in for the CA component of each DID equation.

FD
CA

After − FD
CA

Before =
1

2
×
[
(F̄CA

After − F̄CA
Before) + (D̄CA

After − D̄CA
Before)

]
(6)

δFoodborne = (F̄ LA
After − F̄ LA

Before)− (FD
CA

After − FD
CA

Before) (7)

δDigestive = (D̄LA
After − D̄LA

Before)− (FD
CA

After − FD
CA

Before) (8)

δGrading = δFoodborne − δDigestive (9)

To provide the intuition of the resulting bias in δGrading, Table 9 provides a stylized numerical

example.15 If both LA and CA drop by 10% in foodborne hospitalizations and increase by 10%

in digestive disorder hospitalizations after 1998, the simple DID and the fully parameterized triple

difference would correctly recover a 0% treatment effect (left and middle columns). By imposing

trends to be identical in foodborne and digestive disorder trends in CA (but not LA), J&L’s

specification would estimate a foodborne DID of -10% and a digestive disorder DID of +10%,

resulting in treatment effect estimate of -20% (right column). The J&L specification is the only

one that would find a non-zero treatment effect.

The top two panels of figure 5 illustrate a stylized numerical example of the consequences of the

J&L estimator under conditions similar to those observed in the OSHPD data. In the left panel,

foodborne hospitalizations trend downwards from 1995-1999 for both LA and CA. In the right

panel, digestive hospitalizations trend upwards for both LA and CA. Because the trends for CA’s

foodborne and digestive hospitalizations are of similar magnitude but opposite sign, constraining

trends to be identical biases both towards zero, depicted in the dashed lines (FD
CA

After − FD
CA

Before).

15Here, we assume a balanced panel, as is the case for the LA data.
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Diff.-in-Diff. Triple Diff. J&L Spec.

Foodborne LA F̄ LA
After − F̄ LA

Before = -10% F̄ LA
After − F̄ LA

Before = -10% F̄ LA
After − F̄ LA

Before = -10%

CA F̄CA
After − F̄CA

Before = -10% F̄CA
After − F̄CA

Before = -10% FD
CA

After − FD
CA

Before = 0%

δFoodborne = 0% δFoodborne = 0% δFoodborne = -10%

Digestive LA D̄LA
After − D̄LA

Before = 10% D̄LA
After −D

LA

Before = 10%

CA D̄CA
After − D̄CA

Before = 10% FD
CA

After − FD
CA

Before = 0%

δDigestive = 0% δDigestive = 10%

Treatment δGrading = 0% δGrading = 0% δGrading = -20%
Effect

Table 9: Numerical illustration comparing DID, triple differences, and J&L specification. We use the notation
of Equations 1-3 to refer to foodborne and digestive hospitalizations before or after 1998 across LA and CA.
The J&L specification imposes homogeneous temporal effects for foodborne and digestive hospitalizations in

CA: (FD
CA

After−FD
CA

Before). As a result, it is the only specification with a non-zero treatment effect in spite of
the fact that LA and CA follow the the same trends for foodborne and digestive hospitalizations after 1998.

While a fully specified triple difference would find each DID estimate (between solid lines) to be

zero, the J&L specification induces large DID estimates: the difference between the solid LA line

and the dashed CA line widens both for foodborne and digestive disorders. Each of these differences

magnifies the estimated treatment effect.

The J&L estimator can also fail to identify a true treatment effect by introducing bias of the

opposite sign to the treatment effect. The bottom two panels of figure 5 illustrate this scenario. If

we had indeed observed a larger drop in LA relative to CA for foodborne illness hospitalizations,

and a larger drop in CA relative to LA for digestive disorder hospitalizations, we would estimate

a large negative treatment effect with the correct triple differences specification. Yet, by replacing

(F
CA

After − F
CA

Before) with (FD
CA

After − FD
CA

Before), the J&L estimator flips the sign of the foodborne DID

to reflect a sharper decrease in CA rather than in LA. At the same time, by replacing (D
CA

After −

D
CA

Before) with (FD
CA

After−FD
CA

Before), the J&L estimator attenuates the estimated drop in CA digestive

disorder hospitalizations and underestimates the DID for digestive disorder hospitalizations. When

subtracting these two biased DID estimates, now both small positive differences of equal magnitude,

we obtain a treatment effect of zero rather than the large negative quantity we observe from the

raw trends.
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Figure 5: DID estimators for the J&L specification (dashed line) and the triple differences (solid line).
J&L’s specification replaces the control trend for foodborne illness hospitalizations in CA with the control
trend for digestive disorder hospitalizations in CA. In the top two panels, because digestive disorder and
foodborne illness hospitalizations go in opposite directions for CA over the observation window, constraining
each trend to be equal to the average of the two biases the treatment effect upwards. In the bottom two
panels, because CA digestive disorder hospitalizations drop more than any other series, the treatment effect
is biased downwards.
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Appendix G False Precision in Triple Differences Panel Designs

We now make the more general point that even a fully specified triple differences model intro-

duces false precision into the treatment estimator with a panel as short as five years. A five-year

observation window cannot properly characterize the cycle of region-and-time-specific outbreaks

that drive temporal variation in foodborne hospitalizations. CDC data, for instance, indicate that

the top 10% of outbreaks are responsible for 87% of hospitalizations for foodborne illnesses nation-

wide.16 As a result, even a fully specified triple differences model with a short observation window

has a high false positive rate.

J&L Specification Triple Differences

Control Treated Type I Error Power Type I Error Power
group ZIPs 5 yr 10 yr 15 yr 5 yr 10 yr 15 yr 5 yr 10 yr 15 yr 5 yr 10 yr 15 yr

CA 1-5 0.50 0.47 0.47 0.69 0.77 0.81 0.39 0.31 0.32 0.56 0.50 0.41
6-10 0.19 0.24 0.35 0.68 0.93 0.94 0.11 0.11 0.10 0.43 0.47 0.40
11-15 0.20 0.32 0.44 0.84 0.94 0.95 0.08 0.06 0.03 0.47 0.51 0.43
16-20 0.22 0.37 0.51 0.93 0.97 0.98 0.07 0.05 0.02 0.48 0.42 0.29

Region 1-5 0.51 0.47 0.47 0.70 0.78 0.82 0.30 0.21 0.20 0.40 0.37 0.35
6-10 0.19 0.24 0.36 0.68 0.93 0.94 0.10 0.07 0.07 0.35 0.41 0.42
11-15 0.20 0.31 0.45 0.84 0.94 0.95 0.09 0.05 0.04 0.37 0.46 0.47
16-20 0.22 0.36 0.51 0.93 0.98 0.98 0.08 0.03 0.01 0.42 0.47 0.46

Table 10: Type I error and power at a 20% effect size for randomly selected groups of one or more adjacent
counties (excluding LA) after 4,000 random draws. Type I error is calculated as the percentage of placebo
tests that reject the null hypothesis at a posited effect size of zero, and power is calculated as the percentage
of tests that reject the null hypothesis at a posited effect size of 20%, for all treatment years between 1992 and
2004. Rates are broken out by the number of treated three-digit ZIPs in each posited treated county group
(ZIPs), whether a regional control group was used (Region), the length of the observation window (5 yr, 10
yr, or 15 yr), and the model specification (J&L in Equation 6 or triple differences in Equation 7). All figures
exclude San Bernardino for observation windows spanning 2004 or later, and Kern in observation windows
spanning 2006 or later, to account for their subsequent restaurant grading adoptions. Minimum placebo test
counts per cell are 50752, 34962, 13518, and 2878 for 1-5, 6-10, 10-15, and 16-20 treated three-digit ZIPs,
respectively.

To illustrate this point, we conduct a series of Monte Carlo tests using the hospitalization data

to calculate Type I error (given no effects) and power (given a 20% effect) for a variety of triple

differences design choices. Table 10 presents Type I error and power at α = 0.05 from 4,000 random

draws of one or more adjacent counties (excluding LA) for which we posited treatment effects in

the years between 1992 and 2004. Type I error is calculated as the percentage of placebo tests that

16 This is based on CDC outbreak data from 1998-2015. Outbreaks are typically defined as illnesses by two or
more persons due to eating a common food.
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reject the null hypothesis at a posited effect size of zero. Power is calculated the percentage of tests

that reject the null hypothesis at a posited effect size of 20%. We vary four design parameters: the

number of treated three-digit ZIPs (rows),17 the length of the observation window (columns),18 the

scope of the geographic control group (all of CA in top panel and region in the bottom panel),19

and the model specification (J&L in left panel and triple differences in right panel).20

Our results confirm that the J&L model specification systematically underestimates the vari-

ance of the treatment effect, resulting in substantial Type I error. To understand why, recall

that the J&L specification pools time fixed effects across foodborne and digestive hospitalizations

for CA. Foodborne hospitalizations have much more temporal variability than digestive disorder

hospitalizations, both because foodborne illnesses are outbreak-driven and the digestive category

includes a much higher volume of cases. Pooling time fixed effects across the two categories hence

underestimates the variance of the effect on foodborne hospitalizations.21 To see the magnitude of

this effect, at the smallest number of treated ZIPs, the shortest observation window, and CA as the

control group, the J&L specification results in a Type I error rate of 50% (top left cell), when it

should be 5%. Increasing the number of treated ZIPs reduces Type I error to 22%.22 Increasing the

observation period tends to increase Type I error, as outbreaks are folded into the point estimates

without corresponding increase in standard errors due to pooling.23

Yet adding the missing interaction term to the J&L specification remains insufficient to provide

a test with adequate size and power in the face of outbreaks. With 1-5 treated ZIPs, a five-year

17The median county in California has two three-digit ZIPs, and no county besides LA has more than five three-digit
ZIPs. This skews the sampling distribution towards smaller numbers of treated ZIPs.

18 For all tests, we keep the ratio of pretreatment to posttreatment years faithful to J&L’s original design.
19We define regional control groups based on 1 degree latitude bands across the width of the state.
20As in Section V, we compare the J&L specification in Equation 6 or the fully specified triple differences in

Equation 7.
21More formally, the within-cluster covariance of non-treated foodborne and digestive ZIP clusters are given equal

weight by the ZIP-and-time-demeaned treatment indicator in the meat of the sandwich matrix
∑G

g=1 Xgûgû
T
g XT

g ,
where G is the number of ZIP-hospitalization type clusters, Ng is the number of time points per cluster, Xg is a Ng

x 2 matrix of demeaned regressors for cluster g representing parameters β1 and γ1 in Equation 6, and ûg is an Ng x
1 vector of OLS residuals for cluster g from Equation 6.

22This is because the asymptotics with the cluster-robust estimator are in N (Cameron and Miller, 2015; Conley
and Taber, 2011).

23In this scenario, we would expect cluster-robust standard errors to inflate with more within-cluster time points
due to outbreaks (see Hansen, 2007).
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observation window, and CA as the control group, the triple differences model exhibits a Type I

error rate of 39% (top left cell in triple differences panel). While increasing the number of treated

ZIPs to the maximum reduces Type I error to 7%, power remains lower than 50% and decreases

with a longer observation period. In contrast, using a regional control group at the maximum

number of treated ZIPs reduces or preserves Type I error with no meaningful loss in power across

observation periods (see bottom right row). Adding more time periods with a regional control

group addresses some of the challenges of accounting for acute time- and region-specific outbreaks.

Yet as the 46% power with a 20% effect shows (bottom right cell), the approach remains

underpowered to detect anything but large effects. Synthetic control methods (Abadie et al.,

2010) provide another appropriately sized test to examine treatment effects on a single county,

but Appendix K shows that these methods are similarly underpowered to detect moderate grading

effects in foodborne hospitalizations.24

24Appendix K also finds no evidence to support grading effects in LA using synthetic control methods.
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Appendix H Southern CA Spillover

In this Appendix, we address the concern that LA and Southern CA follow similar patterns

around the adoption of grading because of spillover effects. In particular, we investigate a possible

source of restaurant grading spillover effects between LA and Southern CA via the media coverage

of LA’s grading enactment. We obtained the coverage areas for KCBS-TV, the station that broad-

casted the media exposé in November 1997.25 Figure 6 shows the location of these towers along

with their coverage contours. We calculated the percentage of each Southern California’s three-

digit ZIP code’s population that was within the coverage area of these towers as a measurement of

KCBS spillover.26 If media spillover effects from the exposé drove the observed drop in foodborne

illness across Southern California counties, then Southern California three-digit ZIP codes with

more population within KCBS’ coverage area should have experienced larger drops in foodborne

illness compared to Southern California ZIP codes with little or no population within the coverage

area.

Figure 6: Coverage contour maps for television towers broadcasting KCBS. Green arrows represent the loca-
tion of the KCBS-TV tower (closest to Los Angeles) and its four translator towers. Source: rabbitears.info.

25Source: https://rabbitears.info/market.php?request=station_search&callsign=9628
26 As before, we exclude LA from Southern CA because it was actually treated with restaurant grading.
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To test this, we estimated the model in Equation 10 on Southern California three-digit ZIP

codes, where ln (aijt) is the logged foodborne illness count in three-digit ZIP code i at year-quarter

t for illness type j, αij are fixed effects for three-digit ZIP code illness type combinations, and τtj

are fixed effects for year-quarter illness type combinations (equivalent to a full triple differences

specification). The variable KCBS represents the proportion of the three-digit ZIP code’s popula-

tion within KCBS’ coverage area, and the variable Post-Exposé is a dummy variable that is 1 in

and after Q4 1997, and 0 otherwise. The coefficient γ1 represents the effect on foodborne illness of

being within the KCBS coverage area in Southern California after the exposé in Q4 1997.

ln (aijt) = αij + τtj + β1(KCBSi × Post-Exposét) + γ1(KCBSi × Post-Exposét × Foodj) (10)

Table 11 shows that there was no difference in the change in foodborne illness rates after the

KCBS media exposé between Southern California ZIP codes within and outside of KCBS’ coverage

area.

1995-99 1993-2009
KCBS× Post-Exposé× Food −0.05 −0.13

(0.14) (0.14)
KCBS× Post-Exposé 0.05 0.07

(0.07) (0.11)

N 800 2720
R2 0.99 0.99

Table 11: The effect of KCBS coverage across Southern California ZIP codes. Coefficients shown with
standard errors, clustered by three-digit ZIP and illness type combinations, in parentheses. Each model
is estimated with fixed effects for three-digit ZIP and illness type combinations and year-quarter illness
type combinations. We present results for the original observation period (1995-99) as well as an expanded
observation period (1993-2009). The foodborne illness definition is consistent with J&L’s original design.
∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01

We also have reason to believe that the KCBS exposé was not widely covered outside of the

KCBS network. We searched two different newspaper databases, ProQuest and NewsBank, for

mention of the KCBS exposé between November 1997 and December 2009.27 These databases

jointly covered many of the major print news outlets in Southern California dating back to the

27Our search terms required the mention of KCBS and two variants of the exposé title, “Behind Kitchen Doors”
and “Behind the Kitchen Door”, case insensitive.
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1990s. Table 12 presents the counts of mentions we found of the KCBS exposé within Southern

California. Notably, we did not find any mention of the exposé in the San Diego Tribune, which has

the third largest circulation in Southern California behind the Los Angeles Times and the Orange

County Register.28

County Publication Article Count
Los Angeles Los Angeles Times 6
Los Angeles Long Beach Press-Telegram 2
Orange Orange County Register 1

Table 12: Mentions of the KCBS exposé in major CA newspapers between November 1997 and December
2009.

28 “Circulation numbers for the 25 largest newspapers.” Associated Press (2012).
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Appendix I Additional Robustness Checks

This Appendix assesses the robustness of our results to enactments of restaurant grading in

other CA counties.

We researched each of CA’s 58 counties by examining the county health department website and

news reports where available. Based on these sources, we coded the enactment date of a restaurant

grading system. We classified the type of system into one of two kinds: (1) a letter grading system,

whereby letters are assigned based on inspection performance, as in LA; (2) a placarding system,

where a typically color-coded placard indicates whether a restaurant passed its last inspection.

Placarding systems typically also assign a “conditional pass,” for low-scoring inspections. Because

conditional passes often trigger return inspections, there is often little variability in observed grades.

For instance, in November 2011, every single open restaurant in Santa Clara County had a green

placard. Table 13 provides results. We can see a distributional difference between the two kinds

of grading systems: early adopters were large jurisdictions (e.g., LA, San Diego, Riverside), which

adopted letter grading systems. The most recent spate of adoptions, however, disproportionately

adopted placarding systems. Two large counties, San Bernardino and Kern, which both border

LA, adopted letter grading systems in 2004 and 2006, respectively.

We quantitatively examined the effect of restaurant letter grading in San Bernardino and Kern

counties, as they are sufficiently populous and have over ten years of foodborne illness data post

restaurant grading. These counties modeled their grading statutes after LA’s,29 resulting in nearly

identical grading systems.30 Figure 7 plots foodborne hospitalization and illness data for both of

these counties against the rest of CA.31 The left panels plot results for SB, which enacted grading

in 2004. The variability in hospitalization rates (in the top panels) reinforces the importance of

29See Martin, Bakersfield Californian. (2006, February 9). Show which eateries make grade; Martin, H. (2004,
June 9). S.B. county OKs plan for rating eateries. Los Angeles Times.

30Each of the three jurisdictions scores inspections on a 100-point scale. The cutoffs are identical for LA and San
Bernardino, assigning an A for 90-100 points, B for 80-89 points, and C for 70-79 points. Kern uses the same cutoffs,
except that 75-79 points correspond to a C. San Bernardino Ordinance § 33.1403; Kern County Public Health Services
Department, Food Facility Grading Policy.

31Appendix I shows that none of the earlier results for LA are affected by the adoption of grading by SB and Kern
counties.
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Los Angeles 1998 L 9,818,605
San Diego 1947 L 3,095,313

Orange 3,010,232
Riverside 1963 L 2,189,641

San Bernardino 2004 L 2,035,210
Santa Clara 2014 P 1,781,642

Alameda 2012 P 1,510,271
Sacramento 2007 P 1,418,788

Contra Costa 2016 P 1,049,025
Fresno 930,450

Kern 2006 L 839,631
Ventura 823,318

San Francisco 2007 P1 805,235
San Mateo 2016 P 718,451

San Joaquin 685,306
Stanislaus 514,453

Sonoma 2016 P 483,878
Tulare 442,179

Santa Barbara 423,895
Monterey 415,057

Solano 413,344
Placer 2016 P 348,432

San Luis Obispo 269,637
Santa Cruz 262,382

Merced 255,793
Marin 2014 P 252,409
Butte 2014 P 220,000
Yolo 2017 P 200,849

El Dorado 181,058

County E
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Population

Shasta 177,223
Imperial 174,528

Kings 152,982
Madera 2015 L2 150,865

Napa 2005 L3 136,484
Humboldt 134,623

Nevada 98,764
Sutter 94,737

Mendocino 87,841
Yuba 2017 P 72,155
Lake 64,665

Tehama 63,463
Tuolumne 55,365

San Benito 55,269
Calaveras 45,578

Siskiyou 44,900
Amador 38,091

Lassen 34,895
Del Norte 28,610

Glenn 28,122
Colusa 21,419

Plumas 20,007
Inyo 18,546

Mariposa 18,251
Mono 14,202

Trinity 13,786
Modoc 9,686
Sierra 3,240

Alpine 1,175

Table 13: All counties in CA with year of enactment of restaurant grading, if applicable, sorted by 2010
census population. Type is denoted by L for “letter grading system,” where restaurants are assigned and
required to post a letter grade, and P for “placarding system,” where restaurants post a colored placard
indicating whether the restaurant passed or conditionally passed the last health inspection. Grey highlighting
indicates letter grading systems that are comparable to LA’s.
1 San Francisco’s placarding system requires only that a symbol for scoring above 90% be posted, but that
the inspection score card be available upon request. San Francisco Health Code, art. 8 §456.
2 Madera County is a voluntary letter grade trial involving only three volunteer restaurants in 2015. Flanagan,
K. (2015, February 14). Pilot food facility grade program continues in madera county. Sierra News.
3 Napa Valley County assigns letter grades, but does not require establishments to post them. Goetting, J.
(2006, March 23). Restaurant report availability and grades both improving in county. St. Helena Star.
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Figure 7: San Bernardino (SB) and Kern counties, compared to all other counties (CA), for foodborne
hospitalizations (1993-2009) and illnesses (1990-2015). SB and Kern enacted restaurant grading in 2004 and
2006, respectively. Trends for CA exclude SB in the left panels and exclude Kern in the right panels. Light
grey lines in illness panels depict synthetic control series. Although Kern experiences a sharp increase in its
foodborne illness rate post-grading, a similar increase is observed in the other California counties comprising
its synthetic control, likely due to adoption of culture-independent tests. p-values from permutation inference
are 0.78 and 0.75 for San Bernardino and Kern, respectively.

examining reported illnesses (bottom panels). While SB and CA diverge in the 1990s, likely related

to the salmonella outbreak, illness trends are parallel starting in 2000 with no evidence of any

grading effect around 2004.32 In fact, hospitalizations and illnesses appear to increase after Kern

County’s adoption in 2006.33 Synthetic controls for illnesses (plotted in grey) confirm that there

is no evidence of appreciable grading benefits in the most comparable CA counties that adopted

grading since LA.34

We also show that the adoptions in San Bernardino and Kern do not affect any of the results

for LA presented in the main body of the paper. We focus particularly on San Bernardino and

Kern because they are the only other counties adopting letter grading systems in our observation

period and both are otherwise included in the Southern CA group. First, Table 14 presents re-

32Results are the same plotting Southern California in lieu of the rest of CA.
33Similar jumps exist for other counties, including those in the synthetic control, with the most likely explanation

being the increasing use of enzyme immunoassays and culture-independent tests for foodborne disease detection.
34p-values from permutation inference are 0.78 for SB and 0.75 for Kern.
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sults by shortening the observation window to 1993-2003. This observation period excludes all

subsequent adoptions of grading systems after LA. We observe comparable treatment effects using

J&L’s specification both for LA and for Southern CA. Second, using the full 1993-2009 observation

window, we include treatment variables for San Bernardino and Kern counties corresponding to

their enactment years. The left columns of Table 15 shows that the results for Southern CA remain

comparable. Last, we remove San Bernardino and Kern county entirely, and again find comparable

results in the right two columns of Table 15.

Continuous treatment Binary treatment

LA Treated S. Cal. Treated LA Treated S. Cal. Treated

Foodborne × mandatory −0.32∗∗∗ −0.34∗∗∗ −0.29∗∗∗ −0.35∗∗∗

disclosure post-1998 (0.05) (0.09) (0.05) (0.08)

Foodborne × voluntary −0.26∗∗∗ −0.38∗∗∗ −0.27∗∗∗ −0.32∗∗∗

disclosure post-1998 (0.09) (0.12) (0.06) (0.09)

Mandatory disclosure 0.05∗∗ 0.17∗∗ 0.06∗∗ 0.17∗∗∗

post-1998 (Digestive) (0.03) (0.07) (0.03) (0.06)

Voluntary disclosure 0.09∗∗∗ 0.07∗ 0.04 0.07
post-1998 (Digestive) (0.03) (0.04) (0.03) (0.05)

R2 0.99 0.99 0.99 0.99
N 5,016 5,016 5,016 5,016

Table 14: Shortening observation window to 1993-2003 to assess sensitivity to San Bernardino and Kern
enactments of restaurant grading in 2004 and 2006, respectively. Coefficients shown with standard errors,
clustered by three-digit ZIP and illness type combinations, in parentheses. Each model is estimated with fixed
effects for three-digit ZIP and illness type combinations and year-quarters. Continuous treatment indicates
m and v as the fraction of a ZIP code subject to mandatory or voluntary grading. Binary treatment for v
equals the proportion of the three-digit ZIP in LA if the year is 1998 and 0 otherwise, and for m equals the
proportion of the three-digit ZIP in LA if the year is 1999 or later and 0 otherwise. The continuous treatment
for Southern CA is calculated from 1000 random draws from LA’s observed m and v values, adjusting for
boundary populations. For details, see Appendix L. Model (2) presents a representative model out of the
1,000 draws based on the lowest sum of squared distances from the median t-statistics for each parameter. In
the Southern CA continuous models, the rejection rate for a significant m effect is 100% and for a significant
v effect is 88.3%. ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01

Additionally, since we presented results from the 1993-2009 observation window for consistency

across analyses that included and excluded campylobacter in Section V, we also test for sensitivity

to using the longest observation window, 1983-2009. The validity of these results rests on the

assumption that there was uniform adoption of the new campylobacter ICD code across hospitals

between 1992 and 1993. The conclusions we draw from the longer observation period are consistent

with the shorter observation windows: Southern California exhibits statistically indistinguishable
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treatment effects to LA’s treatment effect (Table 16) because of the salmonella outbreak, and a

fully specified triple difference estimates no statistically significant grading effects (Table 17).

SB and Kern Dummies SB and Kern removed

Continuous treatment Binary treatment Continuous treatment Binary treatment

Foodborne × SC mandatory −0.40∗∗∗ −0.39∗∗∗ −0.34∗∗∗ −0.35∗∗∗

disclosure posttreatment (0.12) (0.08) (0.11) (0.11)

Foodborne × SC voluntary −0.51∗∗∗ −0.32∗∗∗ −0.35∗∗ −0.30∗∗

disclosure posttreatment (0.13) (0.09) (0.17) (0.12)

SC mandatory disclosure 0.24∗∗ 0.21∗∗∗ 0.20∗∗ 0.21∗∗

posttreatment (Digestive) (0.09) (0.07) (0.09) (0.09)

SC voluntary disclosure 0.06 0.07 0.09 0.06
posttreatment (Digestive) (0.05) (0.05) (0.07) (0.07)

Foodborne × −0.03 0.04
SB grading (0.13) (0.13)

Foodborne × 0.31∗∗∗ 0.39∗∗∗

Kern grading (0.08) (0.05)

R2 0.99 0.99 0.99 0.99
N 7,752 7,752 6,800 6,800

Table 15: Southern CA treatment models that add indicator variables for San Bernardino and Kern enact-
ments of restaurant grading in 2004 and 2006 respectively (left columns), or drop all three-digit ZIP codes
partially or fully in San Bernardino and Kern from the analysis (right columns). Coefficients shown with
standard errors, clustered by three-digit ZIP and illness type combinations, in parentheses. Each model is
estimated with fixed effects for three-digit ZIP and illness type combinations and year-quarters. Continuous
treatment indicates m and v as the fraction of a ZIP code subject to mandatory or voluntary grading. Binary
treatment for v equals the proportion of the three-digit ZIP in LA if the year is 1998 and 0 otherwise, and for
m equals the proportion of the three-digit ZIP in LA if the year is 1999 or later and 0 otherwise. The contin-
uous treatment for Southern CA is calculated from 1000 random draws from LA’s observed m and v values,
adjusting for boundary populations. For details, see Appendix L. Models (1) and (3) present representative
models out of the 1,000 draws based on the lowest sum of squared distances from the median t-statistics for
each parameter. With the dummy variables for SB and Kern, the rejection rate for a significant m effect is
100% and for a significant v effect is 86% in the continuous model. With SB and Kern omitted, the rejection
rate for a significant m effect is 100% and for a significant v effect is 53.4% in the continuous model. ∗p<0.10;
∗∗p<0.05; ∗∗∗p<0.01
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Campylobacter Excluded Campylobacter Included

J&L Spec. Triple Diff. J&L Spec. Triple Diff.

(1) (2) (3) (4)

Foodborne × LA mandatory −0.21∗∗∗ −0.01 −0.14∗∗∗ −0.03
disclosure post-1998 (0.04) (0.07) (0.04) (0.07)

Foodborne × LA voluntary −0.19∗∗∗ 0.01 −0.17∗∗ −0.06
disclosure post-1998 (0.07) (0.09) (0.08) (0.10)

Foodborne × CA −0.18∗∗∗ −0.10∗

post-1998 (0.05) (0.05)

LA Mandatory disclosure −0.03 −0.13∗∗∗ −0.08∗∗ −0.13∗∗∗

post-1998 (Digestive) (0.04) (0.05) (0.03) (0.05)

LA Voluntary disclosure 0.01 −0.10∗∗ −0.04 −0.09∗∗

post-1998 (Digestive) (0.03) (0.05) (0.03) (0.05)

R2 0.98 0.98 0.98 0.98
N 11,808 11,808 11,808 11,808

Table 16: Lengthening observation window to 1983-2009 to assess sensitivity to the observation period for
omitting the two-way interaction term with and without campylobacter in the disease selection. Coefficients
shown with standard errors, clustered by three-digit ZIP and illness type combinations, in parentheses. Each
model is estimated with fixed effects for three-digit ZIP and illness type combinations and year-quarters.
∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01

Continuous treatment Binary treatment

LA Treated S. Cal. Treated LA Treated S. Cal. Treated

Foodborne × mandatory −0.21∗∗∗ −0.33∗∗ −0.21∗∗∗ −0.33∗∗∗

disclosure post-1998 (0.04) (0.13) (0.03) (0.12)

Foodborne × voluntary −0.19∗∗∗ −0.31∗∗ −0.17∗∗∗ −0.28∗∗∗

disclosure post-1998 (0.07) (0.15) (0.05) (0.11)

Mandatory disclosure −0.03 0.28∗∗ −0.03 0.26∗∗∗

post-1998 (Digestive) (0.04) (0.11) (0.03) (0.10)

Voluntary disclosure 0.01 0.14 −0.03 0.12
post-1998 (Digestive) (0.03) (0.11) (0.03) (0.08)

R2 0.98 0.98 0.98 0.98
N 11,808 11,808 11,808 11,808

Table 17: Lengthening observation window to 1983-2009 to assess sensitivity to the observation period for
Southern California placebo analysis. Coefficients shown with standard errors, clustered by three-digit ZIP
and illness type combinations, in parentheses. Each model is estimated with fixed effects for three-digit ZIP
and illness type combinations and year-quarters. Continuous treatment indicates m and v as the fraction
of a ZIP code subject to mandatory or voluntary grading. Binary treatment for v equals the proportion
of the three-digit ZIP in LA if the year is 1998 and 0 otherwise, and for m equals the proportion of the
three-digit ZIP in LA if the year is 1999 or later and 0 otherwise. The continuous treatment for Southern
CA is calculated from 1000 random draws from LA’s observed m and v values, adjusting for boundary
populations. Model (2) presents a representative model out of the 1,000 draws based on the lowest sum
of squared distances from the median t-statistics for each parameter. For details, see Appendix L. In the
Southern CA continuous models, the rejection rate for a significant m effect is 99.1% and for a significant v
effect is 59.5%. ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01
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Appendix J OSHPD and Notifiable Conditions Data

J.1 OSHPD Hospitalization Data

We employ public use versions of the Hospital Inpatient Discharge Data from CA’s Office of

Statewide Health Planning and Development (OSHPD). The data files include individual patient-

level discharge records, including patient ZIP code, demographic information, diagnoses and treat-

ments. OSHPD uses a set of masking rules to protect patient confidentiality.

We obtained annual files from 1983-2009 from the Stanford University library.35 Data from

1983-1994 were stored on 8mm magnetic tape as fixed-width format ASCII files, so we built a

computer system to recover and convert these files to proper format. From 1995 to 2009, files were

available in properly delimited CSV format.

We aggregate the data into three versions.

1. County - year version. Although J&L’s analysis uses three-digit ZIP codes as geographic

units, as we illustrate in Appendix E, such units do not cleanly correspond to jurisdictional lines.

We hence create a version of the dataset with county of residence based on five-digit ZIP code.

Beginning in 1991, OSHPD matched the county of residence to each patient record based on five-

digit ZIP code, using US Postal Service (USPS) ZIP code data. To obtain a record of county for

1983-1989, we applied the same process by imputing county of residence using historical five-digit

ZIP code information. To do so, we obtained five-digit ZIP code to county mappings from 1980,

1990, and 2014.36 For each five-digit ZIP code, we identified the earliest available mapping and

assigned that county. A 1980 mapping, for instance, may not be available if a ZIP code was created

after the 1980 census, in which case the 1990 mapping is used. Because five-digit ZIP codes can

cross county lines, the earliest available county mapping included multiple counties for about 9% of

five-digit ZIPs. To mimic OSHPD’s process of using the primary county designated by USPS, we

35We could not locate the 1988 data files.
36The 1980 and 1990 mappings come from the Missouri Census Data Center (http://mcdc.missouri.edu/

applications/uexplore.shtml). The 2014 mapping comes from the public version of the ZIP code database
(https://www.unitedstateszipcodes.org/zip-code-database/).
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selected the county that matched OSHPD’s county mapping in 1995 for these border ZIPs. Any

ZIP that appeared in the hospitalization data but not our county mapping (because of intercensal

ZIP changes) was assigned the county of the hospital. Because OSHPD’s data format transitioned

in 1990, we have only three-digit ZIP codes available from 1990-1994. To match patient county of

residence in 1990, we used the county of the hospital for every discharge. We use this version of

the dataset to display rate time series for Figures 1, 2, 4, 9 in the main text and 1 of the Appendix.

2. Three-digit ZIP - quarter version. Our second version of aggregated OSHPD data corre-

sponds most closely to that used in the analysis by J&L. Counts are aggregated to the three-digit

ZIP code - quarter - illness type level. One complication that arises in this aggregation stems from

OSHPD’s masking rules. In instances where cell counts are low, to prevent individual identification,

OSHPD uses a masking algorithm which can mean that some observations have years, but not quar-

ters, identified. As a result a small number of cases are masked when using quarterly observations.

Table 18 presents counts of foodborne and digestive system hospitalizations in the dataset at the

yearly level (unmasked) and at the quarterly level (masked). The fourth and sixth columns present

the percentage difference due to using quarterly vs. yearly data. The differences are slight, ranging

from 2-2.7%. For comparability to J&L, this dataset is used for regression analyses in Tables 3 and

4 and Figure 7.

Foodborne Digestive system
Year Unmasked Masked % diff. Unmasked Masked % diff.
1995 985 965 2.03 183,623 179,096 2.47
1996 1,091 1,061 2.75 188,648 183,989 2.47
1997 1,016 989 2.66 198,935 194,168 2.40
1998 992 969 2.32 205,899 201,117 2.32
1999 912 887 2.74 211,014 206,290 2.24

Table 18: Impact of OSHPD masking rules on counts by temporal unit of aggregation. The unmasked
columns present counts for the year and the masked columns present counts where quarter is coded. % diff.
indicates the proportion of observations lost due to masking.

3. County - quarter version. Our third version of the hospitalization data is aggregated at

the county - quarter - illness level. For comparability to J&L, we use this dataset for the synthetic

44



controls analysis of Section K.1. Because of the masking rules described above, this results in some

cases being dropped.

Lastly, J&L also applies a filter to include only cases of patients admitted from home and that

were unscheduled. Our analyses above do not apply this filter for three reasons. First, it is not

substantively obvious why this hospitalization filter is appropriate for the research design. An

admission from an emergency room at a different hospital due to complications from foodborne

illness, for instance, would be excluded by the home filter. Second, this filter is not recorded in

the same fashion prior to 1995 by OSHPD, making it impossible to extend the time series with

the filter in place. It does not appear to be applied by Simon et al. (2005), as that version uses

a 1993-2000 observation window. Third, the filter does not affect results. For instance, Figure 8

plots the ZIP code data from 1995-2009 with the filter on the x-axis against the data without the

filter on the y-axis. The correlation coefficient is 0.997. Table 19 shows that the regression results
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Figure 8: Impact of hospitalization filter. Each data point represents the count of foodborne hospitalizations
for a ZIP-year cell. The x-axis applies the filter for unscheduled admissions from home and the y-axis includes
all admissions. Counts are highly correlated.

are also comparable with and without the admissions filter.

J.2 Notifiable Conditions Data

Our data source for notifiable conditions (illness data) are state reports of communicable dis-

eases. The reporting format changes somewhat across the years:
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Admission filter No filter

Foodborne × LA mandatory −0.32∗∗∗ −0.31∗∗∗

disclosure post-1998 (0.08) (0.07)

Food-related × LA voluntary −0.22∗∗∗ −0.27∗∗∗

disclosure post-1998 (0.08) (0.08)

LA mandatory disclosure 0.04 0.04∗

post-1998 (Digestive) (0.03) (0.03)

LA voluntary disclosure 0.07 0.08∗∗

post-1998 (Digestive) (0.05) (0.04)
R2 0.99 0.99
N 2,280 2,280

Table 19: J&L’s filter of admissions from home as part of an unscheduled visit does not significantly change
the coefficients in J&L’s model. Coefficients shown with standard errors, clustered by three-digit ZIP and
illness type combinations, in parentheses. Each model is estimated with fixed effects for three-digit ZIP and
illness type combinations and year-quarters. ∗p<0.10; ∗∗p<0.05; ∗∗∗p<0.01

Years Title Obs. period
1964-1980 Communicable Diseases reports annual
1981-1989 California Morbidity reports weekly
1990 California Morbidity report annual
1991-2015 Communicable Diseases reports annual

For 1981-89, we aggregated salmonellosis counts from weekly reports. In 1989, we estimate salmonella

counts, as the reporting changed from weekly to bi-weekly in the middle of the year. For 1990,

illnesses were aggregated for Humboldt and Del Norte counties, so we assigned counts proportion-

ally based on the disease-specific 1991 allocation. To validate the data, we manually checked years

where reported disease counts / rates appeared to be outliers. For instance, the LA spike in 2008

in Figure 4 corresponds to a salmonella javiana outbreak where contaminated fruit in a multisite

preschool program affected 594 individuals. The only instance we were not able to confirm is a

severe outlier for Riverside in 1974, where salmonella cases jump from 59 in 1973 to 248 in 1984

and back to 53 in 1975. The major outbreak appeared to occur in December 21, where 107 cases

were reported, but no local newspapers reported in the outbreak. We exclude this anomaly as a

likely data entry error, particularly because the Riverside outbreak in 1964 was widely reported.

For the 1990-2015 period, we collect information on salmonella, campylobacter, listeria, and

vibrio. While it would be desirable to study a more comprehensive set of foodborne diseases, it

is more important to exclude reporting effects. E. Coli O157, for instance, became mandatorily
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reportable in CA in 1996 (Belshé et al., 2003). While it was voluntarily reportable from 1993 (Bissell

and Sebesta, 1995), there are likely to be substantial differences in reporting practices across areas

over time. In LA, the E. Coli O157 rate in the three years prior to 1996 was 9.67, but this rose to

23 in the three years after mandatory reporting came into place. San Diego, on the other hand,

reported relatively stable E. Coli rates.

For similar reasons, yersiniosis, staphylococcal food poisoning, and foodborne botulism are not

included in the illness data. Yersiniosis data is available only after 2000 (compare, for example,

Belshé et al. (2003) to Dooley and Smith (2015)). Staphylococcus aureus data is available only

after 2007 (Dooley and Smith, 2015), and even then, reported data are limited to fatal or ICU cases.

Botulism is excluded, because the early data does not distinguish between foodborne botulism and

infant or wound botulism (see, e.g., Hastings et al. (1991)). Counts associated with these illnesses

are small (e.g., CA had 81 cases of yersiniosis in 2001, compared to 4141 for salmonellosis and

CA had 2 cases of foodborne botulism in 1992 compared to 5705 for salmonellosis), and therefore

unlikely to affect findings.
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Appendix K Synthetic Control Methods

This Appendix presents synthetic control methods as an alternative to traditional panel methods

to estimate the effect of restaurant grading on foodborne illness. Subsection K.1 shows that the

synthetic controls analysis finds no effect of restaurant grading in LA county. Subsection K.2

presents simulation evidence to show that permutation inference controls the false rejection rate,

with statistical power to detect large effects. Subsection K.3 provides county weights and covariate

weights used for the illness and hospitalization models. Subsection K.4 shows that the findings are

robust to a wide range of disease selections and observation periods.

K.1 Synthetic control analysis

Synthetic control methods generalize DID approaches to potentially account for unobserved,

time-specific confounding (Abadie et al., 2010, p. 495-96). Using the implementation of Abadie

et al. (2011), we construct a linear combination of control counties (the synthetic control region)

that is otherwise similar in pretreatment outcome time trends to LA (Abadie and Gardeazabal,

2003; Abadie et al., 2010). More formally, let t ∈ {1, . . . , T} index time, j ∈ {1, . . . , J} index

control counties, and define weights W = {w1, ..., wJ}, such that 0 ≤ wj ≤ 1 and
∑J

j=1wj = 1.

Let R1 = {r11, . . . , r1T } be the vector for foodborne illness (or hospitalization) rates in LA and R0

be a T × J matrix of rates for J control counties in T time periods. The synthetic control (with

foodborne illness rate r0t =
∑J

j=1R
0
t,jwj at time t) is constructed by selecting weights to minimize

the pretreatment mean squared prediction error:

MSPEpre =
1

npre

∑
t<1998

(
r1t − r0t

)2
. (11)

where npre is the number of pretreatment years.

The left panels of Figure 9 depict the time series of LA (solid) and the synthetic control region

(dashed) for hospitalizations in the top and illnesses in the bottom left panels. We obtain reasonable

balance in the pretreatment period. In the top left panel, the synthetic control exhibits the peaks
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Figure 9: Synthetic control analysis. The top panels present analyses for hospitalization data from 1983-
2009. The bottom panels present analyses for illness data from 1990-2015. The left panels present the LA
time series (solid lines) against the time series of the synthetic control (dashed lines). The right panel present
the year-by-year difference in rates between the treated and control units, with bold (red) line indicating the
difference between LA and its synthetic control and thin grey lines indicating those for all other permutations
of treatment across counties. There is no evidence that difference in illnesses or hospitalizations in LA exceeds
that of the reference distribution (p-values are 0.95 and 0.98 for hospitalizations and illnesses, respectively).

from 1985-87 and 1993-94 salmonella outbreaks. Similarly, the synthetic control region in the

bottom left panel for illnesses is largely comprised of San Diego and Orange counties, which makes

substantive sense given the regional salmonella outbreak. After 1998, synthetic control region trends

stay remarkably close to those of LA, exhibiting no evidence consistent with the 20% grading effect.

For hospitalizations, LA’s rate, if anything, trends above that of the synthetic control region. For

illnesses, the time series do not exhibit any divergence.
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To construct a test, we use permutation inference with a DID test statistic τ :37

τ =
1

npost

∑
t≥1998

(
r1t − r0t

)
− 1

npre

∑
t<1998

(
r1t − r0t

)
(12)

where npost is the number of posttreatment years.

As a reference null distribution, we construct synthetic controls for every control county, calcu-

lating τ . As in Abadie et al. (2010), we exclude placebo counties from the reference distribution

if MSPEpre exceeds a threshold.38 The right panels of Figure 9 plot (year-by-year) differences be-

tween LA and the synthetic control in bold line and placebo units in thin lines. The LA difference

is close to zero for the entire posttreatment observation period, and deviations are substantially

smaller than those for placebo counties. We fail to reject the null for illnesses (p = 0.98) and

hospitalizations (p = 0.95).

K.2 Power

One concern with permutation inference may be that statistical power is low. As noted by

Abadie et al. (2010), permutation inference does not address uncertainty from sampling, but rather

uncertainty about the counterfactual outcome, and is closely related to randomization inference (Ho

and Imai, 2006). To understand the power of the test, Table 20 presents rejection rates under effect

sizes ranging from 0 to 100% in the hospitalization data for three estimators: a conventional DID

estimator (with cluster-robust standard errors), permutation inference with a DID test statistic, and

permutation inference with synthetic control methods. In the first three columns, we study power

with an intervention in 1998 for hospitalization data from 1983 to 2009 with all CA counties. The

first row shows the poor properties of conventional DID estimators with low numbers of treated units

consistent with Conley and Taber (2011): the false rejection rate is 49%. While the likelihood of

rejecting the null increases in the effect size, specificity is low. Permutation inference alone performs

37Permutation inference is better-suited when few groups adopt the treatment (see Abadie et al., 2010, p. 497;
Cameron and Miller, 2015, pp. 349-50; Conley and Taber, 2011).

38We present results excluding counties where MSPEpre exceeds 20 times that of LA, resulting in a reference
distribution of 44 counties for illnesses and 41 counties for hospitalizations. Results are insensitive to the MSPE
exclusion threshold.
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poorly. Permutation inference with synthetic controls, however, performs reasonably well: the false

rejection rate with an effect size of zero is around the α level, and the rejection rate increases with

the effect size.

The right columns perform similar tests using only Southern CA counties. Because the reference

distribution for a single intervention year is small, we use a five-year moving window from 1993-

2009 to construct the reference distribution for permutation inference.39 The parametric DID has

similar properties, but permutation inference with a DID estimator performs relatively well. When

the effect size goes from 0 to -0.5, the rejection rates increase more rapidly for permutation DID

(from 0.04 to 0.60) than for parametric DID (0.38 to 0.84). Interestingly, permutation inference

with synthetic controls appears to perform worse than permutation DID conditioning on Southern

CA.

These results yield several takeaways. First, permutation inference both has the power to detect

sizable effects, while also controlling the false rejection rate. Second, while synthetic controls may

construct reasonable control groups, prior knowledge can improve a test. Our substantive knowledge

of the salmonella outbreak (and other commonalities of Southern CA counties in terms of the food

supply) may lead one to prefer the control group constructed with prior knowledge. Indeed, that

is likely why permutation DID outperforms synthetic control methods in the Southern CA models.

We caution, however, that the nature of foodborne outbreaks limits the ability to detect moderately

sized effects.

K.3 Weights

We use the Synth software package in R to implement synthetic control matching (Abadie et al.,

2011). The specific optimization is over two parameters: weights on K covariates ωk, based on the

predictive power of covariates on outcomes in the pre-treatment period, and weights on J control

counties W , minimizing the difference between true covariate values and covariate values for the

39We note that five-year window may not provide a long enough pretreatment time series to construct a credible
synthetic control group. We do so here to understand the application of permutation inference to the original
observation period by J&L.
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California Southern California
Effect Parametric Permutation Permutation Parametric Permutation Permutation
size DID DID Synthetic DID DID Synthetic

0.00 0.49 0.03 0.06 0.38 0.04 0.01
-0.10 0.49 0.03 0.08 0.37 0.10 0.05
-0.20 0.69 0.06 0.08 0.45 0.15 0.08
-0.30 0.80 0.09 0.27 0.60 0.27 0.15
-0.40 0.89 0.11 0.35 0.74 0.42 0.28
-0.50 0.97 0.14 0.53 0.84 0.60 0.32
-0.60 1.00 0.17 0.65 0.89 0.75 0.47
-0.70 1.00 0.17 0.78 0.90 0.92 0.61
-0.80 1.00 0.20 0.80 0.96 0.98 0.67
-0.90 1.00 0.20 0.82 0.98 0.98 0.78
-1.00 1.00 0.20 0.88 0.98 0.99 0.82

Table 20: Rejection rates for a parametric DID estimator (with cluster robust standard errors, ZIP fixed
effects, and quarter fixed effects), permutation inference using the DID coefficient as the test statistic, and
permutation inference using synthetic controls. Effect size indicates the posited effect of and each cell in-
dicates the rejection rate at two-tailed α = 0.05. The left three columns conduct the power analysis with
all counties in CA (except LA), using 1998 as the treatment year and hospitalization data from 1983-2009,
including campylobacter. The right columns conduct a power analysis with Southern CA counties only
(excluding LA), using a 5-year moving window on hospitalization data from 1993-2009, including campy-
lobacter.

synthetic control. Because J&L did not control for any covariates other than fixed effects, we focus

on obtaining balance in the pretreatment outcome time series.

Table 21 provides weights that minimize the loss functions for the illness model in the left col-

umn and the hospitalization model in the right column. Due to changes in mandatory reporting of

diseases, we use 1990-2015 as the observation period for the illness model. The principal foodborne

diseases that were mandatorily reported during this period are salmonella, campylobacter, listeria,

and vibrio. (E. Coli does not become reportable until 1996, and we re-run models that include E.

Coli in Subsection K.4.) We can see that weights construct a highly plausible control group, com-

prised principally of Orange County and San Diego County, which have very similar pretreatment

salmonella trends, as seen in Figure 4. The illness model therefore appropriately adjusts for the

salmonella outbreak in Southern CA.

The hospitalization model includes the disease set studied by J&L, as well as campylobac-

ter, from 1983-2009. (The International Classification of Diseases (ICD) revised its treatment of

campylobacter in 1992, and we show in Subsection K.4 that the results are the same starting the

observation period in 1993.) In contrast to the illness model, the hospitalization model places the
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Illness Hospitalization
Model Model

County
Weights

(wj)

Orange 0.74
San Diego 0.12

Sacramento 0.06
Alpine 0.05

San Francisco 0.03 0.13
Monterey 0.19
Riverside 0.18

Mendocino 0.18
Butte 0.12

Northwestern 0.11
Imperial 0.05

Yuba 0.03
San Benito 0.01

Pretreatment
Outcome
Weights

(ωk)

1983-1984 0.08
1985-86 0.08
1987-89 0.24

1990 0.03
1990-91 0.08
1991-92 0.33

1992 0.02
1993-94 0.16 0.13
1994-95 0.16
1995-96 0.42 0.17
1996-97 0.06

1997 0.06

Table 21: Weights for synthetic control methods. The left column presents weights for the illness model and
the right column presents weights for the hospitalization model. County weights (wj) that construct the
synthetic control unit are presented in the top panel and pretreatment outcome weights (ωk) are presented
in the bottom panel. OSHPD masks smaller counties, so Northwestern refers to Colusa, Glenn and Trinity
counties combined.

highest weights on Monterey, Riverside, and Mendocino counties. As can be seen from the outcome

weights in Table 21, this is largely driven by hospitalizations occurring around 1985-87. Each of

these counties exhibited hospitalization increases around that time. Recall that the increase in LA

at that time was caused by a drug-resistant strain of salmonella newport. The drug-resistance of

that salmonella strand explains why the rate increase around 1985-87 is more prominent in the

hospitalization data than in the illness data – compare, for instance, the dark and grey lines for

LA in Figure 4. The salmonella newport outbreak was caused by a slaughterhouse that distributed

meat both to LA and Northern CA (Spika et al., 1987, p. 567), which potentially makes the control

group plausible. Intuitively, the synthetic control methods should track the geography of slaugh-

terhouse/meatpacking distribution networks. These results reinforce the point that outbreaks can
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make identification challenging with foodborne illnesses and the importance of examining robust-

ness to both illness and hospitalization data.

K.4 Robustness

Here we demonstrate that the synthetic control results are invariant to (a) the observation

window, (b) disease selection, and (c) geographic distance. Across all results, we fail to reject the

null hypothesis of no grading effects. Rows A of Table 22 present the baseline models presented

in above, which use the 1983-2009 observation window for hospitalizations and the 1990-2015

observation window for illnesses. The table denotes which diseases are included, the two control

counties with the highest weights in the LA synthetic control, and the test statistic τ and p-value.

Observation Window. Rows B of Table 22 use the original 1995-97 pretreatment window of

J&L. The major downside to this short pretreatment window is that balance may not be particularly

credible: an ideal DID would show a long, comparable pretreatment time series. Yuba County, for

instance, is heavily weighted in these models because hospitalization rates are close to those of LA

in 1995 and 1997. As the fifth smallest county in CA, it may not be a particularly credible control

unit, which is why we focus on a model with a longer pretreatment time trend in Section K.1.

We nevertheless examine this observation period because it allows us to apply a hospitalization

filter used by J&L, which limits cases to patients admitted from home and unscheduled.40 Row

C presents hospitalization results using 1992 as the beginning of the observation period, as 1992

is the year that a separate ICD code (00843) was established for campylobacter (Healthcare Cost

and Utilization Project, HCUP, 2016). Each of these models fails to reject the null hypothesis.

Disease Selection. We also investigate robustness of these results to different disease selections.

First, for the 1995-2009 models, we examine the four combinations of selecting campylobacter and

E. Coli. The reason for examining the impact of E. Coli separately is that mandatory reporting

40OSHPD data does not record these fields prior to 1995.
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Principal County Secondary County τ p-value p-value

Hospitalizations

A 1983-2009 Yes Yes No Monterey (0.19) Riverside (0.18) −0.10 0.95 0.98

B 1995-2009

No Yes No Yuba (0.30) Del Norte (0.25) 0.06 0.97 0.48
No No No Yuba (0.60) Kings (0.23) −0.04 1.00 0.67
Yes No No Yuba (0.48) Orange (0.35) −0.09 0.86 0.27
Yes Yes No Orange (0.64) Yuba (0.22) −0.25 0.79 0.65

C 1992-2009 Yes Yes No Northwestern (0.48) Kings (0.33) −0.30 0.78 0.61

D 1983-2009 No No Yes San Diego (0.46) Orange (0.44) −0.07 0.84 0.93

Illnesses

A 1990-2015 Yes No No Orange (0.74) San Diego (0.12) 0.89 0.98 0.29

B 1995-2015

No Yes No Orange (0.65) San Diego (0.30) −0.43 0.95 -
No No No Orange (0.70) San Diego (0.23) 0.54 0.96 -
Yes No No Orange (0.10) Alpine (0.03) −3.00 0.80 -
Yes Yes No Orange (0.87) Alpine (0.08) 4.20 0.52 0.60

E 1990-2015 Yes Yes No Orange (0.74) San Diego (0.12) −1.30 0.83 0.26

D 1990-2015 No No Yes Orange (0.4) San Diego (0.4) −1.20 0.70 0.19

Table 22: Invariance of synthetic control results to observation window, disease selection, and geographic
distance. The top panel presents models for hospitalization discharge data. The bottom panel presents
models for illness data. Years indicate the observation window. Campylobacter and E. Coli indicate whether
the disease is included in outcomes. Salmonella only indicates that the model is fit exclusively with salmonella
outcomes. Principal and secondary counties indicate the control counties receiving the highest weights, with
weights in parentheses. τ is the DID test statistic in Equation 12. The p-value is calculated via permutation
inference, with placebo treatments for all control counties. Geo. Model refers to model where counties
in synthetic control group must be within 250 miles of treated (or placebo treated) unit. For geographic
models, the principal and secondary counties and τ are different than those reported for the main model. For
reference, rows are labeled A (baseline), B (observation window starting in 1995, corresponding with J&L’s
observation period), C (observation window starting with 1992, when campylobacter was assigned a new ICD
code), D (salmonella only) and E (full time period for illnesses data including E. Coli). E. Coli includes only
E. Coli O157 for illness data, as that is the serotype subject to the earliest mandatory reporting. Models in
rows B apply the J&L hospitalization filter to examine only unscheduled admissions from home. For rows
D, we used a pretreatment MSPE cutoff of 22, as the MSPE for LA’s synthetic control is quite low.
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for E. Coli illnesses began statewide only in 1996 (Belshé et al., 2003). Voluntary reporting existed

in the state since 1993 (Bissell and Sebesta, 1995), but because we find evidence of divergent

reporting practices, our main illness model in Section K.1 includes only the four foodborne illnesses

that were subject to mandatory reporting from 1990-2015 (salmonella, campylobacter, listeria, and

vibrio). Row E adds E. Coli to the baseline illness model. In addition, we fit models in rows D that

examines only salmonella, since salmonella is the predominant pathogen resulting in hospitalizations

and reported illnesses. We fail to reject the null across all of these models.

Geographic Distance. As the Southern CA salmonella outbreak shows, there may be distinct

reasons to construct a control group that is graphically proximate to the treated unit. Proximate

counties may share similar food supply chains, climate (which can affect food handling practices),

and restaurants, and hence be subject to similar shocks in foodborne risk. The principal and

secondary counties in Table 22 suggest that illness data provides a more credible control group

based on geographic proximity. Orange County, which borders LA, consistently receives the highest

weight. Here we hence investigate the sensitivity to geographic proximity. We do so by restricting

the donor pool of control units to be within 250 miles of the treated (or placebo treated) unit. The

downside to this geographic model is that there are insufficient number of well-matched placebo

counties when the pretreatment observation period begins in 1995. The last column of Table 22

presents p-values from these permutation tests, showing nearly identical results.
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Appendix L Calculation for m and v

L.1 Los Angeles

Here we describe how we calculated m and v, the measures for the proportion of the population

in each three-digit ZIP code subject to mandatory and voluntary enactment of restaurant grading

respectively.

To compile information about municipal enactment, we began with the list of adoptees provided

by LA.41 For any municipality either not listed in the table or listed as not having enacted grading,

we examined the city ordinance and contacted city officials to clarify the status. Particularly for

smaller municipalities, we encountered some degree of confusion. For instance, while La Habra

Heights adopted the LA County Public Health Code after the grading ordinance was passed, it

does not appear to have a functioning grading system. As the cities of Long Beach, Pasadena,

and Vernon operate health inspections independently from the county (and did not adopt LA’s

ordinance), they are coded as having enacted neither voluntary nor mandatory grading.

Calculating m and v requires splitting the population of a three-digit ZIP code into the compo-

nents subject to each grading regime. We used our 1994 postal service dataset at the five-digit ZIP

code level to map each five-digit ZIP code to every intersecting municipal area (incorporated or

unincorporated) and county (Blodgett, 2017).42 While useful for geographic mapping, this dataset

does not specify the population that resides in each ZIP-municipality-county combination. To

estimate this for the start of J&L’s observation window, we obtained the 1995 population of all

incorporated and unincorporated areas in each county in CA from the CA Department of Finance.

We allocated the 1990 Census population of each five-digit ZIP code to municipalities or unincorpo-

rated areas according to the percentage of the county’s population that resided in each municipality

or unincorporated part of the county.43 This method assumes that the municipal population distri-

41http://publichealth.lacounty.gov/eh/misc/cityord.htm
42For each ZIP-municipality pair, the dataset assigns one primary county and, if necessary, a secondary county.

Only 136 ZIP-municipality pairs have a secondary county assigned. We use the primary county for the purposes of
calculating m and v.

43For the purposes of this analysis, we treat individual unincorporated municipalities as a single population entity
because they are subject to same grading regimes at the same times.

57

http://publichealth.lacounty.gov/eh/misc/cityord.htm


bution at the county level is a good proxy for the municipal population at the five-digit ZIP code

level, but it is unclear how J&L divides the population of five-digit ZIP codes into municipalities

without making a similar assumption.

To each incorporated ZIP-municipality population segment under the jurisdiction of the LA

County Department of Public Health, we assigned a voluntary grading effectiveness date of January

16, 1998, and a mandatory effectiveness date as described above. To each unincorporated segment

in LA county, we assigned a mandatory grading date of January 16, 1998, since unincorporated areas

of LA county were subject to mandatory grade-card posting when the county ordinance went into

effect. With these dates, we could calculate the number of days that each ZIP-municipality-county

population segment was subject to each grading regime.

We then calculated m and v for ZIP code i and quarter t according to the following formula:

mit =

∑Mi
k=1 popik daysmandatory

kt

popi dayst
(13)

vit =

∑Mi
k=1 popik daysvoluntarykt

popi dayst
(14)

where Mi is the number of distinct jurisdictions (municipalities and unincorporated area) in ZIP

code i, popik is the population in jurisdiction k and ZIP code i (i.e., the ZIP code’s population

in the unincorporated county or an enacting municipality), and popi is the total population in

ZIP code i. Furthermore, daysmandatory
kt is the number of days that municipality k has mandatory

grading in quarter t (which will be 0 for all jurisdictions before 1998, and will continue to be 0

for jurisdictions outside of LA after 1998), daysvoluntarykt is the number of days that municipality k

has voluntary grading in quarter t, and dayst is the number of days in quarter t. For three-digit

ZIP codes entirely within LA county, m and v sum to one. For three-digit ZIP codes that straddle

the border of LA county, m and v sum to the proportion of the population that resides within LA

county boundaries, as these ZIP codes contain jurisdictions that are outside of LA county and are

therefore subject to neither mandatory nor voluntary enactment.
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L.2 Southern California

In order to assign placebo treatments to Southern CA, we could not simply randomly sample

m and v for LA, because five of the 18 LA three digit ZIP codes cross county lines. For problems

with these units of analysis see Appendix E. It would make no sense to assign m = 0.7 to Southern

CA, when that LA ZIP code is coded as 0.7 only because 30% of the ZIP code is outside of LA.

We hence adjusted m and v constraining k to include only jurisdictions fully within LA county.

This assured that m and v vectors always summed to one for each three-digit ZIP code in LA

county within each quarter, hence retaining the crucial information about timing and population

distribution of municipal enactment, but removing the influence of county borders. For ease of

exposition, we call these adjusted m and v vectors mLA and vLA, respectively.

Border ZIP codes also exist for Southern CA, so our placebo tests adjust each simulated placebo

treatment mLA and vLA for the proportion of the three-digit ZIP code i that is in Southern CA.

We calculate the proportion as:

prop socali =

∑S
n=1 popni∑N
n=1 popni

(15)

where S is the number of five-digit ZIP codes within i that fall within Southern CA placebo county

borders according to our 1994 postal service dataset, N is the total number of five-digit ZIP codes

within i, and popni is the 1990 Census population at the five-digit ZIP code level.

We perform the Southern CA placebo tests by assigning placebo treatments 1,000 times via the

following process:

1. For each three-digit ZIP code i partially or fully within Southern CA placebo counties, ran-

domly sample an LA three-digit ZIP code j with replacement and assign its mLA
j and vLAj

vectors to three-digit ZIP i;

2. Multiply mLA
i and vLAi by the population proportion of three-digit ZIP i that resides within

any of the Southern CA placebo counties (from Equation 15);
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3. Set mLA and vLA to zero for all three-digit ZIP codes fully outside of Southern CA placebo

counties.

4. Estimate the J&L specification using mLA and vLA in place of m and v.

Out of these 1,000 simulations, we report a representative model based on the median t-statistic

for γ1 in Table 3 and report the rejection rate for all 1,000 models in the caption. The process

spelled out above avoids confounding LA borders with Southern CA placebo county borders.
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Appendix M Population Data

In this Appendix, we describe the data sources and process that we used to augment the OSHPD

hospitalization and the reported illness data with county time-varying population estimates. This

process is straightforward for the illness dataset at the county level, but presents considerable

difficulties when ZIP codes are the primitive units of analysis (for discussion about why ZIP codes

are poor units of analysis, see Appendix E).

M.1 County Time-Varying Population Data

We obtained CA county population data for 1964-2015. We used census estimates, but for

the years 1964-1969, we obtained our population estimates from the CA Department of Finance

(State of California, Department of Finance, 2017). For the years between 1970 and 2015, we used

intercensal estimates from the National Bureau of Economic Research (Roth, 2007).

M.2 ZIP Code Population Data

In order to calculate m and v, we need to know the proportion of a ZIP code’s population that

is in LA County. We obtained a ZIP code to county mapping in 1994, but population estimates

for ZIP codes added since 1990 are missing. We describe here the process to estimate population

for those units.44

Types of ZIP Codes. To create our population dataset, our goal is to represent geographic

units of residence. The Postal Services ZIP codes, however, can include “point ZIPs,” which do

not represent a geographical area (e.g., PO boxes, ZIP codes for businesses), as well as physical

ZIPs, which represent a geographical area. Because the first three digits represent the postal office

processing center, we treat a point ZIP in the OSHPD data as located within the same three-digit

physical ZIP code.

44It is unclear how J&L addressed these dynamic changes in ZIP codes. One possibility is that J&L calculated the
proportion in LA county at the three-digit ZIP code level based exclusively on 1990 Census and ZIP code information.
This would miss dynamic changes from ZIP code realignments.
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Sources. Our base dataset was 1990 census population data for 1523 CA five-digit ZIP codes,

from the CDC website (Bureau, 1992). Population estimates provided through this portal corre-

spond to the 1990 census tape STF3B.45 Because J&L spans 1995-1999, and ZIP code boundaries

change over time (US Postal Bulletins Consortium, 2014), this dataset did not include 1990 pop-

ulation for all ZIP codes in the patient discharge data. We hence obtained a 1994 postal service

dataset of ZIP codes from the University of Missouri’s Dexter (Data Extractor) (Blodgett, 2017).

In order to establish if a ZIP code came into existence between 1990 and 1994, we used the Digitized

US Postal Bulletins database (US Postal Bulletins Consortium, 2014).

Missing ZIP Codes. We identified 126 physical ZIP codes in existence in 1994 that were absent

from the 1990 census population data. This absence could be due to two reasons. First, the ZIP

code may have existed in 1990, but was pooled with another ZIP code when reporting population

estimates.46 For the 1990 census, the Census Bureau worked with private vendors, but when census

blocks crossed ZIP codes, which happened frequently, the entire block was assigned to a single ZIP

code (Missouri Census Data Center, 2010). The second possibility is that the ZIP code came into

existence between 1990 and 1994, in which case this should be documented in the Postal Bulletins.

We found this to be the case for 11 out of 126 ZIP codes. Because both scenarios mean that

population was imputed to a different ZIP code in 1990, we developed a method to redistribute

population counts to 1994 ZIP codes.

ZIP Code Blocks. We reconstructed the mapping that the Census Bureau had used to group

ZIP codes when reporting 1990 population estimates. Specifically, we assigned all 1994 ZIP codes

to “blocks” that consisted of:

1. Identical ZIP Codes Blocks. The 1994 five-digit ZIP code alone, if

45We used this tape as it contains ZIP code information, whereas STF3A is at the county, census tract and census
block level.

46The 1990 census was the last decennial census to be conducted before the introduction of ZCTAs (ZIP Code
Tabulation Areas) (Missouri Census Data Center, 2010), which standardized the reporting of census data at an
approximate ZIP code level.
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(a) that ZIP code was included in both the 1990 census and the 1994 USPS list, and

(b) no adjacent five-digit ZIP codes from the same three-digit ZIP code were missing from

the 1990 census data;

2. Blocks with Newly Created ZIP Codes. The 1994 five-digit ZIP code and its corresponding

1990 three-digit ZIP code, if the ZIP code came into existence between 1990 and 1994 ac-

cording to the Postal Bulletins;

3. Blocks with Pooled ZIP Codes. The 1994 five-digit ZIP code plus adjacent five-digit ZIP codes

that existed in 1990 in the same three-digit ZIP code47, if the adjacent ZIP code was listed

as created in the postal bulletin for the five-digit ZIP code (so that it was likely pooled with

neighboring ZIP codes in the 1990 process).

If multiple 1994 five-digit ZIP codes missing from the 1990 census shared adjacent five-digit

ZIP codes, we pooled the entire set of 1994 ZIP codes together, provided they were in the same

three-digit ZIP code. This resulted in 295 ZIP codes from the 1622 physical 1994 ZIP codes being

assigned to ZIP code blocks larger than the ZIP code by itself. Assuming that the census correctly

captured the true population of CA in 1990, we assigned population to a ZIP code block by summing

any non-zero 1990 population estimates for ZIP codes in the ZIP code block.

Population Imputation. The resulting dataset contains 1649 observations, representing 1523

ZIP codes from the 1990 census and 126 previously missing 1994 ZIP codes. For the former, we

can readily use 1990 population estimates. For the previously missing ZIP codes, we needed to

estimate the population based on the known 1990 ZIP block population, popbl, where bl indexes

blocks. To do so, we use the known 1995 total hospitalization counts at the five-digit ZIP code

level, hosp.1995i, where i indexes ZIP codes. For the 1523 ZIP codes where hosp.1995 and pop are

observed, we regress pop against hosp.1995. Figure 10 shows that this simple linear fit works well.

47We used the 2010 USPS ZIP code map to determine geographic boundaries.
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Figure 10: Population imputation model for missing ZIP code population. The x-axis presents hospitaliza-
tions (1995) in thousands, available for all five-digit ZIP codes. The y-axis presents population estimates (in
thousands) from the 1990 Census, available for 1523 ZIP codes. We used this model to infer population for
newly created ZIP codes or previously pooled ZIP codes.

We use this model to predict pop for the 126 previously missing ZIP codes, p̂opi. To ensure

consistency in block totals, we then allocate the fraction of popbl to each ZIP code i using the

predicted ratio:

p̂opi

p̂opbl

popbl, (16)

subject to:

p̂opbl =
∑
i∈bl

p̂opi. (17)
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References for Appendix B

Jurisdiction Source
State of Florida Torres, MN (2007, July 30). Could your restaurant earn an A? Consumer

advocates push simpler inspection ratings. South Florida Sun - Sentinel.
Los Angeles County, CA Rong-Gong Lin (2010, September 14). On the A-B-C bandwagon: food

trucks may soon be graded with letter placards. Los Angeles Times.
New York City, NY Collins, G. (2010, Mar 17). City restaurants required to post cleanliness

grades. New York Times.
Kristof, K. (2010, Jul 29). Ballpark update: stadiums must tell about toxic
food. CBS News.

State of Connecticut Pytka, E. (2005). Publicly posted health inspection grade cards. Connecti-
cut General Assembly Office of Legislative Research Report No. 2005-R-
0403.

Orange County, CA Orange County Grand Jury Report. (2007-2008). Restaurant inspections
– what no one is telling you.
Johnson, B. A. (2014, January 8). A major failing. Orange County Regis-
ter.

San Bernardino County, CA Martin, H. (2004, June 9). S.B. County Oks Plan for Rating Eateries. Los
Angeles Times.

King County, WA Phuong Cat, L. P. (2004, July 9). Restaurant inspections skipped, fines
for infractions infrequent; post check results so more can be learned about
violators, critics say. Seattle Post - Intelligencer.

Santa Clara County, CA Susko, J., Putnam, J., and Villareal M. (2013, February 6). Silicon Valley
restaurants: no grades, no accountability. NBC Bay Area News.

Sacramento County, CA MS Enkoji Bee, S. W. (2005, September 20). Keeping score on cleanliness
reports of unsanitary conditions spurred a new disclosure law for restau-
rants in los angeles county; diners depend on the letter grades, and now
sacramento county is considering a similar system. Sacramento Bee.

Cuyahoga County, OH CantonRep.com. (2010, February 7). Cleveland eyes restaurant grading
system.
Spector, K. (2010, February 7). Grading system for Cuyahoga County
restaurants under discussion. Cleveland Plain Dealer.

Allegheny County, PA Allegheny County Board of Health. (2014, March 3). Update on restaurant
grading system. Approved Meeting Minutes, Allegheny County.
Sabatini, P. (2008, September 7). Dining Dangers Consumer Watchdog
Wants Safety Inspectors to Post Letter Grades in Restaurant Windows.
Pittsburgh Post - Gazette.

Contra Costa County, CA Richards, S. (2016, April 19). Contra Costa’s new color-coded food inspec-
tion grading placards. Mercury News.
Felsenfeld, P. (2005, February 4). Health inspection info may be posted.
Contra Costa Times.

Pima County, AZ Stauffer, T. (2008, August 18). Force eateries to post inspection grades?
Tucson Citizen.

Kern County, CA The Bakersfield Californian. (2006, February 9). Show which eateries make
the grade.
Price, R. (2006, February 10). Restaurant inspection system needs upgrade.
Bakersfield Californian.

Ventura County, CA Ventura County Grand Jury. (2008-2009). Is your favorite restaurant
clean?

San Francisco, CA Mayor Ed Lee announces open data partnership with Yelp to offer restau-
rant health inspection scores to improve public health, transparency. (2013,
January 17). PR Newswire.
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San Mateo County, CA San Mateo County Civil Grand Jury Report. (2003-2004). Food inspection
in San Mateo County.

Boston, MA Rocheleau, M. (2015, November 9). Boston to assign restaurants letter
grades. Boston Globe.

Stanislaus County, CA Milbourn, T. (2004, July 28). Modesto, Calif., health inspector has appetite
for food safety. Knight Ridder Tribune Business News.

Minneapolis, MN Roper, E. (2016, April 13). Here are the A, B, Cs of why Minneapolis
inspectors don’t grade restaurants. Minneapolis Star Tribune.

Marin County, CA O’Malley, M. (2006, January 18). Better restaurant monitoring needed.
Marin Independent Journal.

Muskegon County, MI McVicar, B. (2011, August 1). Some states grade restaurants based on
health inspections. Mlive.

United Kingdom Food Standard Agency. (2008, May 20). UK-wide scores on the doors
scheme on hygiene standards in food businesses.

New South Wales, Australia NSW Food Authority. (2011). “Scores on Doors” Pilot Evaluation Report.
New South Wales, Australia.

Hong Kong, China Legislative Council Secretariat. (2008). Food hygiene information system
in selected places. Hong Kong, China.

New Zealand Filion, K. and Powell, D. (2011). “Designing a national restaurant in-
spection disclosure system for New Zealand.” Journal of Food Protection
74(11):1869-1874.

Hamilton, Ontario, Canada Vallance-Jones, F. (2007, April 23). Expert: Hamilton signs ’misleading’;
one year after los angeles introduced its restaurant grading system, hospi-
talizations for food-borne illnesses dropped by 20 per cent. Spectator.

Table 23: References for J&L citations described in Table 3

Institution Area Source

Federal Trade Commission (FTC) Consumer protection Federal Trade Commission (2016,
September 15). Putting disclosures to
the test.

Environmental Protection Agency
(EPA)

Environment Environmental Protection Agency (2011,
January 18). Benefits of environmental
information disclosure proceedings.

Federal Communications Commis-
sion (FCC)

Communications Federal Communications Commission
(2013, September 27). Improving the
resiliency of mobile wireless communica-
tions networks.

Board of Governors of the Federal
Reserve System

Consumer finance Kroszner, Randall S. (2007, May 23).
Creating more effective consumer
disclosures.

Organisation for Economic Co-
operation and Development (OECD)

Regulatory enforcement Blanc, Florentin (2013). Inspection re-
forms: Why, how, and with what results.

CA Department of Toxic Substances
Control

Product safety Kahn, Mathew E. and DeShazo, J.R.
(2010, September 8). Economic analysis
of California’s green chemistry regulations
for safer consumer products.

CA State Assembly Committee on
Health

Health California Healthcare Foundation (2009,
February 17). What is transparency in
health care and why does it matter?

Table 24: References for wider policy discussions citing J&L
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